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Preface
On behalf of the Local Organising Committee, It is my pleasure to present the proceedings of the 12th International Micro
Air Vehicle Conference, which was held in Puebla, México from November 17-19, 2021. These proceedings are available
to the public as open-access publications, seeking to promote and contribute to the advancement of the state-of-the-art in
the area of small flying robots and their applications for the benefit of society.

For the first time ever, The 12th International Micro Air Vehicle Conference was run by Latin American academic in-
stitutions based in Mexico: Instituto Nacional de Astrofı́sica, Óptica y Electrónica (INAOE), Universidad de las Américas
Puebla (UDLAP), Benemérita Universidad Autónoma de Puebla (BUAP) and Centro de Investigación y de Estudios Avan-
zados del Instituto Politécnico Nacional (CINVESTAV), Unidad Zacatenco.

The IMAV is a pioneer scientific-technological event in the field of aerial robotics and has been established as a stellar
event among the communities of researchers dedicated to the study, development and research of Micro Air Vehicles. This
year of 2021, due to the COVID-19 pandemic, the IMAV-2021 was run in a virtual mode as a conference only; this is, no
competitions were run this time. Yet, I believe the event offered a huge opportunity to communicate the latest developments
regarding Micro Air Vehicles as much as to foster collaborations among the members of the IMAV international community.

These proceedings contain 27 peer-reviewed scientific papers by 88 authors organised in 9 sessions presented at the
IMAV-2021. The topics of these papers contain a nice mix ranging from aerial vehicle design and energy sources to control,
navigation and perception. Together, the papers give an overview of the current state-of-the-art on the field of Micro Air
Vehicles. In the awards ceremony of the conference, the following awards were announced: Best Conference Paper, Best
Technical/Application Paper, and Best Student Paper. Based on the quality of the scientific and technical contribution, some
papers were selected to be published in two scientific journals: the International Journal of Micro Air Vehicles (Sage), and
Unmanned Systems (World Scientific).

In addition to the presentation of the scientific papers, 6 keynote talks were delivered by experts in the field. The
first speaker, Rear Adm Leopoldo Dı́az, Head of the Research and Technological Development Unit of the Mexican Navy,
presented the research and technological work on UAS that has been developed in this Unit. Prof. Guido de Croon from
TUDelft, talked about his work on insect-inspired AI for swarms and tiny drones. Prof. Tom Richardson from the University
of Bristol, talked about studying volcanic emissions by operating drones beyond visual line of sight. Brandon Gilles, CEO
of Luxonis, introduced the OAK-D Lite smart camera capable of running Spatial AI on the chip and its use on drone
applications. Nicolas Marchand from GIPSA-lab/CNRS, presented his work on event-based control for flying robotics.
Finally, Rogelio Lozano from the Université de Technologie de Compiègne, presented his work on the dynamical model of
a mini helicopter without a swashplate and the challenges behind this problem in outdoor flight.

We also had the privilege of gathering former IMAV General Chairs who shared nice memories of previous IMAVs.
The participation of these former Chairs was split into 2 panel sessions. The first one was attended by Prof. Simon Watkins
from RMIT and Prof. Ben M. Chen from CUHK, Chairs of the IMAV 2016 and IMAV 2018, respectively. The second panel
was attended by Prof. Guido de Croon from TUDelft, Prof. Jean-Marc Moschetta from ISAE, Dr. Gautier Hattenberger
from ENAC, and Prof. Pascual Campoy from UPM, Chairs of IMAV 2014, 2017 and 2019. I have no doubt these sessions
summarised the influence and legacy that IMAV conferences and competitions have had in the field of Micro Air Vehicles
over the last years.

Finally, my deepest gratitude goes to all members of the Local Organising Committee for their invaluable support in the
organisation of this IMAV-2021, even during this difficult pandemic period. Also, I appreciate the guidance and support of
the members of the International Committee, whose enthusiasm and kindness inspired us to do our best to prepare and run
this event. Last but not least, we are very grateful for the sponsorship of the awards provided by LUXonis.

Puebla, México. November 2021

Jose Martinez-Carranza
Instituto Nacional de Astrofı́sica, Óptica y Electrónica
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Meaning of the IMAV 2021 Logo
The logo of the IMAV 2021 was inspired by the Mexican flag, seen at the top left of the image below. The logo shows the
letters of the acronym IMAV in green, the first colour of the flag. At the top of the log we see a figure with a fixed-wing
like shape. This is intended to represent a fixed-wing MAV dressed with brown feathers, representing the Mexican Royal
Eagle, located at the center of the Mexican flag. The letter ’V’ in the acronym has been depicted in the shape of a snake.
This symbol represents a Deity from the Aztec culture: the feathered Serpent popularly known as Quetzalcoatl. The tongue
of the snake is in red as in the Mexican flag, and also located to the right. Finally, a bar and two dots in red are seen at the
right bottom part of the logo, representing a Mayan number, a vigesimal positional numeral system that uses bars and dots
to represent numbers. In this logo, the Mayan number represents the number 2021. The logo also has the word ”México”
in a smaller font size, above the acronym. Therefore, buy putting everything together and with some imagination, the logo
portraits a Mexican flag shaped by the IMAV acronym, the year of the conference and containing representative symbols of
the Mexican culture.

We are thankful to Guadalupe Cabrera-Ponce for her design on the Quetzalcoatl symbol and to Oyuki Rojas-Perez
for her design on the eagle and Mayan number symbols. Their help was essential to create this IMAV 2021 logo. Jose
Martinez-Carranza conceptualise and supervised the elaboration of the logo.
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Call for Papers

We cordially invite all experts, users, scientists, young researchers, and students being active or interested in the field of
Micro Unmanned Aerial Vehicles to attend the 12th International Micro Air Vehicle Conference. This edition of the IMAV
will be organized in the virtual model. The conference will take place November 17-19 2021. Topics for scientific and
technical papers include, but are not limited to:

• Low Reynolds number aerodynamics
• Unsteady aerodynamics
• Smart morphing materials
• Propulsion set and new energy sources
• Autonomous navigation
• Autonomous Drone Racing
• Cooperation and formation flight
• Control theory and state estimation
• Computer vision for MAVs
• Sense & avoid Integration of UAVs in airspace
• Reconfiguration in unpredicted events
• New MAV architectures
• Characterization of noise emission for MAVs

• Low noise and noise mitigation

Dedicated applicative sessions will be set up for the fol-
lowing topics:

• Atmospheric research
• Archaeological research
• Search and rescue operations
• Industrial inspection
• Agriculture & environment
• Artificial Intelligence for MAVs
• Ethics & Regulations
• The societal impact of MAVs

Based on the quality of the papers and after a thorough evaluation by the IMAV’s international committee, selected
papers and Finalist to the “Best Conference Paper Award” will be offered to be published in one of the following two
Journals (note that the Article Processing Charges will be waived):

• International Journal of Micro Air Vehicles
• Unmanned Systems

Important Dates:

• Paper Submission Deadline: June 21, 2021
• Notification of Acceptance: August 1st, 2021
• Camera-ready: August 30, 2021
• Registration: Before September 1, 2021

The proceedings of the conference will be available on-line with free access for anybody.

For further questions, please visit the conference web pages http://imav2021.inaoep.mx/ http://www.imavs.org/

Best regards,

Hugo Rodrı́guez Cortés - Program Committee Chair
Jose Martinez-Carranza - General Chair
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Keynote Speakers

Urban Air Mobility, a vision by Airbus
Rear Adm. Leopoldo Jesus Diaz González Solórzano – Head of the Research and Technological Development Unit
Mexican Navy

Biography

Admiral González Solórzano graduated as Naval Science Engineer from the Heroica Es-
cuela Naval Militar of the Mexican Navy. He has held several appointments in the Mexican
Navy such as Patrol commander, Deputy and later Area Head of the Deputy General Man-
agement Office of Communications and Informatics, Inspector of the Naval Command of
the 3rd Naval Zone, and Permanent alternate Representative of Mexico to the International
Maritime Organization, a specialised agency of the United Nations with Headquarters in
London, United Kingdom. In 2016, he was promoted to Rear Admiral of the Mexican
Navy. He has also received several distinctions throughout his career. He was awarded the
naval merit of First-Class due to this high performance during his studies at the Heroica
Escuela Naval Militar, and awarded the Argentine Navy Prize for his high performance in
military skills during these studies. He received an Honorary Mention for his high perfor-
mance during a course given by the international Hydrographic Organization. To date, he
is the Head of the Research and Technological Development Unit of the Mexican Navy.

Abstract

Unmanned Aerial Vehicles developed by the Mexican Navy
The Research and Technological Development Unit is a department within the Mexican

Navy responsible for developing projects that support the navy forces, units and naval
establishments. The main research projects focus on Unmanned Aerial Systems (UAS),
radars, datalink systems, sonars, simulators, and rockets. This talk will present the research,
and technological work carried out since 2011 on UAS. To date, two aerial vehicles have
been developed and tested in different operation environments; one of these vehicles is
under the production of more units. The development of these vehicles implies a continuous
learning curve, but in particular, it is essential to design adequate schemes for validation
and verification of the vehicle’s performance. Nowadays, with the support of the National
Council of Science and Technology of Mexico, an Unmanned Aerial Vehicle (UAV) is
under development, capable of performing vertical take-off and landing. Since two years
ago, this vehicle has been in the stage of testing to validate its design and functionality. For
future work, we are considering the deployment of UAS from naval ships, the development
of cooperative UAVs with swarm capabilities and the use of alternative energies.

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 8
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Autonomous Drone Racing
Prof. Guido de Croon, Full Professor in Bio-inspired Micro Air Vehicles Department
of Aerospace Engineering Delft University of Technology

Biography

Received his M.Sc. and Ph.D. in the field of Artificial Intelligence (AI) at Maastricht
University, the Netherlands. His research interest lies with computationally efficient and
often bio-inspired algorithms for robot autonomy, with an emphasis on computer vision.
Since 2008 he has worked on algorithms for achieving autonomous flight with small and
light-weight flying robots, such as the DelFly flapping wing MAV. In 2011-2012, he was
a research fellow in the Advanced Concepts Team of the European Space Agency, where
he studied topics such as optical flow based control algorithms for extraterrestrial landing
scenarios. Currently, he is Full Professor at TU Delft and scientific lead of the Micro Air
Vehicle lab (MAV-lab) of Delft University of Technology.

Abstract

Insect-inspired AI for swarms of tiny autonomous drones
Swarms of tiny autonomous drones can help humans in search-and-rescue missions,

in keeping track of the stock in warehouses or in monitoring crop in greenhouses. Tiny
drones (think below 30 grams) are very safe for humans, are suitable for flying in narrow
environments, and are very cheap so that they can be produced in large numbers. However, it is also notoriously hard to
make such tiny drones fly autonomously. Due to their extremely low weight, they are very limited in terms of energy and
payload. This implies that they can carry few sensors and extremely little processing compared to, e.g., self-driving cars. In
my talk, I will talk about the effort at TU Delft’s MAVLab to make swarms of tiny autonomous drones, and how we approach
this by drawing inspiration from insect intelligence. I will present our work on the lightest autonomous drone in the world,
the 20 gram ”DelFly Explorer” and on a swarm of 33-gram Crazyflies that is able to autonomously explore an unknown
environment and come back to the departure point. Furthermore, I will discuss our recent study in which we designed a
swarm of CrazyFlie drones able to autonomously localize gas sources. I will end with our efforts into incorporating spiking
neural networks in neuromorphic hardware on our drones, showing results of an evolved spiking neural controller that was
successfully ported to the real world, for the first time controlling a flying drone with neuromorphic processing in the control
loop.
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Tom Richardson - Senior Lecturer in Flight Dynamics and Control Flight Lab University of
Bristol
Biography

Tom is a senior lecturer in flight dynamics and control at the University of Bristol. With a
PhD in nonlinear control system design, he specializes in the application of modern control
theory and novel sensors to Unmanned Air Systems (UAS). Tom has held an NPPL (pilots
license) for over 15 years, runs the University of Bristol glider flight test course, and has
been responsible for UAS operations in multiple countries. He has been granted permis-
sion multiple times for Beyond Visual Line Of Sight (BVLOS) operations, and holds the
University of Bristol CAA UAS Permission for Commercial Operations. He has also run
flight demonstrations and test flights for DSTL, BAE Systems, QinetiQ, DSTL and Roke
Manor. Tom is also a founding partner of Perceptual Robotics which has recently been
awarded ’Robotics & AI in Extreme Environments’ funding by Innovate UK for Offshore
Wind Turbine Inspection. https://www.perceptual-robotics.com/

Abstract

Remote Sampling and Measurement of Volcanic Emissions using Drones
Recent drone developments are having a significant impact on the way that volcanic

emissions are being studied. This talk will cover collaborations between the Bristol Uni-
versity Flight Lab and Earth Science colleagues on field campaigns to a range of volcanoes
worldwide. Beyond Visual Line of Sight (BVLOS) operations have enabled ash samples to
be collected and gas measurements to be made at distances up to 14km and altitudes up to
14,000ft above take-off. Target volcanoes include Fuego which is an active stratovolcano
in Guatemala and is almost constantly active at a low level. Small gas and ash eruptions
occur every 15 to 20 minutes and multiple flights have been carried out to collect a range
of ash samples from within the plume. Most recently, Dr Richardson has been part of
the international collaborative multi-drone ‘ABOVE’ field campaign to Manam and Rabul
volcanoes in Papua New Guinea - the objective of which was to achieve the first simulta-
neous inter-comparison of ground, aerial, and satellite-based measurement techniques for
volcanic gas (SO2) emissions.
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Brandon Gilles - CEO Luxonis
Biography

Brandon is driven by the singular belief that the biggest impact he can have on the world
is fostering innovation. And the understanding that a 5-fold increase in productivity is the
difference between the middle ages and now. And the driver of that productivity increase
- and the tremendous increase in the quality of life we all have - is innovation. And for
innovation to happen, simplification needs to happen first. So that powerful things can be
used easily and readily - and then combined with other powerful things. Brandon’s mission
is to make embedding performant, spatial AI and CV into products simple - to enable and
foster a wave of innovation powered by being able to embed human-like perception into
products across all sorts of industries.

Abstract

Spatial AI Meets Embedded Systems
The combination of high-resolution depth perception, real-time artificial intelligence,

advanced computer vision functions, and high-frame-rate/high-resolution/multi-sensor cam-
eras systems used to be only available to those with huge budgets. Monetary, size, weight,
and power budgets. Now, it’s possible to have all of this on an embedded system - in a tiny
device that costs $99. It’s going to change every industry.

Nicolas Marchand - Deputy director of GIPSA-lab Directeur de Recherche
CNRS - HDR GIPSA-lab, Control Systems Department, Grenoble, France
Biography

Nicolas Marchand received the M.Sc. and Ph.D. degrees in control theory from Grenoble-
INP, in 1995 and 1999, Grenoble, France. He is a CNRS researcher and director of GIPSA-
lab since 2020, Grenoble, France. His research focuses on event-based control, control and
stabilization of flying robots and control theory for computer sciences.

Abstract

Controlling UAV’s based on events: a new approach for new solutions
In this talk, we will present the theoretical framework of event-based control. Through

examples, we will show how event-based control approach can improve or give new abil-
ities to robotic systems and especially UAVs. Examples will cover safer remote control
of UAVs, faster learning for artificial intelligence and other examples related to flying
robotics.
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Rogelio Lozano - CNRS Research Director Université de Technologie
de Compiègne Compiègne, France
Biography

Rogelio Lozano was born in Monterrey Mexico, on July 12, 1954. He received the B.S.
degree in electronic engineering from the National Polytechnic Institute of Mexico in 1975,
the M.S. degree in electrical engineering from Centro de Investigación y de Estudios Avan-
zados (CINVESTAV), Mexico in 1977, and the Ph.D. degree in automatic control from
Laboratoire d’Automatique de Grenoble, France, in 1981. He joined the Department of
Electrical Engineering at CINVESTAV, Mexico, in 1981 where he worked until 1989. He
was Head of the Section of Automatic Control from June 1985 to August 1987. He has
held visiting positions at the University of Newcastle, Australia, from November 1983 to
November 1984, NASA Langley Research Center VA, from August 1987 to August 1988,
and Laboratoire d’Automatique de Grenoble, France, from February 1989 to July 1990.
Since 1990 he is a CNRS (Centre National de la Recherche Scientifique) Research Di-
rector at University of Technology of Compiègne, France. He was Associate Editor of
Automatica in the period 1987-2000. He is associate Editor of the Journal of Intelligent
and Robotics Systems since 2012 and Associate Editor in the Int. J. of Adaptive Control
and Signal Processing since 1988.

He has coordinated or participated in numerous French projects dealing with UAVs. He has recently organized 2 inter-
national workshops on UAVs (IFAC RED UAS 2013 and IEEE RAS RED UAS 2015). He participates in the organization of
the annual international conference ICUAS (International Conference on Unmanned Aerial Systems) since 2010. He is IPC
Chairman of the ICSTCC in Rumania since 2012. He was Head of Heudiasyc Laboratory in the period 1995-2007 and since
2008 He is Head of the Joint Mexican-French UMI 3175 CNRS. His areas of expertise include UAVs, mini-submarines,
exo-squelettons and Automatic Control. He has been the advisor or co-advisor of more than 35 PhD theses and published
more than 130 international journal papers and 10 books.

Abstract

Stabilization and nonlinear control for a helicopter with virtual swashplate in outdoor flight
The dynamical model of a mini helicopter without swashplate is presented. The helicopter is composed of two rotors, the

main rotor with torque modulation and variable pitch propellers to stabilize roll and pitch angles, the second rotor stabilizes
yaw displacement. The torque modulation is performed accelerating and decelerating the main rotor which produces a
variation in the blades pitch. This helicopter does not have the classical swashplate. The dynamical model is obtained
via the Euler–Lagrange approach and a nonlinear control strategy is proposed. The roll and the forward displacement are
controlled by using a virtual swashplate. The pitch and lateral displacement are controlled in a similar way. The yaw
displacement is stabilized by a classical linear state-feedback controller. The nonlinear controller performance is tested on
real experiments using a mini helicopter. It is shown that the controller is robust to disturbances in outdoor flights.
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Panels with Former IMAV General Chairs

Panel 1: Former General Chairs of IMAV 2016 and IMAV 2018

Prof. Ben M. Chen
General Chair, IMAV 2016
Beijing, China

Biography

Ben M. Chen is currently a Professor of Mechanical and Automation Engineering at the
Chinese University of Hong Kong (CUHK). He was a Provost’s Chair Professor in the
Department of Electrical and Computer Engineering at the National University of Singa-
pore, before joining CUHK in 2018. He was an Assistant Professor in the Department of
Electrical Engineering at the State University of New York at Stony Brook, in 1992–1993.
His current research interests are in unmanned systems, robust control and control applica-
tions. Dr. Chen is a Fellow of IEEE and Fellow of Academy of Engineering, Singapore. He
has authored/co-authored about 500 journal and conference articles, and a dozen research
monographs in control theory and applications, unmanned systems and financial market
modeling. He had served on the editorial boards of a dozen international journals includ-
ing Automatica and IEEE Transactions on Automatic Control. He currently serves as an Editor-in-Chief of Unmanned
Systems. Dr. Chen has received a number of research awards. His research team has actively participated in international
UAV competitions and won many championships in the contests.

Prof. Simon Watkins
General Chair, IMAV 2018
Melbourne, Australia

Biography

Simon Watkins is a Professor of Engineering at RMIT and was Chair of IMAV held at
RMIT in 2018. He was listed in the top 2% scientists in the world in 2019 in the field
of “Aerospace and Aeronautics”, based on Stanford University standardised citation met-
rics and wrote some of the first papers on atmospheric winds and micro air vehicles. He
founded the RMIT Unmanned Aircraft Systems Research Team which comprises a multi-
disciplinary group of senior academics, research fellows and PhD students. His current
research interest is bird and insect flight and trying to reveal the methods by which they
maintain steady flight in the turbulent outdoor wind.
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Panel 2: Former General Chairs of IMAV 2014, IMAV 2017, IMAV
2019

Prof. Guido de Croon
General Chair, IMAV 2014
Delft, The Netherlands

Biography

Swarms of tiny autonomous drones can help humans in search-and-rescue missions, in
keeping track of the stock in warehouses or in monitoring crop in greenhouses. Tiny drones
(think below 30 grams) are very safe for humans, are suitable for flying in narrow environ-
ments, and are very cheap so that they can be produced in large numbers. However, it is
also notoriously hard to make such tiny drones fly autonomously. Due to their extremely
low weight, they are very limited in terms of energy and payload. This implies that they can
carry few sensors and extremely little processing compared to, e.g., self-driving cars. In my
talk, I will talk about the effort at TUDelft’s MAVLab to make swarms of tiny autonomous
drones, and how we approach this by drawing inspiration from insect intelligence. I will
present our work on the lightest autonomous drone in the world, the 20 gram “DelFly Ex-
plorer” and on a swarm of 33-gram Crazyflies that is able to autonomously explore an unknown environment and come
back to the departure point. Furthermore, I will discuss our recent study in which we designed a swarm of CrazyFlie drones
able to autonomously localize gas sources. I will end with our efforts into incorporating spiking neural networks in neuro-
morphic hardware on our drones, showing results of an evolved spiking neural controller that was successfully ported to the
real world, for the first time controlling a flying drone with neuromorphic processing in the control loop.

Prof. Jean-Marc Moschetta
General Chair, IMAV 2017
Toulouse, France

Biography

Jean-Marc Moschetta is a Professor of Aerodynamics at ISAE-SUPAERO, Toulouse,
France and Director of the Micro Air Vehicle Research Center. Since 2000, he has de-
voted his research activity to rotary-wing and fixed-wing drones including : aerodynamic
design, energy-harvesting techniques, transitioning vehicles, quiet propellers. Recently, Dr
Moschetta has started the development of an Hydrogen-powered fixed-wing UAV for flying
over the Atlantic Ocean with low carbon emissions.
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Asst. Prof. Gautier Hattenberger
Deputy Chair, IMAV 2017
Toulouse, France

Biography

Gautier Hattenberger is an assistant-professor at the French Civil Aviation University (ENAC)
in Toulouse, France. As a member of the UAV Research Program, he is working on flight
dynamics and control of micro-UAVs, modeling and simulation, architecture of embed-
ded systems, trajectory planing and formation flight. Most of his work is based on the
Open-Source UAV system “Paparazzi”, for which he is now one of the head developer. He
graduate from the French national engineering school of aeronautical construction in 2004
and received his Ph.D Degree at the Robotic department of the Laboratory for Analysis
and Architecture of Systems (LAAS-CNRS, Toulouse), for his work on formation flight
control and planing of UAVs in 2008.

Prof. Pascual Campoy
General Chair, IMAV 2019
Madrid, Spain

Biography

Pascual Campoy is Full Professor on Automatics at the Universidad Politécnica Madrid
UPM (Spain) where he lectures on Control, Machine Learning and Computer Vision. He
has been visiting professor at DCSC Department in TUDelft (The Netherlands) from 2014
to 2019, and previously visiting professor at Tong Ji University (Shanghai-China) in 2013
and Q.U.T. (Australia) 2011. He received his PhD in Automatics & Robotics at Univer-
sidad Politecnica Madrid in 1988, where he previously received his Master tittle in Au-
tomatics Engineering in 1983. He is leading the Research Group on “Computer Vision
and Aerial Robotics” at U.P.M. within the Centre of Automatics and Robotics (C.A.R.),
whose activities are aimed at increasing the autonomy of the Unmanned Aerial Vehicles
(UAV) by exploiting the powerful sensor of Vision, using cutting-edge technologies in Im-
age Processing, Control and Artificial Intelligence. He has been heading director of over 40 R&D projects, including R&D
European projects, national R&D projects and over 25 technological transfer projects directly contracted with the industry.
He is author of around 200 international scientific publications and nine patents, three of them registered internationally.
He is awarded in the top international UAV competitions: IMAV12, IMAV13, IARC14, IMAV16 and IMAV17, General
Chair for IMAV 2019 and he coordinated the international team that was awarded in the third place in the Grand Challenge
MBZIRC20.
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Best Paper Awards and Special issues
For this IMAV 2021, three prizes were awarded during the Awards Ceremony: Best Conference Paper, two runners-up
were also mentioned and received a certificate; Best Technical/Application Paper; and Best Student Paper. These 5 papers
were selected to be published in a Special Issue of the International Journal of Micro Air Vehicles (Sage).

Best Conference Paper
Nonlinear model predictive control for improving range-based relative localization by maximizing observability.
Shushuai Li, Christophe De Wagter and Guido de Croon. [2] on page 28.

Runners-Up

Estimating wind using a quadrotor.
Gautier Hattenberger, Murat Bronz and Jean-Philippe Condomines. [15] on page 124.

Extended Incremental Non-linear Control Allocation on the TU Delft Quadplane.
Jan Karssies and Christophe De Wagter. [9] on page 74.

Best Technical/Application Paper
Field report: deployment of a fleet of drones for cloud exploration.
Gautier Hattenberger, Titouan Verdu, Nicolas Maury, Pierre Narvor, Fleur Couvreux, Murat Bronz, Simon Lacroix, Grégoire
Cayez and Gregory Roberts. [13] on page 109.

Best Student Paper
Design of aeroacoustically stealth MAV rotors. Pietro Li Volsi, David Gomez-Ariza, Thierry Jardin, Romain Gojon and
Jean-Marc Moschetta. [19] on page 153.

Selection of papers for Unmanned Systems
In addition to the papers above, the following papers were selected to be published in a Special Issue of Unmanned Systems
(World Scientific).

Onboard Time-Optimal Control for Tiny Quadcopters
Jelle Westenberger, Christophe De Wagter and Guido C.H.E. de Croon [11] on page 93.

Developing a modular tool to simulate regeneration power potential using orographic wind-hovering UAVs
Midas Gossye, Sunyou Hwang and Bart Remes [14] on page 116.

Framework and evaluation methodology for Autonomous Drone Racing
Miguel Fernandez-Cortizas, Pablo Santamaria, David Perez-Saura, Javier Rodriguez-Vazquez, Martin Molina, Pascual
Campoy [5] on page 50.

Position controller for a flapping-wing drone using UWB
Guillermo González * , Guido C.H.E de Croon, Diana Olejnik and Matěj Karásek [10] on page 85.

Immersion and Invariance Based Trajectory Tracking Control of an Aerial Manipulation System
Aaron Lopez, Hugo Rodrı́guez Cortés, Israel Cruz Vega and Jose Martinez-Carranza. [8] on page 68.
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Pérez, Rafael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.196

Q
Quero, Carlos Alexander Osorio . . . . . . . . . . . . . . . . . . . p.188

R
Ramos-Garcia, Ruben . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.188
Ramı́rez-Cortes, Juan Manuel . . . . . . . . . . . . . . . . . . . . . . p.57
Ramı́rez-Torres, Marco Tulio . . . . . . . . . . . . . . . . . . . . . . p.210
Rangel-Magdaleno, Jose . . . . . . . . . . . . . . . . . . . . . . . . . . p.188
Remes, Bart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.21, p.116
Roberts, Gregory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.109
Robledo, Guillermo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.196
Rodrı́guez, Rodolfo Garcı́a . . . . . . . . . . . . . . . . . . . . . . . . p.137
Rodrı́guez-Vázquez, Javier . . . . . . . . . . . . . . . . . . .p.50, p.196
Rojer, Jim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.42
Romero, Daniel Durini Romero Durini . . . . . . . . . . . . . p.188

S
Santamarı́a, Pablo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.50
Serokhvostov, Sergey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.180

Smeur, Ewoud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.21
Swevers, Jan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.35

T
Theys, Bart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.35

V
Vega, Israel Cruz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.68
Velasco, Luis Enrique Ramos . . . . . . . . . . . . . . . . . . . . . p.137
Verdu, Titouan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.109
Vroon, Erik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.42

W
Wagter, Christophe De . . . . . . . . . . . . p.28, p.74, p.93, p.131
Wang, Xinyi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.204
Watkins, Simon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.166
Westenberger, Jelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.93
Wijngaarden, Dennis van . . . . . . . . . . . . . . . . . . . . . . . . . . p.21
Wu, Shang Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.161

X
Xi, Lele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.204

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 19
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Flight Code Convergence: Fixedwing, Rotorcraft,
Hybrid

D.C. van Wijngaarden*, E.J.J.Smeur, and B.W.D. Remes
Delft University of Technology, Kluyverweg 1, Delft, The Netherlands

ABSTRACT

Rotorcraft, fixed wing and hybrid Unmanned Air
Vehicles (UAV) each have applications in which
they excel. Traditionally, dedicated autopilot
control code is written to accommodate flight of
each UAV type. This causes fragmentation of
control code and may lead to performance dif-
ferences or errors. In this paper, we propose
to use the same INDI controller for rotorcraft,
fixed wing and hybrid UAVs, with only paramet-
ric differences in control effective matrix defi-
nitions and roll, pitch and airspeed limits. The
controller is based on earlier work, but relevant
derivations are included in this paper. Success-
ful test flights, performed with a Bebop2 quadro-
tor, a Disco fixed wing, and a Nederdrone tailsit-
ter hybrid demonstrate the feasibility of this ap-
proach.

1 INTRODUCTION

The amount of applications for Unmanned Air Vehicles
(UAVs) has drastically increased over the last couple of years
[1]. To best serve their purpose, different applications require
different types of drones: fixed wing, rotorcraft, or hybrid.
Fixed wing aircraft have superior endurance, while rotorcraft
have more flexible maneuvering and hovering capabilities.
Hybrid UAVs take the middle ground in terms of endurance
and flexible maneuvering.

In the UAVs that are flown, one can broadly make the
distinction between commercial UAVs that have proprietary
software that is dedicated to one specific UAV type, and open
source autopilot systems, that provide flight code for a variety
of different UAV types. Examples of the latter are PX4 [2],
Ardupilot [3], and Paparazzi [4]. These open source autopilot
systems have found a broad user base with universities, am-
ateur drone pilots and startup companies, and each of these
autopilot systems supports various fixed wing, rotorcraft and
hybrid drone types.

However, the control and guidance code for these differ-
ent types of UAV, is typically separated. For example, the
aforementioned autopilot systems contain dedicated control
code for fixed wing, VTOL, and rotorcraft drones. Even the
control of hybrid, or transitioning, drones are often done by

*Email address(es): D.C.vanWijngaarden@tudelft.nl

Figure 1: UAV platforms used for the experiments described
in this paper. From left to right: Nederdrone (hybrid), Parrot
Disco (fixed wing) and a Parrot Bebop2 (rotorcraft).

switching from one controller to another as the vehicle tran-
sitions to forward flight [5, 6]. There have been researchers
presenting an more integrated, or unified control structure
for hybrid UAVs, making use of Nonlinear Dynamic Inver-
sion (NDI) [7] or Incremental Nonlinear Dynamic Inversion
(INDI) [8], but this was always aimed at one specific hybrid
vehicle.

This fragmentation of code can result in implementation
differences and therefore performance differences between
the different UAV types. Next to that, keeping all control code
up to date requires extra work in code maintenance, which
also increases the chance of errors.

In this paper, we demonstrate that it is possible to fly
fixed wing, rotorcraft, and hybrid UAVs using the same uni-
form INDI control and guidance algorithm, with only para-
metric changes in the control effectiveness matrix definitions
and flight envelope protection concerning pitch, roll and air-
speed limits. This is achieved through a cascaded INDI con-
troller, based on [9] and [10], that controls attitude and posi-
tion through closed loop control of angular and linear accel-
erations. Different vehicle configurations are accommodated
through parametric changes of (1) the control effectiveness
and (2) flight envelope limits. The flight code used for these
experiments is publicly available on Github 1.

In the following sections, a universal controller is out-
lined that is applied to a Bebop2 quadrotor (rotorcraft), a
Disco fixed wing and a Nederdrone (hybrid UAVs). These
platforms are described in Section 2. In Section 3 the in-
ner (attitude) controller is explained. Section 4 describes the

1https://github.com/tudelft/paparazzi/tree/convergence
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outer loop (position) controller, and highlights the paramet-
ric differences required for the different UAV types. Section
5 presents test flights of a rotorcraft, fixed wing and hybrid
UAV, using the same control code. Conclusions are drawn in
Section 6.

2 TEST PLATFORMS

Though the controller described in this paper is applicable
to a broad range of rotorcraft, fixed wing and hybrid UAVs,
we will consider three platforms in particular. These are the
Parrot Bebop2 quadrotor, the Parrot Disco fixed wing, and
the Nederdrone developed by the MAVLab in Delft [11], all
depicted in figure 1. The left UAV in the figure is the Neder-
drone, a hybrid UAV that can hover, can transition 90 degrees
to fly forward horizontally and take-off and land vertically.
The Nederdrone is a biplane tail-sitter with 12 motors and 8
control surfaces distributed over its wings.

The middle UAV is the Parrot Disco, a fixed wing UAV
that can only fly forward and does not have hovering capabil-
ities. The parrot Disco is a flying wing that has a single motor
and a pair of elevons. These control surfaces can be used for
pitch and roll control. The vehicle is passively directionally
stable.

Finally, the right UAV is a Parrot Bebop2, a regular
quadrotor without any wing surface. The Bebop2 has 4 mo-
tors that can provide control inputs for pitch, roll and yaw.
The Bebop2 does not have an airspeed sensor, as opposed to
the other two vehicles, which use it while flying ”forward”.

For all vehicles, the body reference frame is defined with
the Z axis in the opposite direction as the thrust, the Y axis
pointing to the right and the X axis completing the right
handed axis system (for the fixed wing orthogonal to the wing
surface, for the quadrotor through the nose). The body refer-
ence frame is illustrated by figure 2.

Figure 2: Body reference frame for a fixed wing and a multi-
rotor.

3 INDI INNER LOOP CONTROL

The inner loop controller is implemented along the lines
of [12], but without the online control effectiveness estima-
tion. For details, we refer to that paper, but for completeness,
the controller will be summarized in this section.

The model on which the controller is based is given by
the equation for the translational dynamics:

ξ̈ = g +m−1 (MNBf + fext) , (1)

where ξ is the position vector in the North East Down
(NED) frame, g is the gravity vector in the NED frame and
m is the mass of the drone. MNB is the rotation matrix
from body to NED frame, which is obtained from the attitude
quaternion q. f is the input force due to changes in attitude
and thrust level and fext is an unmodeled external force.

The rotational dynamics are given by:

q̇ =
1

2
q ⊗

(
0
Ω

)
, (2)

Ω̇ = J−1(m+mext −Ω× JΩ), (3)

where Ω denotes the angular rates of the vehicle and ⊗
the Hamilton product. The inertia matrix of the vehicle is
denoted by J and is assumed to be diagonal,m is the moment
due to the inputs and mext is the moment due to unmodeled
external moments.

Neglecting the cross-term in Eq. 3, we can approximate
the change in angular acceleration of the vehicle due to a
change in the input vector u as:

Ω̇− Ω̇0 = G1(u− u0) +G2(u̇− u̇0), (4)

where G1 is the control effectiveness matrix (which incor-
porates the inertia and may also be a function of velocity),
and G2 is a control effectiveness matrix that can account for
effectiveness in the derivative of u, which can occur due to
significant propeller inertia. The current angular accelera-
tion Ω̇0 can be obtained by differentiation of the gyroscope
signal. As differentiation will amplify the high frequency
vibrations, a low-pass filter has to be applied to all signals
that have the subscript 0, which will now receive the sub-
script f . As u and u̇ are inter-dependent, we approximate the
derivative in discrete time using the unit delay operator L as
u̇ ≈ (u(k) − u(k − 1))/Ts = (u − Lu)/Ts, where Ts is
the sample time. This leads to the prediction of Ω̇ based on a
new input command uc:

Ω̇− Ω̇f = (G1 +G2)(uc − uf ) +G2L(uc − uf ). (5)

This system can be inverted using the pseudo inverse, de-
noted by (.)+, or by a more sophisticated control allocation
scheme, such as Weighted Least Squares (WLS) control al-
location [13]. Since this is now a control law to which the
angular acceleration is an input, it is denoted as the virtual
control ν.

uc = uf + (G1 +G2)
+(ν − Ω̇f +G2z

−1(uc −uf )) (6)

Due to the feedback of the angular acceleration, using the
control effectiveness of the actuators, disturbances can be
counteracted quickly [12, 9].
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Since the INDI controller takes care of most of the non-
linearities in the system, the reference angular acceleration
ν can simply be obtained through a PD controller. The atti-
tude is represented as a quaternion, and the vector part of the
quaternion error with the desired attitude is used for feedback:

ν = KD(KP



qx
qy
qz



e

−Ω), (7)

where
[
qx qy qz

]T
e

is the vector part of the attitude
quaternion error.

The gains KD and KP can be tuned or derived analyti-
cally [9].

There is a difference between the platforms in terms of
their inner loop control. The Disco fixed wing UAV cannot
fully control its attitude, as it does not have a rudder, but it still
uses the same complete attitude controller. To make sure the
reference attitude does not drift away from the real attitude
in terms of its heading, the heading of the reference is con-
tinuously reset to its current heading in the outer loop. This
is only done for the Disco, and not for the other UAVs. This
would not be necessary for a fixed wing with yaw control.

Besides this, the differences are purely parametric: each
vehicle has its own control effectiveness matrices G1 and
G2. For the Disco and the Nederdrone, these matrices are
a function of airspeed, as the airflow over the control surfaces
greatly affects their effectiveness. For the Bebop2, these con-
trol effectiveness matrices are static.

4 INDI OUTER LOOP CONTROL

Though it may be apparent that the inner loop of the three
types of UAV can be the same, since they all use their actu-
ators to generate moments through which the attitude can be
controlled, this is not obvious for the outer loop. A fixed wing
UAV uses its wing to generate lift, and has to manipulate the
angle of attack and the bank angle in order to maneuver, and
the thrust in order to accelerate in the direction of flight. A
rotorcraft on the other hand, can manipulate the amount of
lift directly with its propellers, and has to tilt this lift vector
in the desired direction of acceleration in order to maneuver.

Yet, hybrid (tailsitter) UAVs have demonstrated that it is
possible to combine these different ways of flying in one ve-
hicle, using one unified controller. Using appropriate flight
envelope protections, it is reasonable to assume this controller
can also be applied to pure rotorcraft or fixed wing UAV.

This is achieved using the guidance algorithm as pre-
sented in [10]. For completeness, a slightly shortened deriva-
tion will be given here. We will make use of the attitude
representation in Euler angles, with the ZXY rotation order
( η = [ ψ φ θ ] ) such that the Euler angle derivatives are
well defined at -90 degrees pitch. Then, the linear accelera-
tion is given by:

ξ̈ = g +
1

m
LN (η, V ) +

1

m
DN (η, V ) +

1

m
TN (η, T ), (8)

where LN , DN , TN are the lift, drag and thrust in the NED
frame (denoted with the subscript N ). Using the transforma-
tion matrix between the body and NED reference frames:

MNB =




cθcψ − sφsθsψ −cφsψ sθcψ + sφcθsψ
cθsψ + sφsθcψ cφcψ sθsψ − sφcθcψ
−cφsθ sφ cφcθ


 ,

(9)
the thrust can be written as:

TN =MNB




0
0
T


 =




(sθcψ + sφcθsψ)T
(sθsψ − sφcθcψ)T

cφcθT


 , (10)

and the lift as:

LN =M
θ=−π

2

NB LB(θ, V ) =




sφsψL(θ, V )
−sφcψL(θ, V )
cφL(θ, V )


 (11)

assuming that the flight path angle is small, such that the lift
vector is only rotated from the vertical by the bank angle.
Note that T and L(θ, V ) will typically be negative, since the
body Z axis points down.

Using a first order Taylor expansion, by taking partial
derivatives with respect to the controlled input variables (v =
[φ θ T ]T ), we can arrive at the incremental model:

ξ̈ = ξ̈0 +
1

m
(GT (η, T ) +GL(η, V )) (v − v0), (12)

where we have assumed that the drag changes slowly with
respect to the other variables such that its influence on the
change in acceleration can be neglected, and where the con-
trol effectiveness matrices of thrust and lift are given by:

GT (η, T ) =




(
∂
∂φ

1
mTN (φ, θ0, ψ0, T0)|φ=φ0

)T
(
∂
∂θ

1
mTN (φ0, θ, ψ0, T0)|θ=θ0

)T
(
∂
∂T

1
mTN (φ0, θ0, ψ0, T )|T=T0

)T




T

(13)
and

GL(η, V ) =




(
∂
∂φ

1
mLN (φ, θ0, ψ0, V0)|φ=φ0

)T
(
∂
∂θ

1
mLN (φ0, θ, ψ0, V0)|θ=θ0

)T

(0)
T




T

.

(14)
Elaborating these control effectiveness functions gives:

GT (η, T ) =


cφcθsψT (cθcψ − sφsθsψ)T sθcψ + sφcθsψ
−cφcθcψT (cθsψ + sφsθcψ)T sθsψ − sφcθcψ
−sφcθT −cφsθT cφcθ




(15)
and

GL(η, V ) =


cφsψL(θ, V ) sφsψ ∂
∂θL(θ, V ) 0

−cφcψL(θ, V ) −sφcψ ∂
∂θL(θ, V ) 0

−sφL(θ, V ) cφ ∂
∂θL(θ, V ) 0


 . (16)
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ξ̈0 is measured by the accelerometer, but this sensor also
picks up a vibrations in the airframe, which has to be re-
moved with a low-pass filter. Like before, to keep all sig-
nals synchronized with the same phase delay, all terms with
subscript zero will be filtered and receive subscript f instead.
The equation can then be inverted to obtain:

v = vf +m (GT (η, T ) +GL(η, V ))
−1

(ξ̈ref − ξ̈f ) (17)

where ξ̈ref is the reference acceleration to track.
The functions L(θ, V ) and ∂

∂θL(θ, V ) still have to be de-
fined for the vehicles with a wing, for a pure rotorcraft they
are zero. Recognizing that the lift only needs to be known to
compute the effectiveness of rolling, we assume level flight
and a simple relationship with the pitch angle:

L(θ, V ) ≈ L(θ) = −9.81 sin(−θ)m (18)

where θ is bounded between −π/2 and 0.
Similarly, we assume that in forward flight the thrust just

compensates the drag, and its effect on accelerations other
than in the thrust axis is small, such that for T in Eq. 12 we
can write:

T (θ) = −9.81 cos(θ)m (19)

where again θ is bounded between −π/2 and 0.
Finally, the rate of change of the reference ψ is computed

in order to reduce sideslip β, using feed forward and feed
back:

ψ̇ref =
g tan(φt)

Vl
+Kββ (20)

where ψ̇ref is the rate of change of the heading reference, g
is the gravitational constant and Vl is a limited airspeed, with
10 m/s as a lower limit, to avoid unachievable rotations. This
term is not relevant for the quadrotor, as sideslip is not detri-
mental to its lift generation. Still, it can be kept in as it will
also not degrade the flight performance of the quadrotor.

Equation 17 provides a control law for the linear accel-
erations. The reference can again be obtained from a simple
linear PD controller, if the goal is to hover at a waypoint. In
order to track a certain trajectory, appropriate reference ac-
celerations can be computed. In this paper, additionally the
line tracking velocity vector field [10] was used together with
a proportional ground velocity controller.

Though the assumptions in this section are quite crude,
and the control effectiveness is probably inaccurate, the con-
troller is still able to track linear accelerations and execute
a simple flight plan. One can imagine that with a more ac-
curate control effectiveness, the performance may improve.
Important to observe is that the INDI controller provides an
abstraction layer: a simple linear controller that outputs an
acceleration reference can be used on top of it, that does not
need to know about the flight mechanism of the vehicle. The
changing control effectiveness matrices will account for the
different methods of manipulating the acceleration of the ve-
hicle.

4.1 Flight envelope limits

Another aspect in which the three types of UAVs are
clearly different is their flight envelope. The rotorcraft should
not pitch or roll too much, as that will render the vertical com-
ponent of the thrust too small to support the weight of the
drone. The fixed wing should not fly slower than its min-
imum airspeed, as that will stall the wing, and the reduced
dynamic pressure will render the control surfaces ineffective.

To make sure the different UAVs don’t exit their respec-
tive flight envelopes, different limits are imposed on the con-
trolled flight states of the outer loop INDI controller. These
are considered parametric differences.

Limit Fixed wing Hybrid Rotorcraft
Pitch [deg] [-115,-75] [-120,25] [-35,35]
Roll [deg] [-45,45] [-30,30] [-35,35]
Airspeed [m/s] >10 - -

Table 1: Flight envelope limits in the outer loop INDI con-
troller.

5 FLIGHT TEST RESULTS

Flight tests have been performed for three types of UAVs
discussed by this paper. All flights have been performed with
the same type of INDI control method. Each UAV has flown
a route over line segments connecting 4 waypoints. For the
rotorcraft and hybrid UAV, some static waypoints have been
added to the mission to demonstrate hover capabilities of
those platforms. Furthermore, those static waypoints force
the hybrid UAV to transition from forward to hover flight and
vice versa.

5.1 Horizontal guidance

Figure 3 depicts the two dimensional top view of the path
flown by the Parrot Disco running the INDI outer loop guid-
ance code. The flight path for this flight is directed in clock-
wise direction. The target airspeed for this flight was set to 12
m/s to prevent the UAV from stalling. The Parrot Disco starts
its turn to the next line segment 50 metres before reaching a
waypoint as can be seen in the diagram. This parameter was
programmed such that the UAV can join its next line segment.
It can be seen that the fixed wing UAV platform manages to
follow its target lines during its route.

A top view of the path flown by the Parrot Bebop2
quadrotor is depicted in figure 4. It can be seen that target
lines and target positions have been defined for this flight.
The target lines are being followed during a route whereas
target positions are approached, after which the vehicle hov-
ers at position. The direction of flight over the target lines
is in clockwise direction. It can be seen that when the UAV
approaches a line segment from a target position that it first
flies perpendicular to the line segment after which it joins and
follows the line segment.
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Figure 3: Horizontal position and target lines for the Parrot
Disco.

Figure 4: Horizontal position, target lines and target positions
for the Parrot Bebop2.

A two dimensional view of the horizontal path flown by
the Nederdrone, the hybrid UAV, is given by figure 5. It can
can be seen that a mission consisting of target lines and tar-
get positions has been flown by this UAV. The flight path
connected by the target lines is defined in counterclockwise
direction. It can be seen that this platform does not track its
lines with the same accuracy as the Disco in forward flight
due to the smaller flight envelope in terms of roll angle and
a higher airspeed target of 15 m/s in forward flight. How-
ever the line tracking accuracy in forward flight is lower for
this UAV, the platform has the ability to track target positions
with better precision in hover flight as can be seen in the dia-
gram.

Figure 5: Horizontal position and target lines for the Neder-
drone. Includes parts in forward flight, hovering, and com-
plex twisting tailwind transition maneuvers.

5.2 Vertical guidance
The test results of the vertical guidance for each type of

UAV can be evaluated through an altitude versus time plot as
given by figure 6. This plot reflects the altitude and target
altitude for each UAV over time.

Figure 6: Altitude and target altitude versus time for the Par-
rot Disco, Parrot Bebop 2 and the Nederdrone.

First of all, it can be seen that the Parrot Disco has a climb
and descend in its mission in order to evaluate vertical guid-
ance commanded by the INDI outer loop control. An target
altitude is set from 70 metres to 90 metres and back to 70 me-
tres during the route. It is notified that there are some drops
in altitude below the target. This occurs during turns which
are not compensated for sideslip due to the lack of yaw con-
trol for this drone. The drop of altitude is approximately 10
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metres below its target.
Secondly, the mission of the Parrot Bebop2 has two climb

and descend step inputs between 5 and 7 metres altitude while
following a line segment. It can be seen that the tracking of
altitude for this platform is more accurate than for a fixed
wing due to the direct control of lift by the propellers instead
of a lift surface.

Finally, the Nederdrone has a descend and climb step in
its mission between 80 and 60 metres altitude. Those climb
and descend phases are carried out in forward flight. There is
a drop in altitude below its target at 625 seconds. This is at
the moment the drone transitions from forward flight to hover
flight for which the production of lift is gradually exchanged
from the wings to the propellers. The opposite is notified at
675 seconds then the UAV transitions from hover to forward
flight.

5.3 Flight states

Other flight states that have been logged are the roll angle
φ and the pitch angle θ using an Euler ZXY rotation order.
The airspeed has been logged for the Parrot Disco and the
Nederdrone which is used for forward flight.

Diagrams reflecting the pitch and roll angles for all three
UAVs are given by figures 7 and 8 respectively. The flight
envelope limits per platform as given by table 1 are visualized
by dotted lines in those diagrams.

It can be seen that the pitch angle θ stays between the set
limits for all platforms. It is notified that the Parrot Disco
stays just below its maximum pitch angle limit to prevent the
UAV from stalling. The transition of the Nederdrone from
forward to hover flight that is initiated at 625 seconds can be
seen in the pitch angle plot by an increase in pitch angle. At
710 seconds, the Nederdrone transitions back from hover to
forward flight for which the pitch angle is decreased again.

The roll angle plots gives proof that the roll angle φ stays
within the preset limits for the Parrot Disco and the Parrot
Bebop2. The Nederdrone slightly exceeds its bank limit when
making turns.

Finally, the airspeed over time for the Parrot Disco and
Nederdrone are plotted in figure 9. The target air speeds for
forward flight are set to 12 m/s and 15 m/s for the Parrot Disco
and Nederdrone respectively.

It can be seen that there are some fluctuations in airspeed
for the Disco around its target. This occurs during turns in
which sideslip is not compensated due to lack of yaw control
for this platform. Therefore the following two effects play a
roll that cause fluctuations in airspeed: the airspeed sensor is
not aligned with the direction of flight and the drag induced
by sideslip affects the airspeed.

It can be seen for the Nederdrone that the target airspeed
of 15 m/s is being tracked in forward flight. At the transition
around 625 seconds it is notified that the airspeed drops to 0.
The hover target position is moved to another place around
675 seconds for which a non zero airspeed is visible on the

Figure 7: θ (Euler ZXY) versus time for the Parrot Disco,
Parrot Bebop2 and the Nederdrone. Dotted lines visualizes
the flightenvelope limits.

Figure 8: φ (Euler ZXY) versus time for the Parrot Disco,
Parrot Bebop 2 and the Nederdrone. Dotted lines visualizes
the flightenvelope limits.

plot as pitch is being reduced to fly towards the moved loca-
tion of the target position.

6 CONCLUSIONS

This paper described a cascaded INDI inner and outer
loop controller, that is applicable to rotorcraft, fixed wing and
hybrid UAVs with only parametric differences. From the suc-
cessful test flights, we conclude that it is indeed possible to
use the same controller for these different UAVs. Parametric
flight envelope limits prove to be a simple and effective way
of preventing the controller from exiting the flight envelope.

The integrated sideslip controller is appropriate for hy-
brids and fixed wings, but is not required for multirotors,
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Figure 9: Airspeed versus time for the Parrot Disco and Ned-
erdrone.

which may be constrained in their heading based on the appli-
cation. This could be accommodated in the future by making
this functionality modular. In the future we will show the im-
plementation of this same controller in even more platforms
like quad-planes, helicopters and tailed fixed wings. Showing
the robustness of this controllers and leading to a single code
stack for all types of UAV platforms.
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Nonlinear model predictive control for improving
range-based relative localization by maximizing

observability
Shushuai Li*, Christophe De Wagter and Guido C. H. E. de Croon

Delft University of Technology, Kluyverweg 1, Delft

ABSTRACT

Wireless ranging measurements have been pro-
posed for enabling multiple Micro Air Vehicles
(MAVs) to localize with respect to each other.
However, the high-dimensional relative states
are weakly observable due to the scalar distance
measurement. Hence, the MAVs have degraded
relative localization and control performance un-
der unobservable conditions as can be deduced
by the Lie derivatives. This paper presents a non-
linear model predictive control (NMPC) by max-
imizing the determinant of the observability ma-
trix in order to generate optimal control inputs,
which also satisfy constraints including multi-
robot tasks, input limitation, and state bounds.
Simulation results validate the localization and
control efficacy of the proposed MPC method
for range-based multi-MAV systems with weak
observability, which has faster convergence time
and more accurate localization compared to pre-
viously proposed random motions.

1 INTRODUCTION

The use of multiple aerial robots has been studied deeply
in recent years for more complicated tasks and challeng-
ing environments [1]. For example, a predictive control is
proposed for flights of a swarm of five quadrotors despite
cluttered obstacles [2]. In outdoor confined spaces, multi-
ple drones are controlled with the evolutionary optimization
method for flocking flights [3]. Multiple flying robots coor-
dinate with simultaneous localization based on ranging mea-
surements with beacons [4]. These recent studies show the
state-of-art aerial swarm methods. However, most of them
rely on extra positioning systems such as indoor optiTrack
[2], outdoor GPS [3] or beacons [4].

To remove the dependence of the external infrastructure
such as positioning systems, onboard sensors are deployed for
developing an autonomous swarm of drones. For example,
3D relative direction can be estimated by sound-based micro-
phone arrays and allows for leader-follower flights of micro
aerial vehicles [5]. An array of infrared sensors can also en-
able relative positioning and inter-robot spatial-coordination

*Email address: s.li-6@tudelft.nl

[6]. However, these sensor arrays are too heavy and power-
consuming for tiny flying robots. In [7], fully distributed and
autonomous multiple tiny flying robots explore unknown en-
vironments with finite state machine. However, the relative
localization is not very accurate due to the direct usage of
signal strength, which may not fulfil the precise cooperative
tasks.

Vision is the most widely used solution for multi-robot
relative localization. Outdoor flocking of multiple drones lo-
calize each other with deep neural network and cameras for
a safe navigation [8], which requires heavy AI hardware to
run the deep network, also for [9] and [10]. Marker-based
localization requires simple computation such as recognizing
black circles [11] or April tags [12]. But these visual methods
are easily influenced by the field of view or lighting condi-
tions that lead to detection failure and localization disaster.

Wireless ranging sensors provide omnidirectional and
low-cost ranging measurements, and recently have been used
frequently for relative localization. It was initially proposed
in [13], where use was still made of Bluetooth in order
to fit on tiny MAVs. In [14], an ultra-wide band (UWB)
based cooperative relative localization was proposed to es-
timate the neighbor drones’ position based on the distance
and self-displacement measurements under common orienta-
tion. Furthermore, [15] removes the orientation assumption
and achieves the relative localization purely using the dis-
tance measurement and acceleration model. However, these
experiments assumed high-order dynamic model and has low
ranging frequency, which is not efficient for a large number
of tiny robots.

In [16], a simplified velocity model and robust ranging
protocol are designed for multiple tiny flying robots with self-
regulated localization convergence. However, the initializa-
tion procedure with random velocity inputs is not efficient.
Thus, this paper considers using nonlinear MPC to design the
multi-robot controller by maximizing the task performance
and degree of observability, while satisfying the constraints
such as input velocity bounds and state bounds.

There are some related papers discussing the control of
bearing-based or rang-based multi-robot systems [17]. Most
papers use persistent excitation methods by setting specific
active control patterns to maintain observability, which is not
flexible nor optimal for other tasks or constraints.

The main contribution of this paper is leveraging weak
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observability theory to optimize the multi-robot control in-
puts, which has not yet been presented, to the best knowl-
edge of authors. Specifically, the proposed NMPC framework
maximizes the nonlinear observability condition derived by
Lie derivatives, which is coupled with the velocity inputs and
relative states. This leads to faster localization convergence
and higher estimation accuracy even after convergence, com-
pared to the random control inputs.

The rest of the paper is organized as follows. Section
2 states the problem including the range-based multi-MAV
model, weak observability condition and the problem defini-
tion. Section 3 proposes the nonlinear MPC method with the
cost function and corresponding constraints. Section 4 gives
the simulation results of the proposed control with Acados, an
integrated nonlinear MPC tool. The conclusion is discussed
in Section 5.

2 PRELIMINARIES

This section briefly introduces the multi-MAV kinematic
model and relative Kalman filter. Based on the relative model
and distance observations, the observability matrix is deter-
mined with Lie derivatives. Finally, the control problem is
defined by considering both the model and observability.

2.1 Relative multi-MAV model
The model of twin MAVs is described in this subsection,

as the relative localization is distributed and triggered by the
ranging event among arbitrary two MAVs. The simulated rel-
ative model has been tested in real experiments in our previ-
ous work, thus it has a small gap compared to the real-world
multi-robot system. For details, consult in [16].

Figure 1: The diagram of a twin-MAV kinematic model, and
two coordinated frames. Body frames and horizontal frames
are shown with blue axes and red axes, respectively. Both
frames are fixed to the robot, while the horizontal frames al-
ways have a vertical Z axis. The background images shows
previous experiments of multi-MAV relative localization but
without optimal control.

For simplicity, we assume the yaw rate of both robots
to be zero. This assumption has no influence on the 3D
movements of each robot. The control input vector u =
[vxi , v

y
i , v

x
j , v

y
j ]T represents the XY-axis velocities of the ith

and jth robots in their horizontal frames as shown in Fig. 1.
The velocities in horizontal frame can be obtained by rotat-
ing the measured velocities in body frame, so that the Z axis
in the horizontal frame aligns with gravity. The relative state
is denoted by x = [xij , yij , ψij ]

T , which represents the jth

robot’s position and relative yaw in the horizontal frame of
the ith robot.

The nonlinear relative kinematic model can be derived
from Newton formulas by considering the states x and ve-
locity inputs u, which can be written as follows [16]

ẋ = f(x,u) =



cos(ψij)v

x
j − sin(ψij)v

y
j − vxi

sin(ψij)v
x
j + cos(ψij)v

y
j − vyi

0


 . (1)

A distance measurement d comes from the DWM1000
ranging sensors, and has the following relation to model
states:

d = h(x) =
√
x2ij + y2ij + (hj − hi)2, (2)

where hi and hj are the altitudes measured directly from the
height sensors. The function h(·) represents the scalar non-
linear observation.

2.2 Relative estimation
This subsection briefly reviews the Extended Kalman fil-

ter (EKF) for the relative localization. The discrete prediction
is formulated as:

x̂k+1|k = F (x̂k,uk) = x̂k + ẋk∆t,

P k+1|k = AkP k|kA
T
k + BkQkB

T
k

(3)

where ∆t is the update interval, P is the error covariance,
A = ∂F/∂x and B = ∂F/∂u are the Jacobians of states
and inputs, and Q is the process noise covariance.

The final state estimation is estimated by using the dis-
tance measurement as shown below:

Kk = P k|k−1H
T
k (HkP k|k−1H

T
k + Rk)−1 ,

x̂k = x̂k|k−1 + Kk(dk −Hkx̂k|k−1) ,

P k = (I −KkHk)P k|k−1

(4)

where K is the Kalman gain, H = ∂h(x)/∂x is the obser-
vation Jacobian, R is the observation noise covariance, and I
is the identity matrix.

Remark 1 The kinematic model and EKF-based relative lo-
calization have been validated in real-world experiments
[16].

2.3 Observability constraint
Observability of nonlinear systems can be analyzed by

Lie derivatives [18]. The corresponding observability matrix
is defined as

O = [∇L0
fh,∇L1

fh,∇L2
fh]T (5)
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-2 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

where Lfh means the Lie derivative of function f . The iter-
ations satisfy three conditions: 1) L0

fh = h(x); 2) Li+1
f h =

∇Lifh · f ; 3) ∇Lifh = ∂Lifh/∂x.
Therefore, the relative states are observable only when

the observability matrix O is full rank. That means that the
determinant should be non-zero, which is expressed as:

|O| = fO(x,u) = −2[−vxi vxj s(ψ) + vyi v
x
j c(ψ)

− vxi vyj c(ψ)− vyi vyj s(ψ)] ∗ [−vxj yijc(ψ) + vyj yijs(ψ)

+ vxi yij + vxj xijs(ψ) + vyj xijc(ψ)− vyi xij ]
(6)

where s(·), c(·), and ψ are simplifications of sin(·), cos(·),
and ψij , respectively.

2.4 Problem statement
The optimal control problem PO with respect to observ-

ability |O| for this multi-MAV system is defined as:

max
u∗,k∈{1,2...N}

PO(|Ok|) =

N∑

k=1

|fO(xk,uk)| (7)

where u∗ is the optimal control vector at current time, which
is normally taken from an control sequence. The appropriate
control input sequence guarantees the strong observability of
the multi-robot system in the future, which can improve the
relative localization in both convergence speed and estimation
accuracy. The problem is how to calculate the optimal control
input sequence.

3 METHODOLOGY

This section proposes a nonlinear model predictive con-
trol for solving the optimal problem as described in (7). Then
the cost function is further extended for multi-robot tasks
such as formation control and motion tracking. In the end,
the solver settings for the nonlinear problem (NLP) are pre-
sented.

3.1 Nonlinear MPC
The intuitive solution for NLP is MPC, which can achieve

the target by minimizing the cost function. Hence, the non-
linear MPC for the proposed problem is designed as follows

u0|t := min
x·|t,u·|t

J(x·|t,u·|t) (8a)

s.t. xk+1|t = f(xk|t,uk|t)δt + xk|t, (8b)
x0|t = satxu

xl
(x̂t), (8c)

‖p·|t‖2 − dsafe ≥ 0, (8d)

vl ≤ vxi,·|t, vyi,·|t, vxj,·|t, v
y
j,·|t ≤ vu, (8e)

pl ≤ xij,·|t, yij,·|t ≤ pu (8f)

where x·|t and u·|t stands for the sequence of states and con-
trol inputs in the prediction horizon. The first control value
u0|t is taken as the input for the robots. The relative position

is denoted by p = [xij , yij ]
T . Saturation function sat() clips

data with lower bound xl and upper bound xu.
The overall objective function J(x·|t,u·|t) is composed

by several cost functions, which will be designed later. The
remaining equations represent the constraints, which guaran-
tee that the controller satisfies the system dynamic as (8b),
the initial state condition related to the current estimated state
as (8c), the safe distance for collision avoidance as (8d), the
upper and lower bounds of input velocities as (8e), and the
relative position bounds as (8f).

Remark 2 The constraint of initial state is related to the es-
timated state which is not correct before localization conver-
gence. Hence, the limitation of initial value is necessary to
avoid singularity when solving the NLP. A saturation func-
tion is employed to limit the the initial value as shown in (8c).
This is reasonable as many nonlinear robust MPC methods
for systems with uncertain states have their stability proof by
assuming bounds on the uncertain state.

3.2 Cost functions
A nonlinear least square (NLS) method is deployed for

minimizing the objective function of (8), which is written as:

J(x·|t,u·|t) = JO(x·|t,u·|t) + JC(x·|t,u·|t) (9)

where JO(x·|t,u·|t) and JC(x·|t,u·|t) represent the reformu-
lated observability cost and multi-robot formation coordina-
tion cost, respectively.

To maximize the observability with the NLS method, the
observability objective (7) is reformulated as the following
cost function.

JO(x·|t,u·|t) =

N−1∑

k=0

ωO‖
aO

fO(xk,uk) + εO
‖ (10)

where ωO, aO and εO denote the constant weight, amplitude
of cost value, and a small value preventing the singularity.

The coordination cost of JC(x·|t,u·|t) is designed for
multi-robot tasks such as motion tracking. Given the refer-
ence position sequence p̃·|t = [x̃ij,·|t, ỹij,·|t]T , the motion
tracking cost function is designed as:

JC(x·|t) =

N−1∑

k=0

ωC‖pk|t − p̃k|t‖ (11)

where p·|t is the predicted relative position sequence in the
proposed MPC, calculated by (8b). Specially, if the reference
sequence is constant such that p̃·|t ≡ [ax, ay], the multi-robot
motion tracking reduces to formation control.

Remark 3 Since the coordination task is inaccurate before
the localization convergence, the weight ωC can be set dy-
namically for the control stability according to the localiza-
tion accuracy, e.g., the trace of the estimation error covari-
ance tr(P ). However, a constant ωC = 2 is enough for the
following formation task.
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Sometimes, a penalty cost can be introduced to smooth
the control inputs as follows:

JU (u·|t) =

N−1∑

k=1

ωU‖uk|t − uk−1|t‖ (12)

Other multi-robot motion control can also be incorporated
into the cost function of J(x·|t,u·|t). This paper does not
discuss the details of those cost functions such as flocking,
swarming, and cooperative coordination.

3.3 Acados solver

The nonlinear MPC solver we use in this paper is Aca-
dos, which is an open-source and high-performance library
for fast optimal control [19]. This software supports Python
and is finely tuned for multiple CPU. As for the model defini-
tion and differentiation, CasADi is employed to deal with the
constraints and model calculations [20].

The brief process of the solver setting is summarized as
below. First, the continuous optimal problem is discretized
by the multiple shooting method. Furthermore, real-time
iteration (RTI) is selected to solve the sequential quadratic
programming (SQP). The corresponding Hessian approxima-
tion is based on Gauss-Newton. The quadratic problems
(QP) in SQP are solved with the partial condensing HPIPM,
which is based on linear algebra library BLASFEO. Overall,
this solver has a competitive computation speed compared to
other stat-of-the-art NMPC solvers.

4 SIMULATION RESULTS

This section shows the improvement of the proposed non-
liear MPC on the relative localization performance compared
to the stochastic initialization procedure studied in [16]. The
statistics of the localization errors and convergence speed are
analyzed to validate the efficiency of the proposed controller.
In addition, adaptive formation flight of multiple MAVs is
studied as example application.

4.1 Simulation set-up

The following simulation experiments are conducted on
a Dell Latitude 7480 laptop with a i7-6600U CPU with 4
cores at 2.60GHz and 8GB of RAM. For the simulation ex-
periments, the corresponding EKF parameters are chosen as
∆t = 0.01s, tsim = 40s, Q = diag([0.25, 0.25, 0.01]), and
R = diag([0.1]). The initial estimated relative states are set
to zero. In contrast, the initial ground-truth positions of each
robot are randomly generated, such that the EKF estimation
has no prior knowledge of the initial state information. The
error covariance is initialized as P = diag([10, 10, 0.1]).

As for the parameters of the proposed nonlinear MPC,
the horizon is set to N = 50 and prediction time to Tf =
1s, which means each control prediction takes δt = 0.02s.
Larger prediction horizon has long-term constraint guaran-
tees but with more computation burden. In the observability

Figure 2: Relative state from EKF estimation and ground-
truth between two MAVs under the random velocity inputs.
The data consists of 2-axis relative positions and 1-axis rela-
tive orientation.

cost function, the parameters are aO = 0.021, εO = 0.001,
and ωO = 1.

For the constraint settings, the saturation parameters for
the initial state vector are chosen as xl = [−4,−4,−15] and
xu = [4, 4, 15]. The safe distance is set to dsafe = 0.1m. The
velocity input is bounded between vl = −2m/s and vu =
2m/s. The minimum and maximum relative positions are set
to pl = −4m and pu = 4m, which prevents them flying far
from each other.

4.2 Improvement on relative localization

Figure 3: Relative state from EKF estimation and ground-
truth between two MAVs under the nonlinear MPC controller.
The data consists of 2-axis relative positions and 1-axis rela-
tive orientation.

This subsection compares stochastic initialization with
nonlinear MPC, in order to verify that the proposed controller
with consideration of pure observability cost has better local-
ization performance than the former one. In this subsection,
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the multi-robot task cost JC is set to zero.
Fig. 2 and Fig. 3 shows the relative localization perfor-

mance with the same initial relative states and same param-
eters for the EKF. Be notified that the three initial states are
completely unknown for both the EKF and the controllers.
Additionally, the maximum velocities for both controllers are
set to be 2 m/s. From these two figures, we can see that the
relative positioning with optimal controller has a faster con-
vergence time (about 5s) compared to that of the random con-
troller (about 9s). Especially, observability optimized NMPC
has finite-time convergence in the axis of relative yaw, while
the random control leads to overshooting as shown in the third
subplot of Fig. 2. Therefore, the proposed controller with ob-
servability consideration excites all relative states which be-
come more observable even with the unknown initial state
errors.

Figure 4: 30 simulation experiments of the stochastic con-
troller from [16] with random initial MAV positions. This
figure shows the estimation errors of 2-axis relative positions
and 1-axis relative orientation. Note that yaw error with -2π
or 2π offset has no influence on the relative localization due
to the cos and sin operation.

In addition, after the localization is converged in Fig. 3,
the optimal controller automatically generates a periodic mo-
tion pattern which is similar to the manual-designed persis-
tent excitation motions. In addition, even with incorrect rel-
ative states, they still can avoid each other as shown in Fig.
3, because the observability cost penalizes the collision situa-
tion during which the observability determinant approximates
zero.

To validate the general efficacy of the proposed NMPC,
we gather more statistics on the performance. As shown in
Fig. 4 and Fig. 5, 30 random simulation experiments are
conducted for each controller. During each simulation epoch,
the initial positions for both robots are generated randomly.
Moreover, the velocity and distance measurement noise are
also created randomly. Both figures imply that the proposed

NMPC controller has in general a faster localization conver-
gence speed.

Figure 5: 30 simulation experiments of the optimal controller
with random initial MAV positions. This figure shows the es-
timation errors of 2-axis relative positions and 1-axis relative
orientation.

Figure 6: The statistics of convergence time of three-
dimensional relative localization under 30 random tests.
Blue: the proposed nonlinear MPC; Green: the stochastic
control.

Fig. 6 shows the comparison of the detailed convergence
time of two controllers with 30 random tests. From it we can
see that the average convergence time of the NMPC on all
axes is smaller than that of the random controller. Besides,
NMPC with observability constraint has a lower maximum
convergence time compared to random control inputs.

Another interesting result is the localization accuracy af-
ter estimation convergence. Fig. 7 shows the distributions
of position estimation errors in the last 5 seconds of two
controllers in the 30 random tests. Obviously, the proposed
NMPC has lower averaged position estimation errors com-
pared to the stochastic controller. Therefore, the behaviours
after convergence are still meaningful to the localization per-
formance. To study it, the control input u for two MAVs is
shown in Fig. 8. From which we can see that all 4-channel ve-
locities are approximating the maximum value of 2m/s. The
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Figure 7: Localization error of two controllers after estima-
tion convergence. Each distribution has total 15000 data on
these 30 random tests, which is taken from the last 5 seconds
when all estimators have converged.

Figure 8: The control inputs generated by the proposed
NMPC with observability optimization. These sequences
show the velocity input values corresponding to the simula-
tion in Fig. 3.

oscillations and changes of velocity direction occur due to the
state bounds and velocity limitation. The four velocities are
assigned different phases equally of the periodic motion pat-
tern. This asynchronous behaviour has not been considered
before, but NMPC can generate it automatically.

4.3 Formation control with NMPC
This subsection uses the NMPC controller for multi-robot

tasks. Examples of formation flight and dynamic motion
tracking are given below. At the beginning, a constant rel-
ative position is set in the task cost JC , where p̃·|t = [1, 1]m.
The other settings of the solver remain unchanged. After 15s,
a variant relative motion reference is introduced, which is de-
fined as p̃·|t = [2cos(t), 2sin(t)]m. This leads to a circle
motion of the second MAV around the first MAV.

The corresponding control results are shown in the fol-
lowing figures. In Fig. 9 we can see that the proposed NMPC
has fast and stable tracking performance given the formation
and dynamic tracking tasks at t = 5 and t = 15s respectively.

In addition, the observability cost keeps being optimized si-
multaneously by the NMPC.

Figure 9: Relative localization and ground-truth between two
MAVs under the proposed optimal control method and forma-
tion tracking multi-robot tasks. The target relative position is
constant before t = 15s, and variant after t = 15s.

Figure 10: The world-frame trajectories of both MAVs under
the proposed optimal control method and formation tracking
multi-robot tasks. The time range of the data is between 10s
and 20s.

To view the motion of each MAV in world-frame, the tra-
jectories of both MAVs are plotted in Fig. 10. For the for-
mation flight during 10-15s, both MAVs move slowly with
constant relative positions. During 15-20s, both MAVs move
to achieve the circle tracking and keep optimizing the observ-
ability according to the asynchronous behaviours. In addi-
tion, from trajetories after 15s in Fig. 9 we can see that intro-
ducing the multi-robot task cost eliminates the transients as
shown in Fig. 8.
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5 CONCLUSIONS

This paper proposes a novel nonlinear MPC controller
with an observability cost to improve range-based multi-
MAV relative localization. Simulation results demonstrate its
faster localization convergence and lower estimation errors
with respect to previously studied stochastic motion. Future
work involves the implementation of this controller in real-
world micro air vehicles for better localization and control.
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ABSTRACT

This paper presents a nonlinear model of multi-
rotor drone dynamics selected specifically to be
suited for onboard motion planning using Model
Predictive Control (MPC), and presents a gener-
ally applicable procedure to identify the model
parameters solely based on outdoor flight data.
The model stems from a trade-off between pre-
diction accuracy and computational complexity,
approximating attitude and thrust control loops
as low order linear time-invariant subsystems but
without linearizing the thrust vector orientation,
and including linear aerodynamic drag and a
simplified battery voltage dependency. An open
loop simulation compared to recorded data from
a free flight maneuver motivates the proposed
model complexity in contrast to further simpli-
fications of the proposed model.

1 INTRODUCTION

Despite the current state of computing hardware with a
form factor that is convenient for compact drones, onboard
real-time motion planning and control remains a challenge.
Fully autonomous operation requires state estimation, motion
planning and control all to be executed onboard at a reason-
able update rate. One of the promising techniques for ad-
vanced motion planning and control is Model Predictive Con-
trol (MPC). Literature shows this technique already being ap-
plied for drone control and navigation, most often restricted
to position reference tracking over short horizons using lin-
earized dynamics to limit the computational load [1].
The modeling for simultaneous motion planning and control
using MPC asks for a trade-off between sufficient model pre-
diction accuracy and limited model complexity, to reduce the
computational load of solving a finite-horizon optimal control
problem. In literature, quadrotor models with varying com-
plexity and accuracy have been established, a short review of
which now follows.

∗Email address: mathias.bos@kuleuven.be
ORCID: 0000-0002-5471-6691

1.1 Related work
A detailed survey of existing kinematic and dynamic

models of quadrotors and their derivation is presented in [2].
This survey covers how in general these models can be de-
rived using the Newton-Euler method or the Euler-Lagrange
formalism, and how given some assumptions on structure
rigidity, symmetry and center of gravity, the most commonly
used basic quadrotor model is derived starting from Newton’s
second law. This basic nonlinear model can be formulated as




ṗ = v
v̇ = g + 1

mRf t
Jω̇ = τ − ω × Jω,

(1)

where p is the drone position vector, v the drone velocity
vector, g the gravitational acceleration vector, m the drone
mass, R the rotation matrix from the body to the world frame,
f t the total thrust force, τ the body torques, ω the angular
rate vector and J the drone inertia matrix. The thrust force
equals the vector sum of all motor thrusts. Often they are
assumed to be aligned with the vertical body axis, such that
the thrust magnitude equals the sum of the individual motor
thrusts. Body torques can be expressed as a function of the
thrust forces and the quadrotor geometry.

The set of equations in Equation 1 still misses a rela-
tion between the orientation, here represented by the rota-
tion matrix R, and the angular rate vector ω = [p, q, r]

>.
This relation is usually constituted in one of three ways, de-
pending on the used representation of the drone body orien-
tation: through roll-pitch-yaw Euler angles and their deriva-
tives, through quaternion derivatives, or through the deriva-
tive of the rotation matrix itself. In terms of the roll-pitch-
yaw Euler angles φ, θ and ψ, R is, introducing cγ , cos(γ),
sγ , sin(γ), tγ , tan(γ):

R = RψRθRφ

=




cψ −sψ 0
sψ cψ 0
0 0 1







cθ 0 sθ
0 1 0
−sθ 0 cθ







1 0 0
0 cφ −sφ
0 sφ cφ



.

(2)

The Euler angle derivatives are in that case related to the
angular rates by



φ̇

θ̇

ψ̇


 =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ



ω. (3)
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When using the quaternion rotation formulation R(q), the
derivative of the orientation uses the Hamilton quaternion
multiplication to express the derivative of the quaternion as

q̇ = 1
2q

⊙
[

0
ω

]
[3]. In the third alternative, the derivative of

R can be formulated directly as Ṙ = Rbω×c, where bω×c
is the skew-symmetric matrix formed with the elements of ω
[4].

The basic model in Equation 1 does not account for aero-
dynamic effects, which is often sufficient for applications
close to the hovering regime. In [2] and [5], a number of
aerodynamic effects and ways to model them are listed, such
as the ground and ceiling effect, the effect of the angle of
attack with respect to the free stream, blade flapping, and in-
terference caused by the vehicle body in the slip stream of
the rotor. Often, an approximation that is linear in the trans-
lational velocity is used such as in [6], as this describes the
dominant aerodynamic effects fairly well even up to signifi-
cant velocities. The velocity induced aerodynamic drag force
is then given by fv = −RDR>v, with D a diagonal matrix
containing drag coefficients. This drag force is added to the
second line in Equation 1.

A very common approach to avoid the complexity and
nonlinearity of the standard nonlinear model, is to perform a
linearization around the hover state and assume small angu-
lar deviations from this state. Also for drone MPC this is a
popular approach, as it alleviates the computational burden,
but doing so sacrifices prediction accuracy for more dynamic
behavior that deviates significantly from the hover state [1].

Another approach to approximate the full drone model, is
to assume that an attitude controller is already in place, which
is either assumed to track attitude references perfectly as in
[7], or responds as a torsional inertia-spring-damper SISO
system in a fully linear rotational and translational model as
in [8].

Lastly it can be noted that more complex and detailed
models exist, such as [9], in which brushless DC motors and
electronic speed controller models are included. However, to
the best of our knowledge these detailed models are not used
in (online) motion planning and control.

A range of system identification methods is discussed
in [2], covering identification procedures for first principles-
based models, also referred to as white box models, for (lin-
earized) grey box models, and data-based black box models.
Often, however, model parameters are retrieved in a cumber-
some procedure from CAD models, which requires detailed
models for all parts of the quadrotor, and test benches for sep-
arate components such as the motors and propellers [10].

1.2 Contribution and paper structure

This paper proposes a nonlinear multirotor drone model
without a small angle assumption that is specifically selected
to address the trade-off between model complexity and com-
putational efficiency, together with a simple procedure to

Figure 1: Quadrotor used in the experiments, displaying the axis
convention on the body frame with the roll-pitch-yaw Euler angles,
and outdoor infrastructure with safety nets.

identify the unknown model parameters, that does not require
special facilities other than the sensors that are present in a
realistic outdoor drone application and that do not require dis-
mantling the drone to identify components separately.

The paper is structured as follows. First Section 2
presents the model, next Section 3 describes the identification
procedure and parameter fitting results, and finally in Section
4 a free flight experiment qualitatively validates the proposed
model and identification procedure. This validation compares
the simulation of the proposed model to data recorded in the
experiment, and compares the simulation results with more
simplified versions of the model, justifying the inclusion of
nonlinearity, drag and battery voltage dependency. Lastly the
limitations to the applicability of the model are discussed.

2 PROPOSED DYNAMIC MODEL

The proposed model simplifies the ensemble of the drone
dynamics and the control cascade of attitude control, angular
rate control and motor control into a structure that takes throt-
tle input, roll angle, pitch angle and yaw rate references as in-
put, which is the control level often referred to as the stabilize
or angle flight mode in commonly used flight controllers. The
choice for attitude-throttle inputs in the proposed model is
motivated by the applicability on the popular hardware setup
where a Companion Computer (CC) performs high-level op-
timal control and sends reference inputs to the Flight Control
Unit (FCU)1. This setup shows a significant communication
and processing delay in the order of 0.1 s and the update fre-
quency of state estimates from the FCU to the CC is limited
at 50 − 100 Hz, rendering it infeasible to perform attitude
control which requires a control rate in the order of 400 Hz
[11]. Control with attitude reference inputs however has been
demonstrated with input frequencies around 50 Hz in [8] and
[12], which is realistic for the given setup and still allows dy-
namic control.

The proposed model is schematically shown in Figure 2.
The schematic reads from the top, starting with the control
inputs, to the bottom, towards the output which is the drone

1Computation hardware used for this paper:
FCU: Pixhawk 2.1 Cube Black running ArduCopter 3.7-dev firmware.
(https://github.com/unl-nimbus-lab/ardupilot)
CC: Nvidia Jetson TX2 running Jetpack 4.3.
Serial communication with MAVLink using the Mavros library.
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-3 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

+

Figure 2: Schematic representation of the proposed model.

position or motion. The control inputs are the roll angle, pitch
angle and yaw rate references φr, θr, rr and the throttle in-
put T . The communication and processing delay between the
CC and the FCU is approximated by lumping it into an input
delay. The responses of the attitude and thrust with respect
to the delayed references are modeled as linear time-invariant
second order systems for the roll and pitch, and first order
systems for the yaw rate and thrust. The delayed and filtered
throttle input is multiplied by a thrust gain and a battery volt-
age dependent gain, as the battery voltage affects the deliv-
ered thrust for a given throttle input. R, the rotation matrix
from the body to the world frame, is composed with the Euler
angles φ, θ and ψ, following the axis convention displayed in
Figure 1. It is not linearized, allowing for an accurate rep-
resentation of large tilt angles. The orientation and the thrust
acceleration magnitude at are prerequisites to obtain the rigid
body dynamics.

The rigid body dynamics are considered as those of a
point mass on which four forces act, represented by an equiv-
alent acceleration through division by the drone mass: thrust

acceleration at, velocity induced drag acceleration av , grav-
itational acceleration g and an unmodeled disturbance accel-
eration ad. The thrust acceleration and the drag acceleration
closely follow the proposed model from Faessler et al. [6].
The thrust acceleration, corresponding to Faessler’s mass-
normalized collective thrust term, is assumed to be oriented
along the body z-axis. Axial rotor drag causing thrust loss is
not accounted for in the thrust acceleration, but instead is in-
cluded in the drag acceleration. The drag acceleration follows
Faessler’s ‘RDRv’ model with D a constant diagonal matrix
containing drag acceleration coefficients. Complex aerody-
namic effects as introduced in Section 1 are neglected. The
velocity and position are obtained through integration of the
acceleration.

The equations of the resulting nonlinear state space
model, which is of the form ẋ = f(x,u,Π), are given in
Equation 4. A list of all variables and constants is given in
Table 1. The set of twelve parameters Π that fully charac-
terize the system are highlighted in blue and are listed in Ta-
ble 2. How to obtain their values is discussed in the next
section. Overbarred symbols represent delayed inputs as in
ū = u(t − Td). Vectors and their components are expressed
in the inertial world frame.




ṗx
ṗy
ṗz
v̇x
v̇y
v̇z
φ̇

θ̇

ψ̇

φ̈

θ̈
ṙ
ȧt




=




vx
vy
vz

v̇
(∗)
x

v̇
(∗)
y

v̇
(∗)
z

φ̇

θ̇
tφ
cθ
θ̇ + 1

cφcθ
r

−ωn,φ2φ− 2ζφωn,φφ̇+ ωn,φ
2φ̄r

−ωn,θ2θ − 2ζθωn,θ θ̇ + ωn,θ
2θ̄r

−σrr + σr r̄r

−σtat +K
(
U
Un

)α
σtT̄




(∗)
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v̇y
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︸ ︷︷ ︸
v̇

= R




0
0
at




︸ ︷︷ ︸
at

−RDR>



vx
vy
vz




︸ ︷︷ ︸
av

−




0
0
g




︸ ︷︷ ︸
g

(4)

In this equation the rotation matrix R from the body to
the world frame in terms of the roll-pitch-yaw Euler angles is
defined as was described in Section 1.

3 PARAMETER ESTIMATION

To identify the parameters of the selected model, we fol-
low a procedure solely based on flight data, unlike previous
works describing cumbersome identification procedures on
test benches or based on CAD models. This procedure broad-
ens the applicability towards both open and closed source
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Symbol Variable Physical units

T Throttle input -
φ Roll Euler angle rad
θ Pitch Euler angle rad
ψ Yaw Euler angle rad
φr Roll angle reference rad
θr Pitch angle reference rad
φ̇ Roll Euler rate rad/s
θ̇ Pitch Euler rate rad/s
ψ̇ Yaw Euler rate rad/s
p Roll rate rad/s
q Pitch rate rad/s
r Yaw rate rad/s
rr Yaw rate reference rad/s
U Battery voltage V
R Rotation matrix -
a Acceleration vector m/s2

a Acceleration magnitude m/s2

v Translational velocity vector
(ground speed) m/s

p Position vector m
at Thrust acceleration vector m/s2

at Thrust acceleration magnitude m/s2

av Velocity induced drag
acceleration vector m/s2

ad Disturbance acceleration vector m/s2

g Gravitational acceleration vector m/s2

s Laplace variable s-1

Symbol Constant Value

g Gravitational constant 9.81 m/s2

Un Nominal battery voltage 22.2 V

Table 1: Model variables and constants with their symbol and phys-
ical units.

Symbol Parameter Value

ωn,φ Roll natural frequency 25.43 rad/s
ωn,θ Pitch natural frequency 23.40 rad/s
ζφ Roll damping ratio 0.44
ζθ Pitch damping ratio 0.39
σr Yaw rate decay constant 21.54 s-1

σt Thrust decay constant 20.36 s-1

K Thrust gain 54.55 m/s2

α Battery voltage exponent 1.71
dx Drag acceleration coefficient x 0.39 s-1

dy Drag acceleration coefficient y 0.39 s-1

dz Drag acceleration coefficient z 0.51 s-1

D Drag acceleration
coefficient matrix diag([dx, dy, dz])

Td Communication delay time 0.1 s

Table 2: Model parameters with their symbol and identified value.

platforms. Moreover, the procedure only uses sensor infor-
mation that is available in relevant, outdoor scenarios.

To gather the data to estimate the parameters Π, we per-
form three distinct experiments that each apply a maneuver
repeatedly for varying input conditions, as illustrated in Fig-
ure 3. Decoupling the dynamics by applying step inputs on a
subset of the inputs allows to assess the quality of the result-
ing fit more easily. The maneuvers can be executed within
limited space, i.e. in this work specifically a flight zone of
30 × 15 × 10 m shown in Figure 1. Each experiment results
in M time series of varying length N . The sensors used by
the FCU are 1) an integrated IMU 2, 2) a Here+ GPS module,
3) a lidar altitude rangefinder (Garmin LIDAR-Lite v3). As
a consequence of the approximate modeling of closed loop
subsystems, the full procedure including all maneuvers must
be repeated as soon as one of the components (e.g. battery,
propellers) of the drone setup changes.

Each of the maneuvers applies step inputs of varying mag-
nitude. Firstly, the roll/pitch maneuver applies roll or pitch
reference step inputs of 0.2 rad, 0.3 rad and 0.5 rad. The roll
and pitch parameters Π1 = [ωn,φ, ζφ, ωn,θ, ζθ]

> are identi-
fied on the smaller steps of 0.2 rad, 0.3 rad to prevent angular
rate saturation. Each of the steps is repeated three times to
average measurement noise and random disturbances. Sec-
ondly, the yaw rate maneuver applies yaw rate reference step
inputs of 1 rad/s and 2 rad/s, each repeated twice, to iden-
tify the yaw rate parameter Π2 = σr. Thirdly, the thrust
maneuver applies varying throttle step inputs as illustrated in
Figure 3 while recording the vertical acceleration and the bat-
tery voltage to gather data for ascending, descending and near
to hovering conditions. The throttle input switches from T0
at time t0 to T1 at t1. Red arrows qualitatively indicate the
magnitude of the applied throttle input. The thrust maneuver
is executed for 18 combinations of T0 and T1, with T0 rang-
ing from 0.05 to 0.30 and T1 ranging from 0.10 to 0.40, both
in steps of 0.05. Each of the combinations is repeated three
to six times over the battery voltage range from 21.5 V up to
24.5 V, resulting in a total of 72 recorded step responses. This
serves to identify the thrust parameters Π3 = [σt,K, α]

>.
The recorded orientation and acceleration in the roll/pitch
maneuver allow to estimate the drag parameters Π4 =

[dx, dy, dz]
> after an initial fit of the thrust parameters. Only

the data with roll/pitch reference steps of 0.3 rad and 0.5 rad
is retained to assure sufficiently high acceleration such that
the unmodeled disturbance acceleration is relatively low com-
pared to the thrust acceleration and drag acceleration. For the
same reason it is also important that the roll/pitch maneuvers
are performed in near to windless conditions. Because the
thrust identification is more accurate given accurate drag pa-
rameters and vice versa, their parameter estimates are updated
iteratively until convergence.

With the gathered data, first, the delay time Td is found
2LSM303D integrated accelerometer / magnetometer, L3GD20 gyroscope,

MPU9250 Gyro / Accel
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Πj ei,k ẋ = f j(x,u,Π)

Π1 φ̃i,k − φi,k
[
φ̇

φ̈

]
=

[
0 1

−ωn,φ2 −2ζφωn,φ

] [
φ

φ̇

]
+

[
0

ωn,φ
2

]
φ̄

θ̃i,k − θi, k
[
θ̇

θ̈

]
=

[
0 1

−ωn,θ2 −2ζθωn,θ

] [
θ

θ̇

]
+

[
0

ωn,θ
2

]
θ̄

Π2 r̃i,k − ri,k ṙ = −σrr + σr r̄r

Π3 ãz,i,k − az,i,k
[
v̇z
ȧt

]
=

[
at −Dzvz − g

−σtat +K
(
U
Un

)α
σtT̄

]

Π4 ‖ãi,k − ai,k‖




v̇x
v̇y
v̇z
ȧt


 =




R




0
0
at


−RDR>v + g

−σtat +K
(

U
Unom

)α
σtT̄




Table 3: Error term and evaluated dynamics for the estimation of
each of the parameter subsets. The tilde indicates recorded data.

as the mean of the delay time between applied input and ob-
served change on the corresponding output over all experi-
ment data. Next, each of the remaining parameter subsets Πj

is estimated in a least squares optimization:

Πj = argmin
Πj

V

subject to: xi,k+1 = F j(xi,k, ūi,k,Πj) for k=0,1,...,Ni−1,

for i=1,2,...,M

xi,0 = x̃i,0, for i=1,2,...,M

(5)
where

V =

M∑

i=1

Vi =

M∑

i=1

Ni−1∑

k=0

e2i,k

F j(xk, ūk,Πj) =

∫ tk+1

tk

f j(xk, ūk,Πj)dt. (6)

The integral from Equation 6 is evaluated using a fourth order
Runge Kutta integration scheme. The error terms ei,k and the
evaluated dynamics f j for each of the identified parameter
subsets are given in Table 3.

This least squares problem is solved for each of the pa-
rameter subsets using CasADi [13]. The resulting estimates
for the parameters are given by Table 2. Figure 4 shows the
measured roll, yaw rate and throttle input step responses to-
gether with the simulated results using the obtained parame-
ters. The result for the pitch step responses is fully analogous
to the roll step responses and is therefore not shown. The
roll, yaw rate and throttle input step response data, on the top
left, top right, and in the middle respectively, clearly show
delayed predominantly second order and first order behav-
ior, captured well by the model simulation. The middle plot
shows the vertical acceleration as a function of time starting
from t1 and as a function of battery voltage for fifteen rep-
etitions of the thrust maneuver, showing only throttle input
combinations T0 = 0.05, 0.10, 0.15 and T1 = 0.35 for vi-
sual clarity. The acceleration magnitude, shown as a function

Figure 3: Illustration of identification experiment maneuvers, along
with the parameters identified in the experiment.

of both time and velocity in the bottom plots, is predicted re-
markably better with the inclusion of linear drag compared
to the simulation without any drag. The arrows indicate the
magnitude of the estimated drag acceleration.

4 RESULTS AND DISCUSSION

To validate the prediction quality of the model and to mo-
tivate the inclusion of the modeled effects, its simulation on
inputs from the first 1.5 s of a free flight using a rudimen-
tary MPC controller is compared with the simulation of sim-
plified versions of the model and the recorded experimental
data. During this experiment, the battery voltage is around 23
V.

The models under comparison are 1) the full model as
in Figure 2 and Equation 4, 2) a linearization of this model,
treating yaw as described in [4], 3) the proposed model ex-
cluding drag, 4) the proposed model excluding the battery
voltage dependency by assuming nominal battery voltage
throughout the simulation. The roll, yaw rate and yaw re-
sponses are also compared to the situation where no first order
or second order behavior is included and only the communi-
cation delay is considered. The adaptations to the full model
to obtain the simplified versions are given by Table 4.

The simulation results in Figure 5, in which all plots
correspond to the same short maneuver, prove that the full
model predicts the drone motion significantly more accu-
rately than the simplified versions of the model. Compared
to the recorded data and the full model simulation, the only
delay approximation clearly misses distinct evolutions of the
attitude responses because it omits the first and second order
behavior, as seen in the p, φ, r and ψ plots. The linear approx-
imation strongly overestimates the vertical thrust component
because of the assumption of small angles with respect to the
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-3 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

No drag

0 0.2 0.4 0.6 0.8 1

t (s)

-0.5

0

0.5

1

1.5

2

2.5

r 
(r

a
d
/s

)

0 0.5 1 1.5 2 2.5 3

t (s)

0

1

2

3

4

5

6

7

8

a
 (

m
/s

2
)

0 1 2 3 4 5 6 7 8

v (m/s)

0

1

2

3

4

5

6

7

8

a
 (

m
/s

2
)

Figure 4: Validation of the model with estimated parameters.

Model variation Model / change to the full model

Full model ẋ = f(x,u,Π)

Linearized δẋ = ∂f
∂x

∣∣∣
x∗,u∗

x+ ∂f
∂u

∣∣∣
x∗,u∗

u,

x = x∗ + δx, with x∗ and u∗

the hover state and hover inputs

No drag ẋ = f(x,u,Π)
with dx = dy = dz = 0

No battery dependency ẋ = f(x,u,Π) with α = 0

Only delay φ = φ̄r, θ = θ̄r, r = r̄r

Table 4: Variations of the full model for the comparison of predic-
tion accuracy.

  Reference input
  Recorded data
  Full model
  Only delay
  Linearized
  No drag
  No battery dependency
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Figure 5: Comparison of four model variations of varying com-
plexity with data recorded in the validation experiment. From top to
bottom: 1) drone position, 2) roll rate and roll, yaw rate and yaw, 3)
acceleration components in the world frame. All these plots corre-
spond to the same short maneuver.
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hover state, which is seen in the az and 3D position plots. The
no drag approximation neglects the velocity induced counter-
acting force, hence overestimating the achieved acceleration,
most clearly visible in the ay and 3D position plots. The no
battery dependency approximation neglects the effect of the
higher battery voltage of 23 V compared to the nominal bat-
tery voltage of 22.2 V, hence underestimating the generated
thrust and therefore acceleration. Consequently, the 3D po-
sition plots show a lower altitude for this simulation. These
observations confirm the choice to include the low order ap-
proximation of low-level control loops, nonlinearity, drag ef-
fect and battery voltage dependency in the model.

To conclude this discussion, we discuss the limitations to
the applicability of the proposed model that the approxima-
tions of the done dynamics made in this paper bring. Firstly,
the low order decoupled approximation of control loops us-
ing an Euler angle representation and the assumption of lin-
ear drag restrict the use to low or medium velocity applica-
tions with limited roll and pitch angles. Secondly, saturation
on the angular rates is not taken into account, meaning that
for accurate predictions the high level planner should not re-
quest subsequent angle references that exceed the rate limits.
Thirdly, simulating with attitude and throttle as inputs while
neglecting a possible accelerometer bias in the identification
procedure entails large drift on the velocity and position pre-
dictions over longer horizons, as the prediction error on the
orientation and acceleration is integrated twice over time to
obtain the position. This high level of uncertainty demands
frequent corrections when using the model for estimation and
control, which is not a problem in the intended MPC setting
as this control strategy inherently comprises state feedback.

5 CONCLUSION AND FUTURE WORK

This paper presented a multirotor drone model and a pro-
cedure to identify its unknown model parameters using the
data measured during three simple maneuvers that do not re-
quire special facilities other than the sensors that are present
in a realistic outdoor drone application and that do not require
dismantling the drone to identify components separately. The
model was crafted to address the trade-off between sufficient
prediction accuracy and limited model complexity that arises
when considering autonomous drone applications. The com-
plexity of the representation of the low level control systems
steering the attitude and thrust was reduced by modeling them
as low order linear time-invariant subsystems. Linear drag
and simplified battery voltage dependency were proven to
benefit the prediction accuracy when included in the simu-
lation.

In future work we will exploit this model in MPC, aim-
ing for outdoor applications with a requirement for dynamic
autonomous control. Early tests show approximate planning
update rates of 20 Hz and more for time horizons over 10 s,
which, possibly supported by (linear) feedback control, is ad-
equate for many applications. Another interesting use of this

model is the estimation of force disturbances, which were left
untouched in this paper. Disturbance estimation could serve
to estimate and reject wind influence for improved position
tracking performance, and to estimate and compensate for the
relative position and swinging of suspended payloads.
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Abstract

Drones need to detect and localize each
other if they are to collaborate in multi-robot
teams or swarms. In this paper, a method
based on dense optical flow (OF) is devel-
oped that detects dynamic objects. This
is achieved by comparing the flow vectors
with the direction to the Focus of Expansion
(FoE) in the image plane. A simulation in
AirSim is developed to validate this approach
and to create a data set for motion-based
dynamic object detection. This simulation
includes ground-truth FoE, depth, OF and
IMU data. The results show that our method
performs well if the OF vector’s magnitude is
large enough and its angle is sufficiently dif-
ferent from those of static world points. We
expect that the presented method will serve
as a useful baseline for deep learning meth-
ods using dense optical flow as input.

1 Introduction

Nowadays, Micro Air Vehicles (MAVs) are becom-
ing more and more common. Reasons for their popular-
ity include their high maneuverability, vertical take-off
capabilities and ability to perform tasks that humans
cannot endure [1]. To further enhance the capabilities of
MAVs and overcome the individual limitations of MAVs,
swarms of MAVs were introduced. To enable the proper
functioning of the swarm, sensing of the environment
and the other MAVs is paramount. In particular, the
relative locations of MAVs inside the swarm are needed
for collision avoidance and swarm coordination [2]. The
most basic and robust method of obtaining the loca-
tions of other MAVs, is by exchanging positions obtained
from Global Navigation Satellite System (GNSS) signals.
However, GNSS signals are not always available, for ex-
ample when the signals are blocked, spoofed, jammed or
distorted by multipath effects.

∗Email address: erik.vroon22@gmail.com
†Email address: jim.rojer@tno.nl
‡Email address: g.c.h.e.decroon@tudelft.nl

Computer vision is a promising alternative, because
cameras are small/lightweight and provide a vast amount
of information [2]. There are two main types of ap-
proaches solving the relative localization problem. The
first is to create a shared map of the environment and
have the MAVs exchange their location in this map. Si-
multaneous Localization and Mapping (SLAM) is a wide
field of research that targets the first type [3]. The sec-
ond type of relative localization focuses on the detection
of the MAVs themselves. This process is often simplified
by the use of physical devices called markers. These can
be either infrared (see the work of Walter et al. [4]) or
ultraviolet (see the work of Roberts et al. [5]) LEDs,
or colored objects. Markers require specific hardware
changes to the device, which may not always be desir-
able. Markerless detection represents a more difficult
problem. Some methods quite successfully rely on stereo
vision [6, 7]. Of course, for resource minimization, meth-
ods using a single camera are of interest. Currently, the
main approach with a single camera is to employ deep
neural networks that detect other MAVs in a single im-
age [8, 9]. These neural networks show promising results,
but it is not yet clear how well the trained networks can
deal with cluttered backgrounds. Moreover, if the drone
appearance or environment changes substantially with
respect to the training set, retraining may be necessary.

In order to obtain a solution that does not depend on
stereo vision or markers and that is more generic com-
pared to appearance-based methods, it may be useful
to use optical flow. Optical flow has multiple advan-
tages over its alternative vision-based methods. Firstly,
MAVs will possibly be detected in situations where they
are barely distinguishable for the human eye due to back-
ground clutter. Additionally, optical flow based methods
are less dependent on shapes and appearances of MAVs
compared to other methods. Finally, optical flow can
offer a larger maximum detection range compared to ac-
tive markers.

Some papers incorporate motion into their
appearance-based neural network, the so-called hy-
brid methods, such as the work by Yoshihashi et al.
[10], where the temporal information improves the
performance of the object detector in situations where
there is little contrast between the background and

1
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foreground. Nonetheless, it is a ground-based method
and uses static cameras, which is less challenging
compared to the situation where the observer is moving.

To our knowledge, the research done by Li et al. [11]
is the only work using purely optical flow without ar-
tificial neural networks for the detection of MAVs from
a moving observer in the air. With their method, they
were able to detect other MAVs, even when they were
barely visible because of their size and the cluttered
background. It has approximately the same detection
accuracy (87%) as appearance-based neural networks ap-
plied to MAV detection (maximum accuracy of approx-
imately 90%) [8, 12]. However, it is based on some as-
sumptions. The method of Li et al. is based on a combi-
nation of background subtraction and Lucas-Kanade op-
tical flow. The background subtraction process assumes
that the tracked objects have a very different motion
compared to a distant background, of which the motion
is modelled with a homography transformation.

This paper focuses on motion-based object detection
to detect MAVs from onboard a moving MAV in more
general, 3D environments. Specifically, we present an
optical-flow-based algorithm to detect dynamic objects
in video feeds from a moving camera. This is done by
comparing the flow vectors with the direction to the Fo-
cus of Expansion (FoE) in the image plane. This method
is applied to simulations run in AirSim [13]. These simu-
lations output ground-truth FoE, depth, optical flow and
IMU data, which are valuable for the development and
validation of motion-based object detection techniques.
The proposed algorithm’s image processing pipeline is
mostly ‘traditional’, exploiting knowledge on the prop-
erties of the (derotated) optical flow field. We believe
that eventually purely deep learning motion-based meth-
ods will achieve higher performance, but expect that the
presented, completely comprehensible pipeline will be a
useful benchmark method. Moreover, the results of our
method show some of the challenges that will also be
faced by deep learning methods, including difficult de-
tection for small optical flow, flow directions similar to
those of static world points, and the fact that other dy-
namic objects are not differentiated from MAVs in our
current pipeline. On this last point, in this paper all
moving objects are assumed to be MAVs, except for the
clouds, which we detect with a deep neural network. To
output only MAVs in an environment with other types
of dynamic objects, the pipeline has to be extended to
differentiate MAVs from other moving objects.

2 Detection method

The object detection method is illustrated in figure 2.
First, the optical flow (OF) field is derotated using the
rotation rates of the IMU. The location of the FoE is cal-
culated using the derotated flow. FoE is the point where

the translational flow is 0. This is the motion direction
of the camera. All static points in the environment move
away from the FoE. Points that are closer to the cam-
era in terms of depth, have larger flow. Points that are
further away from the FoE have larger flow as well. Dy-
namic objects may move in other directions. Then the
associated flow vectors do not point away from the FoE.
Unfortunately, they may move away from the FoE lead-
ing to flow that is similar to static objects. The angle
κ between the vector pointing towards the FoE and the
flow vector is calculated, as illustrated in figure 1. The
larger κ, the more likely a pixel belongs to an object
moving relative to the camera. In the following subsec-
tions, the individual steps of the method are explained
in detail. All code used to reproduce this method and
its results can be found publicly online1.

Figure 1: Illustration of κ for a camera moving forward.
The κ angle denotes the difference between angle of the
vector pointing at the FoE and the angle of the flow
vector. For pixels of static objects, κ is approximately
zero. For dynamic pixels, κ is non-zero, except when the
object moves away from the FoE.

2.1 Calculating optical flow

As the object detection method relies on optical flow,
an accurate dense optical flow estimator must be used.
In figure 3, four neural networks estimating optical flow
are compared. They illustrate that on the MIDGARD
[14] dataset, LiteFlowNet [15] and Maskflownet [16] per-
form worse compared to RAFT [17] and FlowNet2 [18].
For all networks, the default weights were used. By vi-
sual inspection, FlowNet2 appears to perform best for
small moving objects. Therefore, FlowNet2 is used for
the results in the rest of this paper.

2.2 Derotation

Derotation has to be applied to the optical flow field
to estimate an accurate FoE. The derotation technique in
this paper is based on the work of Dinaux et al. [19]. The
derotation vector per pixel coordinate can be calculated

1https://github.com/evroon/mav-detection
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Video

Calculate OF

Derotate OF

Calculate FoE

Calculate �

Thresholding

Sky segmentation

Figure 2: The proposed image processing pipeline.

from equation 1 describing optical flow (u, v) for a world
point i in terms of ego-motion (U , V , W being the body
velocities in X, Y , and Z direction and A, B, and C the
rotations around those same axes) and the coordinates
of the observed point (Xi, Yi, Zi, with image coordinates
xi = Xi

Zi
and yi = Yi

Zi
), cf. [20].

ui = − U
Zi

+ xi
W

Zi
+Axiyi −Bx2i −B + Cyi = uT + uR

vi = − V
Zi

+ yi
W

Zi
− Cxi +A+Ay2i −Bxyi = vT + vR

(1)
The optical flow can be split into two factors: the ro-
tational (uR, vR) and translational (uT , vT ) parts. The
rotational part is only dependent on the pixel coordinate
and rotational rates of the camera (A, B, C). Therefore,
the structure of the scene (in particular, depth) has no
influence on the rotational part of optical flow. The In-

(a) FlowNet2. (b) RAFT.

(c) Maskflownet. (d) Liteflownet.

Figure 3: Different neural networks estimating optical
flow compared using the MIDGARD [14] dataset.

ertial Measurement Unit (IMU) of an MAV can be used
to measure the rotational rate.

2.3 Calculation of the FoE

The Focus of Expansion (FoE) is the point where all
flow vectors point towards or originate from when an
observer moves through an environment. This point can
lie outside the camera’s Field of View, but in this paper
it is assumed to lie in the image plane. Nonetheless, the
method does work for FoEs outside the Field of View.

The FoE is calculated as presented in figure 4. First,
two optical flow vectors are randomly sampled. The in-
tersection of the two vectors is calculated. This process
is repeated N times, where N equals 1000. A RANSAC
scheme [21] is applied to the set of intersections to make
it more robust against outliers. The RANSAC method
calculates a location in the image where most intersec-
tions have a distance to this point that is lower than a
certain threshold. The resulting location is taken as the
location of the FoE.

OF

N times

Calculate

Intersection
FoE

Randomly sample

flow vector

Randomly sample

flow vector

RANSAC

Figure 4: FoE method flowchart.

2.4 Sky segmentation

In outdoor environments, clouds in the sky can also
move independently from the camera and generate sub-
stantial flow. Therefore, we segment clouds and sky by
appearance and mask them out from the result. To this
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end, we use HRNet-OCR [22] with the default weights
trained on the Cityscapes dataset [23]. By comparing the
depth buffer from AirSim with the segmentation mask
for the sky, one can validate the performance of the seg-
mentation. Because of the visual simplicity of the envi-
ronment in AirSim, the TPR of the sky segmentation is
at least 99.5% and the FPR is less than 0.1%. The sky
segmentation is performed at half the resolution of the
captured images from AirSim, to reduce memory and
computational effort of the GPU.

2.5 Thresholding and detection output

The output of the algorithm is based on the angle κ
as illustrated in figure 1. The larger κ, the more likely it
is that that pixel belongs to an object moving relative to
the observer. Pixels with a κ angle larger than 15° are
marked as moving objects. Out of these marked pixels,
flow vectors with a magnitude smaller than 1 pixel/frame
are discarded, because the angle of such vectors is sensi-
tive to noise. However, the threshold on κ can be more
substantiated by analyzing how the error in the angle of
the flow vectors behaves for various magnitudes of flow.
One would expect that the error of the estimated OF di-
rection increases for decreasing OF magnitude. This is
the case, as shown in figure 5. For 100 FlowNet2 images,
the radial error with respect to the ground truth OF data
is plotted for all pixels (except the sky) versus the mag-
nitude of the OF. The white line of 0.25± (0.5 + 8

|OF| ) is

fitted manually. The flow magnitude and value of κ that
lie in the area between the upper and lower parts of this
function, are discarded. Additionally, flow vectors with
a magnitude lower than 0.5 pixels/frame are removed.
The performance difference when using this ‘dynamic’
method of thresholding depending on the flow’s magni-
tude is presented in the results section (see figure 10).

3 AirSim

Simulations in AirSim [13] are carried out for var-
ious reasons. Most importantly, simulations can pro-
vide ground truth optical flow and FoE data that cannot
be retrieved in real life. The ground truth optical flow
makes it easier to develop a motion-based object detec-
tor, because the ground truth optical flow has no noise
or artifacts. Simulations also enable validation of the
algorithm on a low level, by for example comparing the
FoE estimation with the ground truth FoE. Specifically,
AirSim is chosen because of its realistic rendering and
support for MAVs, including various simulated sensors.

3.1 Environments

One environment is used in AirSim: Landscape-
Mountains2. LandscapeMountains is a freely available

2https://www.unrealengine.com/marketplace/en-US/

product/landscape-mountains
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Figure 5: Histogram of the radial error in FlowNet2
(compared to the ground truth OF) versus the magni-
tude of the OF. Averaged over 100 OF fields.

project from Epic Games, the publisher of Unreal En-
gine. It was chosen because of its realism, while at the
same time being not too demanding. To diminish the
influence of visual effects on the estimation of optical
flow and the performance of the object detector, most
of these influences were removed from the simulation.
All moving actors (gates to fly through, birds) are made
invisible. The clouds are translated vertically by 500m
such that they appear above the terrain. Additionally,
to avoid reflections, the ice is replaced by a grass ma-
terial and the fog is disabled. This limits the method
to a set of real-world environments, but in a large range
of applications these assumptions can still be considered
valid. The only visible visual effect is the shadow of the
terrain and MAVs.

3.2 MAV control

The MAVs are controlled using Python scripts. A
loop is run for each simulation configuration, in which
the MAVs are controlled and the data from AirSim is
captured. First, the control inputs are calculated for the
MAV to detect and the observing MAV. The time is ad-
vanced for 43ms (23Hz) and lastly, the data from AirSim
is collected. The simulation is paused while obtaining
the data of AirSim, such that the IMU data and camera
frames are taken at the same timestep. The MAVs follow
their flight path with a maximum deviation of 0.14m.

Two types of sequences are recorded. Firstly, colli-
sion courses, where the MAVs fly towards the same point
at the same time at 4m/s. Secondly, sideways trajecto-
ries in which one MAV moves sideways in front of the
observing MAV, which moves forwards at 4m/s.
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3.3 Data acquisition

There are three visual outputs of the simulations: the
RGB camera image, the depth in the camera image and
the segmentation mask of the MAV inside the images.
These three outputs are taken from the same camera, so
all use the same projections. These outputs are shown
in figures 6a to 6c. The camera image and segmentation
mask are saved as PNG files, while the depth image is
saved in AirSim’s pfm format, enabling the use of floats.
Additionally, sensor data is stored of both MAVs. This
includes IMU and GPS data, but also contains collision
data, the control inputs, FoE coordinates and camera
properties. The ground truth FoE is calculated using
the view projection matrix of the observer’s camera and
the observer’s velocity vector. The images are collected
at a resolution of 1920x1024 pixels with a framerate of
approximately 23Hz. The field of view of the camera is
90° and there is no distortion or noise in the image.

(a) RGB camera output. (b) G.t. segmentation mask.

(c) Depth output. (d) Ground truth optical flow.

Figure 6: The different ground truth (g.t.) output
frames captured in AirSim (a-c) and the g.t. optical
flow (d) calculated from the depth output.

3.4 Ground truth optical flow

AirSim has no built-in method of calculating dense
ground truth optical flow. However, it can be calculated
from the depth image and the viewprojection matrix of
the camera. This method is based on the work of Mayer
et al. [24]. A visualization of the ground truth optical
flow is shown in figure 6d and the steps of the method
are shown in figure 7. Using the depth image, one can
deduce the 3D world positions of all projected pixels by
multiplying the inverse of the viewprojection matrix with
the homogeneous pixel coordinates. This will result in
a point cloud. From these 3D points, one can calculate
their 3D positions one timestep ago. Finally, by apply-
ing the viewprojection matrix of the previous frame to
the 3D points, one obtains the 2D coordinates of the
original pixels one timestep ago. The difference between

the original and the reprojected coordinates yields the
ground truth OF. The optical flow calculation has some
limitations. For example, the flow of visual effects is not
taken into account. This includes shadows, animations
of vegetation, reflections/refractions etc.

Depth buffer Project to

3D point

cloud

Add MAV 

velocity to

MAV's points
viewprojection

matrix

viewprojection matrix

of previous frame Reproject

3D points to 

2D screen Subtract

Original 2D depth

coordinates

g.t. OF

Figure 7: Flowchart for calculating the ground truth OF.

3.5 IMU

The IMU is modeled using the default IMU in Air-
Lib, the library implementing MAV dynamics and sen-
sors inside AirSim. The biases and random walks of
the gyroscope and accelerometer are set to zero, leaving
IMU noise to future work. The IMU data is used for OF
derotation, cf. subsection 2.2.

3.6 Overview of parameters

An overview of all parameters for the simulations and
the object detection method is shown in table 1.

Table 1: Parameters of the simulation and method.

Parameter Value
Resolution 1920x1024 px
Framerate 23 Hz
Field of View 90°
Observing MAV speed 4m/s
Fixed OF magnitude threshold 1 px/frame
Fixed OF radial threshold 15°
Number of collision course sequences 6
Number of sideways sequences 9
Number of FoE validation sequences 3

4 Results

This section will present the results in terms of per-
formance on the FoE estimation and object detection for
the simulations in AirSim.

4.1 AirSim

Because the accuracy of the object detection depends
on the quality of the FoE estimation, the error between
the estimated and ground-truth FoE is analyzed for dif-
ferent situations. A histogram of the FoE errors for one
sequence is shown in figure 8. This is recorded for an
MAV moving (without rotation) at 4 m/s with an FoE
20 pixels from the left and right edges of the image and
an FoE in the center. Two characteristics are notable.
For a forward moving MAV, the estimated FoE is on av-
erage slightly offset upwards (by 7.2 pixels) and to the
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right (by 2.8 pixels), but this is small compared to the
total resolution of the image and therefore negligible for
the majority of all pixels. Moreover, the location of the
FoE affects the mean of the x distribution slightly, as the
estimated FoE tends towards the center.
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Figure 8: Histograms showing the error (in x and y di-
rection) between the g.t. FoE and estimated FoE, for a
FoE in the far left (at x = 20 px), center (at x = 960
px) and far right (at x = 1900 px) part of the image.
The legend includes the means and standard deviations
of the distributions.

The performance of the object detection method is
determined by the True Positive Rate (TPR) and the
False Positive Rate (FPR). TPR is the percentage of
pixels from dynamic objects that are identified as dy-
namic object pixels. FPR is the percentage of pixels
from static objects that are identified as dynamic object
pixels. Ideally, one would have a large TPR for a very
small FPR. In this case, the FPR is always relatively
small, but the TPR varies considerably. This is shown
in figure 9, where the TPR is plotted against κ for var-
ious speeds of the MAV to detect. As can be seen, the
object detector is less accurate for slower moving objects.

The relation between the TPR/FPR and the mag-
nitude of the OF of the detected object is presented in
figure 10). The average TPR for κ between 180° and
90° is taken as measure of performance. It is clear that
lower OF magnitudes decrease the TPR, but the FPR is
unaffected. As hypothesized in section 2.5, a threshold
that is dependent on the magnitude of the OF vector (a
dynamic threshold) indeed results in a higher TPR for
slower moving objects. However, this also increases the
FPR to 0.5% - 2.0%, which could be considered accept-
able depending on the application. In situations where
the object to detect has a large OF vector, a fixed thresh-
old would be more suitable.
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Figure 9: TPR vs κ, where MAV to detect moves from
left to right with four different speeds (thus four magni-
tudes of OF) at a relative distance of 5m, decreasing κ
from 180° to 0°. A dynamic threshold is applied.

Additionally, lower values of κ degrade the perfor-
mance of the object detector. This is illustrated in fig-
ure 11, in which the angle κ is visualized. A higher inten-
sity in the image indicates a higher value of κ, meaning
that the flow vector is not pointing towards the FoE.
Thus, such a flow vector does not only correspond to the
flow created by the translation of the camera, but also
to the motion of the object belonging to that pixel. In
figure 11a, κ is large and therefore the MAV is easy to
detect. In figure 11b, the MAV is more challenging to
detect and in figure 11c, the method is unable to detect
the MAV as κ is close to zero.

To test the method in more complex circumstances,
data was recorded for a collision course where the flight
paths of the MAVs cross at an angle of 75°, shown in
figure 11d. In this case, the MAV to detect remains
at the same location in the image during the sequence,
but becomes closer and therefore larger in the image.
It can be seen that the right part has a κ angle close
to zero. However, using a dynamic threshold, the TPR
is still high (0.98) at the cost of a relatively high FPR
(2.8 ·10−2). Unfortunately, this is only the case for short
distances. For a collision course, the flow magnitude at
large distances is too small to properly estimate κ.

5 Discussion and Conclusion

We have introduced an optical-flow-based algorithm
for detecting other moving objects, where our interest
lies in the detection of other drones. The object detec-
tion method in this paper proves to work successfully if
the angle of the optical flow vector of the object to de-
tect is sufficiently different from the background flow, as
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Figure 10: TPR and FPR vs the magnitude of the OF of
the MAV to detect for κ > 90° using a fixed and dynamic
threshold.

(a) κ ≈ 180°. TPR: 0.97,
FPR: 6.2 · 10−3.

(b) κ ≈ 90°. TPR: 0.95,
FPR: 4.3 · 10−3.

(c) κ ≈ 0°. TPR: 0.93,
FPR: 1.5 · 10−2.

(d) CC. TPR: 0.98,
FPR: 2.8 · 10−2.

180°

0°

90°

Figure 11: κ displayed for various situations. In (a) to
(c), the MAV moves sideways from left to right. In (d),
the observer and target are on a collision course (CC)
of 75°. The white dot represents the FoE. A dynamic
threshold is applied to calculate the TPR and FPR.

illustrated in figure 11. This means that objects moving
towards the FoE, which are crossing the flight path of
the observer and are thus considered dangerous, can be
successfully detected. Although the method is based on
assumptions of the OF, it does not assume a specific ap-
pearance of the moving object, which makes it suitable
for a wide range of applications.

The method in this paper has the following limita-
tions. Most importantly, if the observer is stationary
or the dynamic object has no optical flow, detection
by means of flow direction will not succeed. Therefore,
MAVs on head-on collision courses cannot be detected
in this way because they have the same flow field as
the surroundings. A solution would be to utilize the
divergence of the OF field to detect head-on colliding
objects (just as for static objects). Another limitation is
the computational effort of our current implementation,
which is large due to the remaining deep network parts
of the pipeline. For example, FlowNet2 runs on approx-
imately 1.7 Hz on an RTX 2070 for 1920x1024 images.
This would be too slow to use in real-time on MAVs
themselves. Therefore, the resolution has to be reduced
and/or another optical flow method must be used on-
board.
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Madrid (UPM-CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain.

ABSTRACT

In recent years, autonomous drone races have be-
come increasingly popular in the aerial robotics
research community, due to the challenges in
perception, localization, navigation, and con-
trol at high speeds, pushing forward the state
of the art every year. However, autonomous
racing drones are still far from reaching human
pilot performance and a lot of research has to
be done to accomplish that. In this work, a
complete architecture system and an evaluation
method for autonomous drone racing research,
based on the open source framework Aerostack
4.0, are proposed. In order to evaluate the per-
formance of the whole system and of each al-
gorithm used separately, this framework is val-
idated not only with simulated flights, but also
through real flights in an indoor drone race cir-
cuit by using different configurations.

1 INTRODUCTION

1.1 Motivation
Autonomous drones have been increasing their applica-

tion in different tasks in recent years. The short flight time
of a quadcopter limits its use in missions such as search and
rescue. To take advantage of this, it is interesting to develop
agile drones that can explore or traverse an area in a short
time. Autonomous drone racing is a great environment to
push agile drones to the limit. The high speeds and agile ma-
neuvers required for this purpose increase the difficulties of
locating, controlling, and generating trajectories. To test dif-
ferent techniques to get the best results, it is useful to work
in a modulated environment that allows you develop and val-
idate different algorithms independently.

1.2 Related Work
Over the years, many different techniques have been de-

veloped to get the best results in Autonomous Drone Racing.
At the beginning, the speeds achieved in competition were
considerably low. In ADR 2017, a combination of monocular
SLAM localization algorithm and a PID control won with a
mean speed of 0.7 m/s [1]. For IROS 2018 ADR, the winners

used machine learning techniques for gate detection with an
MPC controller. They also improved the trajectories adding 2
points to the path, one before and one after each gate, getting
flight speeds near 2 m/s [2].

In 2019, there was a big improvement in how fast au-
tonomous drones could fly. For the first AlphaPilot competi-
tion, a novel architecture was developed [3]. In this architec-
ture, machine learning techniques are combined with a non-
linear filter for sensor detection and time-optimal trajectory
planning. Using a PD controller, they reached a maximum
flight speed of 8 m/s. In the same year, the winners of the first
simulated drone racing, NeurIPS 2019 Game of Drones, de-
veloped a controller using reinforcement learning techniques
[4], achieving a maximum speed of 16 m/s in simulation.

On the other hand, there are many simulation environ-
ments to test the different approaches. Moreover, many com-
petitions have been hosted in this simulators. Flightgoggles
[5] is a photo-realistic simulator used for AlphaPilot 2019.
Some of them have some APIs for a specific development.
Flightmare [6] has an API for reinforcement learning. Air-
Sim Drone Racing Lab [7] is a framework from Microsoft
with some APIs that allows you to focus your test on each
of the different research directions in autonomous drone rac-
ing. However, there are not many frameworks that combine
state-of-the-art algorithms with simulators to work as base-
line repositories for autonomous drone racing research.

1.3 Contribution

In this paper, we present a modular framework for de-
veloping and validating new algorithms for improving agile
drone flying using autonomous drone races as a perfect test
environment. This framework provides a modular system ar-
chitecture with some state-of-the-Art algorithms that allows
researchers to concentrate efforts on improving one of the
fields related to drone behavior, without needing to build a
whole system by themselves. Furthermore, a simulation en-
vironment based on gazebo is provided to test the algorithms
before jumping into real experiments. For real experiments,
we decided to use Pixhawk as the autopilot to ease the use of
this framework through the research community.

Finally, we propose a set of metrics for measuring the per-
formance of some modules separately and the performance of
the whole system to be able to compare different algorithms
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easily.

2 SYSTEM ARCHITECTURE

The system architecture that is presented in this work
has been developed using the Aerostack framework [8], an
open-source multi-purpose software framework for the devel-
opment of autonomous multi-robot unmanned aerial systems
created by the Computer Vision and Aerial Robotics (CVAR)
group. The Aerostack modules are mainly implemented in
C++ and Python languages and are based on Robot Operating
System (ROS) [9] for inter-communication between the dif-
ferent components, we refer the reader to the extensive doc-
umentation and publications that are available on its web site
1.

Using the Aerostack software framework, a new system
architecture design was developed for the tasks presented in
this work. It has to be noted that, although Aerostack frame-
work is able to provide predefined components and intercom-
munication methods to provide autonomy to UAVs, the com-
ponents that are described in this work were completely de-
signed and developed for the objectives described in this pa-
per. Fig. 1 shows the functionalities that have been imple-
mented in this work. In the figure, colored rectangular boxes
represent data processing units (or processes in short) that are
implemented as ROS nodes. They are organized in the fol-
lowing main components:

• Sensor-Actuator Interfaces: to receive data from sen-
sors on the aerial platform and send commands to robot
actuators.

• Communication Channel: Based on the Aerostack
framework, our architecture uses a common communi-
cation channel that contains shared dynamic informa-
tion between processes. This channel facilitates pro-
cess interoperability and helps to reuse components
across different types of aerial platforms. The chan-
nel is implemented with a set of ROS topics and ROS
messages.

• Robot Behaviors: Robot behaviors implement the
robot functional capabilities including motion control,
feature extraction, state estimation, and navigation.

• Mission Control: Mission control executes a mission
plan specified in a formal description. In this im-
plementation, the mission plan is specified using the
Python language using a set of prefixed functions to
start and stop robot tasks. A behavior coordinator com-
ponent [10] is used to translate planned tasks into con-
sistent activations of robot behaviors.

This work utilises the behaviorlib library for program-
ming robot behaviors with execution management functions

1www.aerostack.org

[10]. This library is open-source and provides tools for build-
ing, executing, and monitoring behaviors, as it is influenced
by the behavior-based paradigm in robotics. According to this
paradigm, the global control is divided into a set of behavior
controllers and each one is in charge of a specific control as-
pect separately from the other behavior controllers.

Next sections describe in more detail the components re-
lated to robot behaviors and mission control.

3 ROBOT BEHAVIOURS

A behavior defines a basic functionality of a system, such
as moving to a point, moving an actuator, activating a sensor,
and includes the three following principles:

• Common data channel: Each behavior controller
should be able to execute separately assuming that the
required input data is available in the common data
channel.

• Activation management: Each behavior is programmed
with an activation management mechanism which han-
dles how to start and stop the execution of the behavior
controller.

• Execution monitoring: Execution monitoring is a
kind of self-awareness computing process by which
the robot observes and judges its own behavior. This
includes possible behavior termination states such as
”GOAL ACHIEVED”, ”WRONG PROGRESS” or
”PROCESS FAILURE”.

Aerostack provides behaviors which can be divided in the
categories explained in the following subsections.

3.1 Motion control
All the set of behaviors that are responsible for controlling

the movement of the drone. This category includes simple
behaviors such as take-off, hovering or landing, as well as
more complex behaviors such as generating a trajectory and
making the drone follow it.

In order to realize aggressive maneuvers on a quadrotor, it
is necessary to employ a non-linearized controller. We have
implemented a quadrotor control algorithm based on differ-
ential flatness and the corresponding behaviors inspired by
the work made by Melligner et al. [11] with several modi-
fications, so the output of the controller corresponds to an-
gular velocity references and the desired collective thrust of
all motors. The input of this controller consists in the posi-
tion, speed and acceleration references provided by a trajec-
tory generator.

Due to the need of generating trajectories for the con-
troller, a polynomial trajectory generator [12][13][11] has
been used. The trajectories are generated on a set of way-
points and are optimal in acceleration, which guarantees
smoothness in the actuator commands. Moreover, the tra-
jectories generated are constrained by maximum speed vmax
and maximum acceleration amax parameters.
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Figure 1: System architecture

3.2 State estimation

In order to achieve the level of control required for this
project, it is necessary to provide the best state estimation
possible to all components involved. Aerostack provides mul-
tiple components for this task, obtaining data from multiple
sensors such as cameras (for relative positioning to a certain
object), IMU, laser sensors, depth cameras, or lidar.

Some of this sensors or estimators should not be always
trusted, as cumulative errors can and will happen, so it is nec-
essary to combine the feedback from several of them using
sensor fusion approaches, like the multi-sensor-fusion algo-
rithm developed by Linnen et al. [14] , to achieve the most
accurate and reliable state estimation possible in every situa-
tion.

However, for the real flights, we decided to use the state
estimation provided by an Intel Realsense T265 Tracking
Module, due to the ease of use and the reduction of the com-
putational load of the on-board computer.

3.3 Perception

Perception is a key problem in the proposed scenario,
since UAVs need to detect and locate each of the gates ac-
curately to be able to complete the full track.

Since the detection and pose estimation of the gates is a
difficult problem itself, to evaluate the rest of the proposed
framework components without the influence of possible er-
rors in perception, we placed ArUco fiducial markers [15] in
each gate to estimate the relative position to the UAV’s main
camera. Each marker also encodes a unique gate ID, enabling
us to design arbitrarily complex tracks. For the detection of

such markers, we use OpenCV [16] implementation of the
method proposed in [17]

3.4 Navigation

When the gates are located in the real world, it is nec-
essary to plan the path that the aircraft must follow to pass
through them and avoid other obstacles. For this approach
we considered two scenarios:

• Lack of knowledge of gate positions. The aircraft
does not have any information about where the gates
are located, so it has to begin looking for them in order
to generate the waypoints to pass through the gates. As
long as the aircraft pass through the circuit, new gates
will be in sight, so the quadrotor can add these gates to
its route. In this scenario, the aircraft is always consid-
ered to see at least the following gate.

• Gate position awareness. The aircraft knows an ap-
proximated position of each gate of the circuit, so it
can generate complete trajectories through all the cir-
cuit that must be corrected with as long as the gates are
in sight, so it has to update the initial gate positions to
pass through the circuit. This is how the majority of the
autonomous drone racing competitions works.

In both approaches, each gate center is treated like a way-
point in a path, and this waypoint position is updated as the
quadrotor flies through the circuit. Whenever the quadrotor
passes through one gate this gate center is removed from the
path. This path is sended to the trajectory generator, which
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takes charge of commanding the quadrotor to pass through
the gates.

4 EXPERIMENTS

To validate the system architecture proposed and the suit-
ability of the different algorithms selected, several experi-
ments have been realized, not only in simulation, but also
in real. For analyzing this performance, several metrics have
been used:

• State Estimation error: For measuring the accu-
racy of the state estimation algorithm, we compute the
RMSE (Root Mean Squared Error) between the esti-
mated state and the ground truth.

• Trajectory following error: To evaluate the perfor-
mance of the controller proposed, we decide to mea-
sure the trajectory following error, calculated with the
RMSE between the trajectory sent by the trajectory
generator and the real trajectory followed by the air-
craft.

• Speeds: In autonomous racing, other metrics like the
maximum speed reached, the medium speed, or the
elapsed time to go through all the circuit must be taken
into consideration.

All metrics obtained from the different experiments were
obtained automatically using an evaluation script on the raw
data recorded during the flights.

4.1 Simulated Flights
Initially, the system was validated in simulation using

Gazebo [18] simulator and the iris drone as a simulated
quadrotor. We generate a 5 gates circuit distributed along a
25 x 20 x 3.5 m area, see Fig. 2. The position of each gate
was known with an uncertainty of 3 meters, which forces the
system to recalculate the gates positions to avoid crashing into
them.

Figure 2: Gazebo environment used for simulated flight ex-
periments

We fly through the circuit multiple times with four differ-
ent speed configurations during each flight. In these experi-
ments, the state of the aircraft was provided by the simulator,

so the state estimation error was not calculated. All other met-
rics were obtained at different speeds, see Table 1 and Table
2.

Figure 3: Path followed by the aircraft when passing through
the simulated circuit with vmax = 4.0(m/s) compared to the
trajectory generated for the motion control behaviour.

x-axis y-axis z-axis total

vmax = 1.0 0.0552 0.0572 0.0602 0.0807
vmax = 2.0 0.0647 0.0831 0.0734 0.1168
vmax = 3.0 0.0959 0.0963 0.0924 0.1468
vmax = 4.0 0.1001 0.1103 0.0952 0.1583

Table 1: RMSE between trajectory reference and estima-
tor measurements, expressed in meters, when the simulated
quadrotor pass through the whole circuit with trajectories
generated with different values of vmax parameter

Vmax Vavg Elapsed Time (s)

vmax = 1.0 0.8192 0.3848 127.6
vmax = 2.0 1.5414 0.6896 61.1
vmax = 3.0 2.7687 1.1828 38.8
vmax = 4.0 3.2657 1.2243 34.5

Table 2: Speeds (m/s) achieve during flights and elapsed time
to complete the whole simulated circuit employing different
values of vmax parameter in the trajectory generation.

4.2 Aerial Vehicle Platform
The aerial platform used for the real experiments was a

custom quadrotor based on the DJI F330 frame, shown in Fig.
4. This platform was equipped with a Pixhawk 4 mini as the
aircraft autopilot, an Intel Realsense T265 Tracking Module
used for state estimation, and an USB fish-eye camera for gate
detection.

Additionally, the aerial platform was equipped with a Sin-
gle Board Computer (SBC) NVIDIA Jetson Xavier NX with
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an 6-core ARM v8.2 , 64-bit CPU running Ubuntu Linux
18.04 Bionic Beaver for on-board computing. All computa-
tions required for the real experiments occurred in this SBC.

In order to obtain the ground truth position of the aircraft
during some experiments, a Motion Capture System (mocap)
was used. For localizing the aircraft inside mocap area, sev-
eral IR markers has been attached to the platform.

Figure 4: Quadrotor used for real flight experiments

4.3 Real flights
Due to space limitations in the mocap area we decided to

do two different experiments: in the first one we make the
drone pass through one gate with different speeds to evaluate
the state estimation error and the trajectory following error
of the controller, in the second one the aircraft had to pass
through a small circuit with 4 gates to test the performance of
the whole system in a complex task.

4.3.1 One gate crossing
For these experiments, the aircraft must localize a gate lo-

cated in gateposition = [2.0, 0.0, 1.5] (m) and pass through it
with 4 different max speed vmax = {1.0, 2.0, 3.0, 4.0}(m/s)
values for the trajectory generation, see Fig. 5.

Figure 5: Path followed by the aircraft when passing through
the gate at different speeds. The position measures had been
obtained from the mocap system.

To measure the estimator error provided by the Realsense
T265 Tracking Module when the quadrotor flies at different
speeds we use mocap system for making a comparison be-
tween the ground truth and the estimated pose of the quadro-
tor, see Table 3.

x-axis y-axis z-axis total

vmax = 1.0 0.1140 0.0248 0.0990 0.1236
vmax = 2.0 0.1178 0.0173 0.1475 0.1561
vmax = 3.0 0.1079 0.0283 0.2313 0.2468
vmax = 4.0 0.1019 0.0545 0.3359 0.3474

Table 3: RMSE between Realsense estimation and ground
truth measurements, expressed in meters, when the quadrotor
flies through trajectories generated with different values of
vmax parameter

Before flying through a more complex circuit, it is con-
venient to measure the trajectory following error of the con-
troller employed when the aircraft flies at different speeds,
see Table 4.

x-axis y-axis z-axis total

vmax = 1.0 0.0360 0.0262 0.0494 0.0558
vmax = 2.0 0.0683 0.0294 0.0633 0.0757
vmax = 3.0 0.1229 0.0385 0.0691 0.0948
vmax = 4.0 0.1699 0.0393 0.0820 0.0980

Table 4: RMSE between trajectory reference and estimator
measurements, expressed in meters, when the quadrotor flies
through trajectories generated with different values of vmax
parameter

For evaluating the performance of the system passing
through a drone racing circuit, other measures like the elapsed
time to complete the circuit , the average flying speed, and the
peak speed are needed, see Table 5.

Vmax Vavg Elapsed Time (s)

vmax = 1.0 0.9670 0.5625 9.4
vmax = 2.0 2.2556 0.9770 5.5
vmax = 3.0 3.1249 1.2059 4.7
vmax = 4.0 4.1673 1.5334 3.9

Table 5: Speeds (m/s) achieve during flights and elapsed time
to complete the trajectory employing different values of vmax
parameter in the trajectory generation.

4.3.2 Four gates circuit crossing
After validating the proper work of the whole system in

the previous experiments, the last experiments consist in fly-
ing through a drone racing circuit with four gates arranged in
the middle of the sides of a square of dimension 5x4 meters,
with different heights each one.We fly through the circuit with
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two speed configurations: vmax = 0.5 and vmax = 1.0 as we
can see in Fig 6 and Fig 7 respectively.

Figure 6: Path followed by the aircraft when passing through
the 4 gates circuit with vmax = 0.5(m/s) compared to the
trajectory generated for the motion control behaviour.

Figure 7: Path followed by the aircraft when passing through
the 4 gates circuit with vmax = 1.0(m/s) compared to the
trajectory generated for the motion control behaviour.

Due to the space limitation of the arena, the ground truth
poses were not acquired. However, the trajectory following
errors of the controller and the time and speed metrics have
been taken for comparing both flights, see Table 6 and Table
7.

x-axis y-axis z-axis total

vmax = 0.5 0.0492 0.0701 0.0576 0.0855
vmax = 1.0 0.0922 0.1491 0.1258 0.1414

Table 6: RMSE between trajectory reference and estimator
measurements, expressed in meters, when the quadrotor pass
through the whole circuit with trajectories generated with dif-
ferent values of vmax parameter

5 RESULTS DISCUSSION

On the simulated flights, the system was able to complete
the whole circuit at different speeds reaching speeds up to

Vmax Vavg Elapsed Time (s)

vmax = 0.5 0.5316 0.2060 79.1
vmax = 1.0 0.9231 0.4125 32.9

Table 7: Speeds (m/s) achieve during flights and elapsed time
to complete the whole circuit employing different values of
vmax parameter in the trajectory generation.

3.2 m/s, with the trajectory following average errors around
15 centimeters. which validates the operation of the system.
Real experiments show that the proposed framework allows
a real quadrotor to fly through drone racing circuit gates at
speeds up to 4 m/s with a small increase in the trajectory fol-
lowing error compared with the simulated runs. The state
estimator sensor can reach average estimation errors higher
than 35 centimeters, adding this error to the trajectory fol-
lowing error could make the quadrotor collide with the gates
if their positioning were not updated with respect to the drone
position as long as the quadrotor navigates through the cir-
cuit. However, the limited computing capabilities of the SBC
makes that the trajectory generation spends a lot of time,
which worsens performance of the system when flying at high
speeds through multiple gates.

6 CONCLUSIONS AND FUTURE WORK

In this work, a modular framework for autonomous drone
racing has been proposed and validated through several ex-
periments, not only on simulation but also on real environ-
ments, being able to fly up to 4.16 m/s and to go through
an small circuit successfully. The state-of-the-art algorithms
proposed for each module, combined with the evaluation met-
rics proposed, constitute a baseline for research on improving
autonomous agile drone flying.

To improve this framework, a wider range of possibilities
to choose for each module must be given, like adding Predic-
tive Model Controllers, learning-based gate estimation meth-
ods, or a Visual Inertial Odometry estimator fused with other
sensors to improve the state estimation. Moreover, the do-
main gap between simulation and real life is substantial when
non-photorealistic simulators are used. Using a simulator like
Flightmare[6] would help to develop and test algorithms that
rely on images taken through the flight.
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-6 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

A Compact Approach for Emotional Assessment of Drone 
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ABSTRACT 
In this study, a method based on a Brain-Computer 

Interface (BCI) is proposed to continuously monitor 
emotional states related to the performance of drone 
pilots. As part of the contributions of this work, it is the 
creation of a database to classify two states:  
Quiet and Very Tense. The experiments were performed 
in a simulated environment. The EEG data of each 
participant was acquired using an EMOTIV Insight 
headset with 5 EEG channels. We propose an algorithm 
for automatic real-time artifact removal for five channels 
as a quick alternative. The Asymmetry Index (AI) is 
proposed as the main feature extracted from the frontal 
and temporal regions of the brain, followed by statistical 
measurements calculated from the AI vector to classify 
the signals with standard classifiers: K-Nearest Neighbors 
(KNN) and Support Vector Machine (SVM). We found 
clear evidence that the AI calculated in the frontal and 
temporal lobes of the brain is related to the response in 
drone pilots under emotional tension. 

 
1 INTRODUCTION 

Recently, drones for different applications such as 
civil and military service have increased, including 
maritime, space missions, search-rescue, shipping-
delivery, etc. [1]. Despite being one of the most versatile 
tools, there are not enough studies that specifically focus 
on measuring the emotional state of drone pilots during 
the handling of unexpected emergencies.  

Drone pilots engaged in long working hours manifest 
acute stress, which in the long term can turn into 
perceived stress [2], especially under adverse 
environmental conditions [3]. 

There are different methods for measuring human 
stress.  Subjective methods use questionnaires [4], while 
objective methods use physical measures, for example 
facial expressions and blinking frequency, physiological 
processes, for example measuring the level of adrenaline 
in the blood, or using biosensors measuring the heart rate, 
brain waves, among others [2]. 
__________________________ 

*Email address(es): daniel_olfi@inaoep.com 

 
 
Neuroscience has shown that the response of human 

brain is affected by stress. Non-invasive technologies 
such as fMRI [5], [6], and Electroencephalography 
(EEG) [7] are the most common sources to study brain 
activity. However, EEG is a preferred application due to 
technological advances and commercial availability.  

In this study, we propose a method based on a Brain-
Computer Interface (BCI) to continuously monitor 
emotional states related to the performance of drone 
pilots, such as stress, fatigue, attention, and mental 
workload levels. We compute the Asymmetry Index (AI) 
[7] of the Alpha and Beta rhythms on frontal and 
temporal regions. The experiments were performed in a 
simulated environment under controlled conditions, 
obtaining eight statistical measurements to characterize 
the AI vector: mean, median, standard deviation, RMS, 
peak-to-RMS, peak-to-peak, mean frequency, and power. 
The proposed system employs these characteristics to 
train two classifiers: K-Nearest Neighbors (KNN) [8] and 
Support Vector Machine (SVM) [9]. The performance is 
evaluated using the average of accuracy, precision, 
sensitivity, and specificity [10]. 

To assess our model, a database was generated, 
which is divided into three classes: Quiet, Tense, and 
Very Tense. For the experiments presented here, we select 
the Quiet and Very Tense groups for the classification 
process. 

The rest of this paper is structured as follows: Section 
2 presents the relevant related work to this project. The 
database generation and its processing are presented in 
Sections 3 and 4, respectively. Results are shown in 
Section 5, and finally, the conclusion are presented in 
Section 6. 

 
2 RELATED WORK 

Emotions have a strong correlation with the left and 
right frontal lobes activity. Stronger activation in the left 
lobe is related to positive emotions. Instead, when the 
activation of the right lobe is relatively more significant, 
it represents mainly negative emotions [11], [2]. 

Numerous studies show clear evidence that frontal 
asymmetry is related to emotional responses and 
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disorders. Theoretical background can be consulted in 
reference [12]. 

Studies related to the detection of stress suggest that 
frontal asymmetry is a promising biomarker. In [13], a 
method for identification of chronic stress is presented, 
finding that the average AI of the stressed group was 
lower than the group in relaxed condition. A similar result 
was found by [14], [15], where alpha and beta power 
asymmetry were analyzed. Low beta waves were 
analyzed in [4] to quantify human stress, using a single 
frontal channel efficiently. In [7], shows that the average 
alpha, beta, and gamma wave AI tends to be lower in the 
stressed group than in the controlled group and suggests 
that alpha asymmetry is the best candidate. The 
calculation of AI on alpha and beta regions reported in 
this work is based on [7]. 

 
3 DATABASE CREATION 

Three healthy male volunteers participated in this 
experiment, with ages between 18 to 23 years old. One 
subject showed a high level of skills for video games, and 
the remaining two showed a moderate level; none of the 
participants had experience in handling drones. Data were 
acquired between 3 and 6 pm by the three participants. 

The EEG data of each participant was acquired with 
an EMOTIV Insight headset with 5 EEG electrodes (AF3, 
AF4, T7, T8, Pz) and two reference electrodes 
(CMS/DRL) located in the left mastoid bone. A data 
transmission rate of 128 samples per second was used, 
with a passband of 0.5 to 43 Hz and a notch filter at 50 
and 60 Hz (https://www.emotiv.com/insight/). 

A database was generated with information obtained 
from the subjects in three emotional states: Quiet, Tense, 
and Very Tense. In addition, Quiet and Very Tense 
conditions have been used for classification. 

 

3.1 Complementary Information 
For each participant, we collect name, age, gender, 

experience level with video games or drone driving, time 
of experience, and relevant medical conditions such as 
injuries, surgeries, chronic diseases, and allergies. 

 

3.2 Experimental Development Environment 
In the experiment, we employed two screens, shown 

in figure 1. First, the operator controlled the experiment 
using a Graphical User Interface (GUI), label in the figure 
as “first screen,” which is linked to an application 
provided by EMOTIV Insight developers, called 
EmotivPRO. Then, using the GUI labeled in figure 1 as 
“second screen,” the participant fulfilled the tasks 
assigned on each test. 

 

 
Figure 1: Experimental development environment. Screen 

for the operator (left) and for the participant (right). 
 

3.3 Practice with the Flight Simulator 
A preliminary training session allowed each participant to 
become familiar with the drone flight simulator and the 
control commands. 
 

3.4 Recording Calibration Signals 
Signals correlated with noise generated by different 

artifacts, as well as a baseline, were measured. Each 
subject listened a guided meditation audio for 5 minutes 
to induce a state of relaxation. Subsequently, each subject 
followed the instructions shown on the screen to measure 
ocular and muscular artifacts (eyes open, eyes closed, and 
movements in all directions of the jaw, neck, and eyes). 

 

3.5 Experimental Tests  
Each participant completed different challenges in the 

“DCL the Game” flight simulator (https://dcl.aero/), such 
as following trajectories and overcoming obstacles on 
each runway, to test precision and concentration skills. 
The tracks sizes range from 30 sec to 2 min, depending on 
the circuit and the pilot's skill in each test. Each session 
was applied on different days lasting from 25 min to 35 
min and exposing the participants gradually to three stress 
levels: Quiet, Tense, and Very Tense (see Figure 2). 

 

 
Figure 2: General scheme of a session. Green, yellow, and 

red blocks for Quiet, Tense, and Very Tense states, 
respectively. The solid lines joining each block correspond to 

a 30-seconds break. 
 
Level 0 (Quiet): The participant performs basic 
maneuvers, such as taking off, landing, turning right, left, 
moving forward, and backward without obstacles. 
Level 1 (Tense): The participant must run each track with 
obstacles without suffering an accident with the drone. 
The subjects are instructed to complete the tracks trying 
to beat his own record in time. The signals obtained from 

First Screen

Second Screen
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each track are recorded and stored in the database. In 
addition, the subject was immersed in music of action and 
related genres to induce a more significant engagement. 
Level 2 (Very Tense): The participant must fulfill the 
same tasks as Level 2, while being distracted with 
auditory and visual stimuli. Auditory distractors consisted 
of sudden, short-lived audios. Visual distractors consisted 
of randomly appearing images, blocking partial vision at 
different sizes and positions on the screen. 

Signals have been labeled and organized according to 
the following characteristics: Emotional Tension Level, 
Track Difficulty, Distractors, Pilot Performance, and Test 
Start/End. In turn, each characteristic can assume one of 
three possible levels.  
 

4 PROCESSING 
Signals classification must perform as a real-time 

application. Therefore, there is a trade-off between 
efficiency and speed throughout the entire process. 
Figures 3, 4, and 5 show the algorithm proposed for real-
time signal processing: Detrend and Artifact Removal, 
Brain Rhythm Filter, Asymmetry Index Calculation, 
Feature Extraction, Model Training and Testing. 
 

 
Figure 3: Flowchart proposed for real-time signal processing.  

 
4.1 Detrend and Artifact Removal 

To detrend and remove the DC component of each 
EEG channel, we applied Empirical Mode Decomposition 
(EMD) [16], reconstructing the signals by omitting the 
three lowest frequencies, using the Intrinsic Mode 
Functions (IMF). 

Several studies that show sophisticated techniques for 
artifact removal are limited to offline systems [17], [18]. 
On the other hand, studies that eliminate artifacts in real-
time use 32 or 64 channels [19], focusing on eliminating a 
single artifact [20], [21], or using a reference signal [22]. 

We propose an algorithm, inspired in the works of 
[23] and [19], for automatic real-time artifact removal 
using five channels. Our aim is to avoid complex 
approaches proposing a practical and quickly applied 
alternative. Figure 4 shows the general process. 
 

 
Figure 4: Proposed algorithm for automatic removal of 

artifacts in real-time. 
 

4.2 Brain Rhythm Filter 
We designed two cascade IIR filters (high pass filter - 

low pass filter) Chebyshev Type II of minimum order to 
extract the Alpha (7-12 Hz) and Beta (12-30 Hz) rhythm. 
Both were applied using an attenuation in the rejection band 
of 60 dB per decade. 

 

4.3 Asymmetry Index Calculation 
The Alpha and Beta Asymmetry Index (AI) were 

calculated using equations (1), (2) and (3), as described in 
[7] and [24], and stored as a vector. Where 𝐴𝐴𝐴𝐴𝑓𝑓, 𝐴𝐴𝐴𝐴𝑡𝑡 and 
𝐴𝐴𝐴𝐴, represent frontal, temporal, and total asymmetry, 
respectively. 𝑃𝑃𝐴𝐴𝐴𝐴4, 𝑃𝑃𝐴𝐴𝐴𝐴3, 𝑃𝑃𝑇𝑇8 and 𝑃𝑃𝑇𝑇7 represent the power 
of the corresponding channel for the rhythm of interest. 

 

𝐴𝐴𝐴𝐴𝑓𝑓 = 𝑃𝑃𝐴𝐴𝐴𝐴4− 𝑃𝑃𝐴𝐴𝐴𝐴3 
𝑃𝑃𝐴𝐴𝐴𝐴4+ 𝑃𝑃𝐴𝐴𝐴𝐴3

    (1) 

 

𝐴𝐴𝐴𝐴𝑡𝑡 = 𝑃𝑃𝑇𝑇8− 𝑃𝑃𝑇𝑇7 
𝑃𝑃𝑇𝑇8+ 𝑃𝑃𝑇𝑇7

    (2) 

 
𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑓𝑓 + 𝐴𝐴𝐴𝐴𝑡𝑡    (3) 

 
4.4 Feature Extraction 

Eight features (mean, median, standard deviation, 
RMS, peak-to-RMS, peak-to-peak, mean frequency and 
power) have been extracted from the asymmetry vector 
𝐴𝐴𝐴𝐴𝑓𝑓, 𝐴𝐴𝐴𝐴𝑡𝑡 y 𝐴𝐴𝐴𝐴, giving a total of 24 for each rhythm. 
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-6 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

4.5 Model Training and Testing 
Several models are trained for each step and window 

size. In each execution (Run Number) the training set 
(80%) and test set (20%) are randomly selected, and 
different hyper-parameters were tested depending on the 
type of classifier. For the KNN classifier, distance type 
(euclidean, seuclidean, cityblock, minkowski, chebyshev, 
cosine, correlation, spearman) and K number of nearest 
neighbors (from 3 to 10) were iterated. For SVM, we used 
Kernel functions linear, quadratic, cubic polynomial, and 
Gaussian with a Kernel scale of 1.2, 4.9, and 20. 

For each execution and iteration of hyper-parameters, 
models are evaluated in their training and testing stage 
with accuracy, precision, sensitivity, and specificity [10]. 
Finally, the mean of the four metrics was calculated to 
select the KNN and SVM hyperparameters with the best 
average for each step and window size (see figure 5). 
 

 
Figure 5:  Process for training and testing all models. 

 
 

5 RESULTS AND DISCUSSIONS 
The dataset used in the process described in figure 3 

contains the data obtained from the tests applied to each 
subject.  Preprocessing the signal and the calculation the 
AI were performed using a window of 2 seconds. Four 
window sizes of 30, 60, 90 and 120 s were considered to 
extract features. Three window shifts for feature 
extraction (see figure 3) were tested: 10, 20 and 30 s. The 
process shown in Figure 5 for the evaluation of the 
models during training and testing stage was repeated 20 

times (Run Number = 20).   Figures 6, 7 and 8 show the 
results obtained for each combination of step and window 
size. These correspond to the best average (in percentage) 
obtained from the four metrics (accuracy, precision, 
sensitivity, and specificity) at the test stage. 

It is observed for all subjects that, regardless of the 
window step considered, the results tend to improve as 
the window size increases. The best performance for all 
three subjects is typically obtained when the window step 
is 10 s for both classifiers. We can see that the results are 
very similar among the classifiers. 

Comparing the alpha and beta rhythms of the 
different steps and window sizes for each subject 
separately, we generally observe that the beta rhythm is 
higher than the alpha rhythm. 

Tables 1 and 2 show the best results and the 
hyperparameters calculated in both classifiers for alpha 
and beta rhythms, respectively. We observe that for the 
KNN classifier, the best results are obtained using 3, 4 
and 5 nearest neighbors. This favors the real-time 
application objective of our study, since the smaller the 
number of nearest neighbors, the shorter the time required 
for classification.  

 
(a) 

 

 
(b) 

 

Figure 6: Subject 01. Mean of the metrics for the KNN and 
SVM classifiers of the (a) Alpha and (b) Beta rhythms. 

Start Code for 
Model Training 

and Tes�ng

Load Dataset, 
Window Step, 
Window Size and 
Run Number

Window Step 
Itera�on

Window Size 
Itera�on

Run Number
Itera�on

Save Common 
Metrics in a 3D 

Array

Mean of Each 3D 
Array

Model Training 
and Tes�ng

Save Graphics 
and Relevant 
Informa�on

Select the 
Hyperparameters 

with the Best 
Performance for 

Each Step and 
Window Size

Hyperparameter 
Itera�on

Mean of Common 
Metrics

Random Selec�on 
of Training and 

Test Set

Subject 01
Alpha Rhythm

Subject 01
Beta Rhythm

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 60
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(a) 

 

 
(b) 

 

Figure 7: Subject 02. Mean of the metrics for the KNN and 
SVM classifiers of the (a) Alpha and (b) Beta rhythms. 

 
 

 
Table 1: Best results obtained for the alpha rhythm. 

 

 
Table 2: Best results obtained for the beta rhythm. 

 
(a) 

 

 
(b) 

 

Figure 8: Subject 03. Mean of the metrics for the KNN and 
SVM classifiers of the (a) Alpha and (b) Beta rhythms. 

 
6 CONCLUSIONS AND FUTURE WORK 
In this study, a method is proposed using a BCI to 

continuously monitor emotional states, which is related to 
the performance of drone pilots. We built a database to 
obtain three emotional states where Quiet and Very Tense 
states were classified using KNN and SVM. Our findings 
show that there is a clear separability between these two 
groups. We proposed an algorithm for automatic real-time 
artifact removal for five channels as a fast alternative. 

We found that the AI in the Alpha and Beta waves is 
an excellent feature related to the emotional response in 
drone pilots in situations of emotional tension. Our study 
suggests that the results corresponding to the four metrics 
reported in figures 6, 7 and 8 indicate a better 
performance when the beta rhythm is used, in comparison 
to those obtained from the alpha rhythm. 

Our next step is to expand the database, to test the 
generalization ability of our model. This database will be 
publicly available. Also, we will explore other classifiers 
techniques such as neural networks based on Deep 
Learning. 
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Guiding vector fields in Paparazzi autopilot
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ABSTRACT

This article is a technical report on the two differ-
ent guidance systems based on vector fields that
can be found in Paparazzi, a free sw/hw autopi-
lot. Guiding vector fields allow autonomous ve-
hicles to track paths described by the user math-
ematically. In particular, we allow two descrip-
tions of the path with an implicit or a paramet-
ric function. Each description is associated with
its corresponding guiding vector field algorithm.
The implementations of the two algorithms are
light enough to be run in a modern microcon-
troller. We will cover the basic theory on how
they work, how a user can implement its own
paths in Paparazzi, how to exploit them to coor-
dinate multiple vehicles, and we finish with some
experimental results. Although the presented im-
plementation is focused on fixed-wing aircraft,
the guidance is also applicable to other kinds of
aerial vehicles such as rotorcraft.

1 INTRODUCTION

Autonomous aerial vehicles are presented as a great as-
sistance to humans in challenging tasks such as environmen-
tal monitoring, search & rescue, surveillance, and inspection
missions [1]. As mobile vehicles, they are typically com-
manded to travel from point A to point B. Even more, the
requirements of the task at hand might demand a more pre-
cise route or path to be tracked while traveling from A to B.
Guiding vector fields allow autonomous vehicles to track de-
sired paths accurately with any temporal restriction. For ex-
ample, we only assign the vehicle to visit a collection of con-
nected points in the space (a geometric object); thus, we do
not concern ourselves when the vehicle visits a specific point
of such a geometric object. Guiding vector fields have been
widely studied and employed in many different kinds of ve-
hicles [2, 3, 4, 5, 6, 7].

Two guiding vector fields have been implemented in Pa-
parazzi, an open-source drone hardware and software project
encompassing autopilot systems and ground station software
for multicopters/multirotors, fixed-wing, helicopters and hy-
brid aircraft that was founded in 2003 [8].

The first guiding vector field, or simply GVF, allows
fixed-wing aircraft to track 2D (constant altitude) paths de-

*Email addresseses: hgarciad@ucm.es
†Email addresses: {murat.bronz, gautier.hattenberger}@enac.fr

scribed by an implicit equation in Paparazzi [9]. This GVF
guidance system has been exploited to coordinate a fleet of
aircraft on circular paths [10]. The second guidance system
is the parametric guiding vector field, or simply p-GVF [11].
This evolved version allows fixed-wing aircraft to track 3D
paths described by a parametric equation in Paparazzi, and it
also allows the coordination of multiple vehicles [12]. The
main feature of the p-GVF is that it allows for tracking paths
that are self-intersected, such an eight figure, and guarantees
global convergence to the path. This p-GVF guidance sys-
tems has been exploited to characterize soaring planes.

Both implementations compensate for the disturbance of
the wind on the vehicle by crabbing. Crabbing happens when
the inertial velocity makes an angle with the nose heading
due to wind. Slipping occurs when the aerodynamic veloc-
ity vector makes an angle (sideslip) with the body ZX plane.
Slipping is (almost) always undesirable because it degrades
aerodynamic performance. Crabbing is not an issue for the
aircraft.

We split this paper into two equal parts focused on each
guidance system. We will briefly show how the GVF and
the p-GVF work and how they are implemented in Paparazzi
so that a final user can define and try his own trajectories
for fixed-wing aircraft. We present some performance results
from actual telemetry, and we end with demonstrations con-
cerning the coordination of more than one aircraft.

2 THE GVF GUIDANCE SYSTEM

2.1 Theory
This guidance system is based on constructing vectors

tangential to the different level sets of the path in implicit
form. Then, we add a normal component facing towards the
direction of the desired level set. This will make a guiding
vector that will drive the vehicle smoothly to travel on the de-
sired path. Since we only care about the direction to follow
and not the speed, we normalize the result to track a unit vec-
tor. This rationale is explained in Figure 1. We can express
this technique formally as follows

ṗd(p) := τ(p)− kee(p)n(p), (1)

where ṗd
||ṗd|| ∈ R2 is the unit vector to follow, e ∈ R is the

current level set, τ ∈ R2 and n ∈ R2 are the tangent and nor-
mal vectors respectively to the current level set, and ke > 0 is
a positive gain that defines how aggresive is the convergence
of the guiding vector to the desired path. Note that all the
variables in (1) depend on the position p ∈ R2 of the aircraft.
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Figure 1: The GVF combines the vectors tangential and or-
thogonal to the level set of the desired path. The orthogonal
part always points towards the desired path if the gradient of
the level set is multiplied by the error quantity (current level
set - desired level set).

In order to align the vehicle’s velocity with the vector field
in (1), the control action in Paparazzi will need of the gradient
and the Hessian of the desired path [9]. In Paparazzi there is
another gain kn for a proportional controller to align both, the
current velocity and the desired velocity.

2.2 Paths for GVF in Paparazzi
Let us illustrate this section with an example, and we will

use it to demonstrate how the user has to write code to imple-
ment an arbitrary path in Paparazzi. Let us focus on a circle
whose implicit equation is given by

P(x, y) := x2 + y2 − r2 = 0, (2)

where r is the radius of the circle, and x and y the standard
Cartesian coordinates. We first note that we define the desired
level set as the zero level set. Therefore, the variable e in (1)
can be identified as e = P(x, y). The gradient or n(p) in (1)
is trivially calculated as n(p) =

[
2x 2y

]
, and the Hessian

H(p) =

[
2 0
0 2

]
.

All these path-dependent quantities must be codified in a
file called gvf/trajectories/gvf circle.c1.

1 vo id g v f c i r c l e i n f o ( f l o a t * phi , s t r u c t g v f g r a d *
grad , s t r u c t g v f H e s s * h e s s )

2 {
3

4 s t r u c t EnuCoor f *p = s t a t e G e t P o s i t i o n E n u f ( ) ;
5 f l o a t px = p−>x ;
6 f l o a t py = p−>y ;
7

8 / / P a r a m e t e r s o f t h e t r a j e c t o r y , c i r c l e ’ s c e n t e r
and r a d i u s

9 f l o a t wx = g v f t r a j e c t o r y . p [ 0 ] ;
10 f l o a t wy = g v f t r a j e c t o r y . p [ 1 ] ;
11 f l o a t r = g v f t r a j e c t o r y . p [ 2 ] ;
12

13 / / Ph i ( x , y ) o r s i g n a l e
14 * p h i = ( px−wx ) *( px−wx ) + ( py−wy ) *( py−wy ) − r * r ;
15

16 / / g r ad Ph i

1The code can be found at https://github.com/paparazzi/
paparazzi/tree/master/sw/airborne/modules/guidance

Figure 2: The Paparazzi ground control station showing dif-
ferent times for the position of an aircraft tracking a 2D el-
lipse with the GVF guidance system. The white arrows con-
struct the vector field with unitary vectors calculated from (1).

17 grad−>nx = 2 * x e l ;
18 grad−>ny = 2 * y e l ;
19

20 / / H e s s i a n Ph i
21 hess−>H11 = 2 ;
22 hess−>H12 = 0 ;
23 hess−>H21 = 0 ;
24 hess−>H22 = 2 ;
25 }

Then, the user needs to define a high-level function in
gvf/gvf.c to be called from the flight plan as follows

1 boo l g v f c i r c l e X Y ( f l o a t x , f l o a t y , f l o a t r )
2 {
3 f l o a t e ;
4 s t r u c t g v f g r a d g r a d c i r c l e ;
5 s t r u c t g v f H e s s H e s s c i r c l e ;
6

7 g v f t r a j e c t o r y . t y p e = 1 ; / / I t i s a c i r c l e
8 g v f t r a j e c t o r y . p [ 0 ] = x ;
9 g v f t r a j e c t o r y . p [ 1 ] = y ;

10 g v f t r a j e c t o r y . p [ 2 ] = r ;
11

12 g v f c i r c l e i n f o (&e , &g r a d c i r c l e , &H e s s c i r c l e ) ;
13 g v f c o n t r o l . ke = g v f c i r c l e p a r . ke ;
14 g v f c o n t r o l 2 D ( g v f c i r c l e p a r . ke , g v f c i r c l e p a r

. kn , e , &g r a d c i r c l e , &H e s s c i r c l e ) ;
15

16 g v f c o n t r o l . e r r o r = e ; / / For t e l e m e t r y
17

18 r e t u r n t r u e ;
19 }

The function gvf control 2D calculates the desired roll
angle to be tracked by the aircraft in order to align its ve-
locity to (1). With only the definition of these two functions,
together with the corresponding definitions in headers for the
gains and used structs, is how a new path for the GVF guid-
ance system is defined in Paparazzi.

2.3 Performance in Paparazzi
The figure 3 shows the described trajectory of an aircraft

tracking a 2D ellipse in a windy environment. The airspeed of
the aircraft was around 11m/s, and the windspeed was around
5 m/s.
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Figure 3: The GVF in Paparazzi can be employed to syn-
chronize multiple aircraft in a distributed way. This caption
corresponds to the 2017 IMAV competition.

2.4 Multi-vehicles
When the desired path is closed, such as a circle, then we

can exploit the convergence properties of the GVF to synchro-
nize different aircraft on the path. The different aircraft have
to follow a positive or negative level set with respect to the de-
sired path. While following a negative/positive level set, then
the vehicle travels inside/outside the desired path and travels
a shorter/larger distance in one lap. In that way, the aircraft
can catch up or separate from each other. This can be done in
a distributed way without any intervention from the Ground
Control station. This implementation in Paparazzi has been
discussed in detail in [13] and the theory can be found in [10].

3 THE p-GVF GUIDANCE SYSTEM

3.1 Theory
The guidance system GVF has a big inconvenience; the

vector field (1) is not defined when the gradient is zero. We
call this situation a singularity. For example, if x = y = 0 for
the circle. That makes it impossible to implement paths with
self-intersections. To avoid this difficulty, we have developed
the parametric Guiding Vector Field or p-GVF [11]. We start
from the parametric equation of the desired path, for example,
for the circle {

x = r cosw

y = r sinw
, (3)

where w ∈ R is a free parameter. Then, we consider a (2+1)
dimensional path (two physical dimensions, and one virtual
for w) as on the left side in Figure 4. Now, this new higher
dimensional path can be seen in its implicit form for each
coordinate so that we can apply a similar technique as in (1)
again. In particular, the new implicit form for the circle is

ex = x− r cosw, ey = y − r sinw, (4)

and the vector field to be followed has the form

ξ = ∇×e−
∑

i={x,y}
kiei∇ei, (5)

Figure 4: The p-GVF solves the singularity problem by tak-
ing a parametric description of the desired path. Then, the pa-
rameter w becomes a virtual dimension (topological surgery
on the left image) so that we construct a singularity-free vec-
tor field following the tangential+orthogonal vector approach.
The vehicle only needs to follow the projection of the vector
field on the physical world coordinates.

where the first term to be explained shortly makes the vehicle
to follow the path (tangential component), and the second one
makes the vehicle to approach the path (normal component).
The variable e =

[
ex ey

]T
,∇ is the gradient operator (note

that∇ei =
[
0, . . . , 1, . . . , ∂ei∂w

]
), and

∇×e = (−1)n
[
∂e1
∂w

∂e2
∂w . . . ∂w

∂w

]T
. (6)

Note that the last term ∂w
∂w sets the eventual velocity for w

to one. Eventually, in Paparazzi, the desired velocity for w
adapts to the actual speed of the vehicle. The main difference
with respect to GVF is that the resultant guiding vector is not
only driving the Cartesian coordinates but the virtual coordi-
nate w. This can be seen on the right-hand side in Figure 4.
We are free of singularities with this technique.

3.2 Paths for p-GVF in Paparazzi

Similarly, a user will need to define two main func-
tions for an arbitrary path. The first one defines the para-
metric/implicit equations of the trajectory, i.e., ex, ey, and
ez , and its partial derivatives with respect to w for a 3D
path. In the following example, we take a tilted circle where
zh and zl define the maximum and minimum altitude of
the circle of radius r. This function would be placed at
gvf parametric/trajectories/gvf parametric 3d ellipse.c.

1 vo id g v f p a r a m e t r i c 3 d e l l i p s e i n f o ( f l o a t * f1 ,
f l o a t * f2 , f l o a t * f3 , f l o a t * f1d , f l o a t * f2d ,
f l o a t * f3d , f l o a t * f1dd , f l o a t * f2dd , f l o a t *
f3dd )

2 {
3 f l o a t xo = g v f p a r a m e t r i c t r a j e c t o r y .

p p a r a m e t r i c [ 0 ] ;
4 f l o a t yo = g v f p a r a m e t r i c t r a j e c t o r y .

p p a r a m e t r i c [ 1 ] ;
5 f l o a t r = g v f p a r a m e t r i c t r a j e c t o r y . p p a r a m e t r i c

[ 2 ] ;
6 f l o a t z l = g v f p a r a m e t r i c t r a j e c t o r y .

p p a r a m e t r i c [ 3 ] ;
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7 f l o a t zh = g v f p a r a m e t r i c t r a j e c t o r y .
p p a r a m e t r i c [ 4 ] ;

8 f l o a t a l p h a r a d = g v f p a r a m e t r i c t r a j e c t o r y .
p p a r a m e t r i c [ 5 ] * M PI / 1 8 0 ;

9

10 f l o a t w = g v f p a r a m e t r i c c o n t r o l .w;
11 f l o a t wb = w * g v f p a r a m e t r i c c o n t r o l . b e t a *

g v f p a r a m e t r i c c o n t r o l . s ;
12

13 / / P a r a m e t r i c e q u a t i o n s o f t h e t r a j e c t o r y and
t h e p a r t i a l d e r i v a t i v e s w. r . t . ’w’

14

15 / / These a r e e x , e y , and e z
16 * f1 = r * c o s f ( wb ) + xo ;
17 * f2 = r * s i n f ( wb ) + yo ;
18 * f3 = 0 . 5 * ( zh + z l + ( z l − zh ) * s i n f (

a l p h a r a d − wb ) ) ;
19

20 / / These a r e t h e p a r t i a l s o f e x , e y , and e z w
. r . t . ’w’

21 * f1d = −r * s i n f ( wb ) ;
22 * f2d = r * c o s f ( wb ) ;
23 * f3d = −0.5 * ( z l − zh ) * c o s f ( a l p h a r a d − wb ) ;
24

25 / / These a r e t h e second p a r t i a l s o f e x , e y ,
and e z w. r . t . ’w’

26 * f1dd = −r * c o s f ( wb ) ;
27 * f2dd = −r * s i n f ( wb ) ;
28 * f3dd = −0.5 * ( z l − zh ) * s i n f ( a l p h a r a d − wb ) ;
29 }

Secondly, the following high-level function to be
called from the flight plan must be placed at guid-
ance/gvf parametric/gvf parametric.cpp.

1 boo l g v f p a r a m e t r i c 3 D e l l i p s e X Y Z ( f l o a t xo , f l o a t
yo , f l o a t r , f l o a t z l , f l o a t zh , f l o a t a l p h a )

2 {
3 g v f p a r a m e t r i c t r a j e c t o r y . t y p e = ELLIPSE 3D ;
4 g v f p a r a m e t r i c t r a j e c t o r y . p p a r a m e t r i c [ 0 ] = xo ;
5 g v f p a r a m e t r i c t r a j e c t o r y . p p a r a m e t r i c [ 1 ] = yo ;
6 g v f p a r a m e t r i c t r a j e c t o r y . p p a r a m e t r i c [ 2 ] = r ;
7 g v f p a r a m e t r i c t r a j e c t o r y . p p a r a m e t r i c [ 3 ] = z l ;
8 g v f p a r a m e t r i c t r a j e c t o r y . p p a r a m e t r i c [ 4 ] = zh ;
9 g v f p a r a m e t r i c t r a j e c t o r y . p p a r a m e t r i c [ 5 ] =

a l p h a ;
10

11 f l o a t f1 , f2 , f3 , f1d , f2d , f3d , f1dd , f2dd ,
f3dd ;

12

13 g v f p a r a m e t r i c 3 d e l l i p s e i n f o (&f1 , &f2 , &f3 , &
f1d , &f2d , &f3d , &f1dd , &f2dd , &f3dd ) ;

14 g v f p a r a m e t r i c c o n t r o l 3 D (
g v f p a r a m e t r i c 3 d e l l i p s e p a r . kx ,
g v f p a r a m e t r i c 3 d e l l i p s e p a r . ky ,
g v f p a r a m e t r i c 3 d e l l i p s e p a r . kz , f1 , f2 , f3 ,
f1d , f2d , f3d , f1dd , f2dd , f3dd ) ;

15

16 r e t u r n t r u e ;
17 }

Note that we have a collection of positive gains to be tuned:
kx, ky, and kz , for the convergence of the different Cartesian
coordinates.

3.3 Performance in Paparazzi
In figure 5 we show the performance of one aircraft track-

ing a simple Lissajous figure that is bent in 3D. The p-

Figure 5: The g-GVF guidance system in Paparazzi allows
aircraft to track 3D paths. These flights correspond to dy-
namic soaring experiments where the aircraft was tracking a
tilted circle.
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Figure 6: The g-GVF guidance system in Paparazzi allows
aircraft to synchronize aircraft on 3D paths. In this example,
both aircraft are instructed to have the same w so that they
rendezvous.

GVF controller passes two setpoints to low-level controllers,
namely, the desired heading rate and the desired vertical
speed. The first one is handled by controlling the roll an-
gle of the aircraft depending on its actual ground speed. The
second one is handled by controlling both the pitch and the
throttle of the aircraft. Therefore, in order to have a good per-
formance in Paparazzi, the vertical speed controller must be
tuned in advance.

3.4 Multi-vehicles

We can employ the p-GVF guidance system to synchro-
nize vehicles on the desired path. Differently than with the
GVF, now we will focus on controlling the distances between
the virtual coordinates w for each vehicle. This is done by
injecting the standard consensus algorithm to the control ac-
tion, where each aircraft share their current w and compares
the subtraction with the desired value [12]. The result makes
the vehicles travel on the desired parametric path with their
desired relativew between each other. This algorithm can run
a distributed way, and there is no need for a Ground Control
station in Paparazzi. In figure 6 we show the rendezvous of
two aircraft on the same 3D path.

4 CONCLUSIONS AND FUTURE WORK

This article presents a technical report on the two guiding
systems based on guiding vector fields available in Paparazzi
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autopilot. We have shown how the user can implement its
own desired path by mainly creating two functions in C code.
The first function contains the mathematical information of
the desired path, while the second function is what is called
by the user from the Ground Control station. The presented
guiding systems can be employed in Paparazzi to coordinate
aircraft in a distributed way.

The future work focuses on extending the implementation
in Paparazzi to other vehicles such as rotorcraft and rovers.
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ABSTRACT

For aerial manipulators, steady flight must be
guaranteed to perform safety interaction with the
surrounding environment. This paper focuses
on the development of a position control algo-
rithm for an aerial manipulator system (AMS).
The position control algorithm is based on the
Immersion and Invariance (I&I) theory. The pro-
posed controller maintains the position of the
aerial manipulator at the desired point under ex-
ternal an internal disturbances. The control ar-
chitecture uses the Visual-SLAM technique im-
plemented using on-board sensors for AMS po-
sitioning. A series of outdoor experimental tests
are performed to demonstrate the effectiveness
of the proposed control strategy.

1 INTRODUCTION

The number of applications in which aerial robots are
used has grown rapidly over the recent years. Aerial manip-
ulators are designed to perform physical interaction with the
surrounding environment. Aerial manipulation research fo-
cus on improving mechanical designs, and control strategies
to increase the capability to manipulate objects, exert force on
a surface and use tools in realistic applications [1]. However,
technological challenges still need to be addressed before re-
liable use of such technology becomes possible. Among these
challenges, the capability to carry on a manipulator, and han-
dle disturbances during the movement of the manipulator is
still a difficult challenge for small-size UAVs but represents
an interesting research topic, and is the driving goal of this
work.

The quadrotor is considered one of the most efficient UAV
system for researchers around the world in the aerial manipu-
lation field [2]. Due to the higher maneuvering capabilities of
the quadrotor in comparison with other UAVs. A small-size
quadrotor is capable of loading a light-weight manipulator
and maintain a stable flight with a proper control algorithm
[3].

The quadrotor is a nonlinear, open-loop, unstable, and un-
deractuated system and the incorporation of a moving robotic
arm to the structure increases the disturbance to the system

*Email address(es): aaron.eleazar@inaoep.mx

that cannot be easily eliminated by feedback controllers. In
order to tackle such problems and to improve the system per-
formance researchers have proposed a host of advanced con-
trol methods to guarantee a stable flight during the manip-
ulation task, including impedance control [4, 5, 6], Back-
stepping control [7, 8], and Proportional-Integral-Derivative
(PID) control [9, 10] to name a few.

A methodology to design direct and indirect adaptive con-
trollers for nonlinear systems, called Immersion and Invari-
ance (I&I), was proposed in [11]. The I&I method is a con-
trol tool based on two classical theories, which are system
Immersion and manifold Invariance [12]. The I&I approach
captures the desired behavior of the system to be controlled
by introducing a target dynamical system. Then, a suitable
stabilizing control law is designed to guarantee that the con-
trolled system asymptotically behaves like the target system
[13]. Adaptive controllers based on I&I technique for UAV
systems were developed in [14, 15] as a control solution to
maintain the vehicle stable along the desired trajectory, and
in [16] a multi-variable finite-time composite control strategy
based on I&I was proposed for a quadrotor under unknown
disturbances.

Up to now, the I&I control approaches for aerial systems
described in the literature consider the problem of the position
stability for the UAV but do not include the application of the
I&I approach to improving the performance of an aerial ma-
nipulation system during the movement of the manipulator or
the interaction phase, and considering for the aerial manipula-
tor from the perspective of proposing one controller to solve
the problem. In this paper, the divide and conquer strategy
is followed. Thanks to the engineering advances in quadro-
tor control, there are available in the market aerial vehicles
whose position dynamic response to operator inputs can be
modeled by first or second order systems. Hence, in this pa-
per, the internal commercial quadrotor controller is updated
with an external I&I adaptive control-loop to solve the posi-
tion control of an aerial manipulator.

The rest of this paper is organized as follows: The previ-
ous works of this research which present the development of
the aerial manipulator and the Visual SLAM method to oper-
ate in outdoor scenarios are presented in section 2. In section
3 we describe the position control strategy based on the I&I
theory to maintain the system in the desired position. The ex-
perimental set-up and the results of this work are presented
in section 4. Finally, the conclusions of the results and a de-
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scription of the future work of this research are presented in
section 5.

2 BACKGROUND

Before beginning with the present research work, in this
section, we mention a background of the investigation, ex-
periments, and results in the aerial manipulation field we
achieved in recent years. At the beginning of of the research,
we developed an aerial manipulator based on a Commercial
small UAV (parrot bebop-2) with a 2-DOF arm to study the
behavior of the system with the added weight and the distur-
bances of the arm. The manipulator was designed and im-
plemented based on the technical capabilities of the selected
aerial platform. Then, when a stable flight was achieved
through a computational compensation control, we improve
the capabilities of the proposed aerial manipulator imple-
menting an external control-loop based on a Gain-Scheduling
(GS) PID control strategy to work with the internal bebop-2
controller and mitigate the disturbances induced by the move-
ment of the 2-DOF arm and the contact with a vertical sur-
face.

Rojas-Perez and Martinez-Carranza presented in [17] an
obstacle avoidance system based on the Visual SLAM ap-
proach to estimate the position of a bebop-2 taking advantage
of the on-board camera, and without any other motion capture
system to feedback the position of the vehicle. We combined
this estimation pose technique with our aerial manipulation
system to extend its capabilities to outdoor scenarios where
the use of caption motion systems to sensing the pose of the
vehicle are limited. Then, we presented a study of the be-
havior of the system in interaction with a vertical surface in
an outdoor environment. To improve the results of previous
works we consider the implementation of the I&I as an al-
ternative to the GS-PID external control due to the capability
to increase the robustness of a nonlinear system against dis-
turbances [11]. In the following section, we present the I&I
methodology and the implementation of our aerial manipula-
tion system.

3 THE IMMERSION AND INVARIANCE CONTROL
STRATEGY

The use of the I&I approach for stabilization of nonlinear
system was presented in [11]. Before explaining the imple-
mentation of this research, we briefly recall the fundamental
conditions for the standard I&I controller design. Consider
the following system:

ẋ = f(x) + g(x)u (1)

with state x ∈ Rn and control u ∈ Rm, with an equilibrium
point x∗ ∈ Rn to be stabilized. Let p < n and assuming ex-
istence of mappings α(·) : Rp → Rp, π(·) : Rp → Rn, c(·) :
Rp → Rm, φ(·) : Rn → Rn−p, ψ(., .) : Rnx(n−p) → Rm
such that:

The system (target system):

ξ̇ = α(ξ) (2)

With ξ ∈ Rp has a globally asymptotically stable equilib-
rium at ξ∗ ∈ Rp and x∗ = π(ξ∗). (Immersion condition) For
all ξ ∈ Rp

f(π(ξ)) + g(π(ξ))c(ξ) =
∂π

∂ξ
α(ξ) (3)

(Implicit manifold) The following set identity holds:

x ∈ Rn | φ(x) = 0 = x ∈ Rn | x = π(ξ), ξ ∈ Rp (4)

(Manifold attractivity and trajectory boundedness) The
system:

ż =
∂φ

∂x
(f(x) + g(x)ψ(x, z)) (5)

With state z, has a globally asymptotically stable equi-
librium at zero uniforly in x. Further, the trajectories of the
system

ẋ = f(x) + g(x)ψ(x, z) (6)

are bounded for all t ∈ [0.∞) Then, x∗ is a globally
asymptotically stable equilibrium of the closed loop system
ẋ = f(x) + g(x)ψ(x, φ(x)).

The result summarized above lends itself to the following
interpretation. Given the system 1 and the target dynamical
system 2 find, if possible, a manifold M, described implic-
itly by {x ∈ Rn | φ(x) = 0}, and in parameterized form by
{x ∈ Rn | x = π(ξ), ξ ∈ Rp}, which can be rendered in-
variant and asymptotically stable, and such that the (well de-
fined) restriction of the closed loop system toM is described
by ξ̇ = α(ξ). Notice, however, that we do not propose to ap-
ply the control u = c(ξ) that renders the manifold invariant,
instead we design a control law u = ψ(x, z) that drives to
zero the off-the-manifold coordinate z and keeps the system
trajectories bounded. (For the methodology proof, see [11]).

3.1 Application to an Aerial Manipulation system
Aerial vehicle’s internal autopilots shape the system’s re-

sponse at different levels depending on the available sensors.
Hence, if rotational states are measured, the internal autopilot
can shape the aerial vehicle’s response as a second-order sys-
tem. If, in addition, the translational states are measured, the
aerial vehicle can commanded to behave as a first-order sys-
tem. This is the case of the aerial vehicle used in this work.
Using the information from the Attitude Reference and Hedg-
ing System as well as optical flow and SLAM algorithms, the
internal controller shapes the aerial vehicle as a first-order dy-
namics expressed by

dx

dt
= uθ + δ (7)
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We can assume that our aerial manipulation system can
be represented by equation 7. The experimental validation
of this model is presented in the following section. δ repre-
sents the disturbance of the robotic arm, the wall effect, the
interaction with a surface, or any other disturbance. Now, we
describe the steps to implement the I&I control strategy to
the proposed aerial manipulation system. We first defined the
estimation error as

δ̃ = δ − ρ+ β(x) (8)

where δ̃ is the estimation error. The time derivative of the
estimation error gives

dδ̃

dt
= −dρ

dt
+
∂β

∂x

(
uθ + δ

)
(9)

Replacing δ from

dδ̃

dt
= −dρ

dt
+
∂β

∂x

(
uθ + δ̃ + ρ− β

)
(10)

Now, the dynamics of the estimator’ state is defined in terms
of known signals as follows

dρ

dt
=
∂β

∂x

(
uθ + ρ− β

)
(11)

Substituting (11) in (10) one gets

dδ̃

dt
=
∂β

∂x
δ̃ (12)

To ensure that the estimator error converges to zero, one
selects β(x) = Γx, with Γ a positive constant, thus,

dδ̃

dt
= −Γδ̃ (13)

To compensate the disturbance, the following controller
is proposed

uθ = −kp(xd − x)− ρ+ β(x) (14)

where x̃ = x−xd with xd the desired constant reference, this
is,

uθ = −kp(xd − x)− ρ− Γx (15)

moreover,
d

dt
ρ = −Γ(ρ+ Γx) (16)

The closed-loop dynamics reads as

dx̃
dt = −kpx̃+ δ̃

dδ̃
dt = −Γδ̃

(17)

Hence, for any positive gains kp, Γ, the error signals x̃ and
ρ̃ converge to zero. Thanks to the quadrotor symmetry, the
controller for the y position is designed following exactly

the same procedure. The control law expressed by equations
(14)-(16) are implemented in the aerial manipulator to control
the longitudinal and lateral motions of the system to regu-
late the position in an outdoor scenario and guarantee a stable
flight. In the next section, we describe the setup of the exper-
iments to investigate the effectiveness of the proposed control
strategy.

4 EXPERIMENTS AND RESULTS

4.1 System Behavior
To validate the assumption that the proposed aerial ma-

nipulator can be modeled as a first or second order system, a
set of tests were developed to investigate the response of the
system to an input signal. First, the bebop-2 was tested to
prove that the internal controller works efficiently. Then, we
repeated the experiment with the same signal but now with
the robotic arm attached to bebop-2 to compare the influence
of the robotic arm in the system. Figure 1 shows the sequence
of movements the system performs in each experiment when
the input signal is sent to the vehicle.

Figure 1: Sequence of movements. Response of the system
to input signal.

Several tests were carried out to obtain a mean result of
the behavior of the system in both experiments. Figure 2
shows the most representative results in the first experiment.

Figure 2: Behavior of bebop-2. Response to input signal.

The results of the second experiment are shown in Figure
3, as in the first experiment a set of tests were carried out.
The most representative results of the behavior of the aerial
manipulator to the test signal are presented in the graphic.
According to the results shown in the graphics, we proved the
system behaves as a firs order system even with the robotic
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arm attached to the structure. therefore, we can assume our
proposed aerial manipulator can be described by equation 7

Figure 3: Behavior of the aerial manipulator. Response to
input signal.

4.2 Experimental Setup
The proposed control strategy was proved via experimen-

tal tests in an outdoor environment. To reduce the distur-
bances (mostly the disturbances due to the environment) an
I&I controller was implemented and added to the system. In
previous works, we used the VICON camera system to mea-
sure the position of the vehicle and feedback the information
to the controller [3, 18] but, in outdoor environments, the im-
plementation of VICON is laborious and limited. For that rea-
son, in most recent works we incorporated the Visual SLAM
technique to replace the VICON system in the control struc-
ture and to improve the capabilities of our proposed system
[19]. The pose estimation using visual SLAM was exploited
in [17, 20]. The method takes advantage of two characteris-
tics of the aerial vehicle; the on-board camera, and the altitude
measurement.

Figure 4: Communication of the complete system.

Due to the features of the aerial platform, we can include
the Visual SLAM technique as a pose estimation method in
the complete system. Figure 4 shown the communication
scheme. The control algorithm runs in a ground station (com-
puter), and we take advantage of the wifi and Bluetooth con-
nection to communicate the computer with the robotic arm

and the bebop-2. The coordinate frame of the aerial manipu-
lator is represented by Figure 5. The longitudinal and lateral
motions of the system are represented by the X and Z axis.
The I&I controller was implemented for both axes, a stan-
dard PID controller was also incorporated to control θ and Y
axis and guarantee the correct orientation and distance to the
ground.

Figure 5: Aerial manipulator scheme.

The outdoor scenario can be shown in Figure 6. In this
research work, we decided to put the robotic arm on the top
of the vehicle, this allows the sensors below bebop-2 to op-
erate without any kind of obstruction and guarantee a good
measurement. This change in the position of the robotic arm
also reduces the load because the extension legs are not more
needed. The carpet below the aerial manipulator provides vi-
sual features which ensure a good performance of the pose
estimation method and reduce the pose estimation error.

Figure 6: Outdoor scenario. A carpet is set in the ground to
provide more texture for the SLAM technique and improve
the pose estimation.

Figure 7 depicts the block diagram for this research. The
pose of the system when is in fly mode is provided for the
Visual SLAM technique. The movement of the robotic arm
to fold and unfold produces a set of different disturbances.
The objective of the attitude control is to reduce the displace-
ment produced by this disturbance and any other disturbance
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induced by the outside conditions to maintain the aerial vehi-
cle in the desired position. The proposed controller operates
as external control, calculating the control signal U for the
X and Z axis to displace the vehicle to the desired position,
then, the U signals are sent to the internal control of Bebop-
2. Finally, the pose estimation provides by the Visual SLAM
closes the external control loop.

Figure 7: Block diagram of the proposed system.

4.3 Results
Through several experimental tests, we studied the be-

havior of the system and tuned the parameters kp and Γ of
the control law expressed by equations (14)-(16) to improve
the performance of the complete system. In Figure 8 it can
be shown the response of the system in the first experiments
when the value of the parameters was chosen according to our
experience.

Figure 8: Behavior of the aerial manipulator with the I&I
control strategy. First results.

Due to the facility provided by the I&I technique, after a
few experiments, we were able to tune the value of the pa-
rameters and ensure the system reaches the desired position,
and maintain the pose during the disturbances induced by the
environment and the robotic arm. Figure 9 shown the results
of the final experiments.

5 CONCLUSIONS AND FUTURE WORK

In this work, a control strategy based on immersion and
invariance technique has been designed and implemented in

Figure 9: Behavior of the aerial manipulator with the I&I
control strategy. Final results.

order to control an aerial manipulator to tackle the issues re-
lated to the environment and the movement of the robotic
arm. The experimental results obtained for several tests are
quite promising. A merit of the proposed algorithm is shown
by the equations of the control law which reduced the number
of parameters of the controller, simplifying the experimental
phase and allowing to obtain an efficient performance of the
system. According to the results obtained in this work, we
consider that the control can be tested near to a vertical sur-
face and aiming to make contact with the end effector of the
arm, this could represent a novel approach for the aerial in-
teraction field.
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XINCA: Extended Incremental Non-linear Control
Allocation on a Quadplane
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ABSTRACT

Controlling over-actuated Unmanned Aerial Ve-
hicle (UAV) is an important task to achieve re-
liable fail-safe autonomous flight. Incremental
Non-linear Control Allocation or INCA has been
proposed to solve the platform’s control alloca-
tion problem by minimizing a set of objective
functions with a method known as the Active
Set Method. This work proposes an extension
to INCA to control the outer loop of a quadplane
UAV, an in-plane combination between a quadro-
tor and a conventional fixed-wing. The novel
controller is called Extended INCA or XINCA
and optimizes a mix of physical actuator com-
mands and angular control setpoints fed to the
vehicle’s inner loop. It does so while adapt-
ing to varying flight phases, conditions, and ve-
hicle states, and taking into account the aero-
dynamic properties of the main wing. XINCA
has low dependence on accurate vehicle models
and requires only several optimization parame-
ters. Flight simulations and experimental flights
are performed to prove the performance of both
controllers.

1 INTRODUCTION

Unmanned Arial Vehicle or Unmanned Aerial Vehicle
(UAV)s have gained a tremendous amount of popularity. Not
only have they proven to be valuable research platforms and
entertaining toys, they have also found many other applica-
tions in fields like defence [1], surveillance [2], medical assis-
tance [3], transportation of both goods and humans [4], agri-
culture [5], inspection [6], mapping [7], and many others.

Some challenges that are often faced in UAV design are
endurance, reliability, versatility, and affordability. Existing
solutions often perform well on some but not all of these as-
pects. Fixed-wing aircraft like the ones by [8, 9] and [10]
for instance master endurance as a result of the passive wing-
induced lift that keeps them airborne. Rotorcraft on the other
hand, like designs by [11, 12] and [13], are much more versa-
tile since they can hover, take off and land vertically. They are
also inexpensive to produce, mechanically simple and their
control has been well solved. Their powered generation of lift

*Email address(es): c.dewagter@tudelft.nl

Figure 1: The TU Delft Quadplane in the Cyberzoo.

however severely limits their endurance, and designs like the
conventional quadcopter typically have multiple single points
of failure. It is therefore that many researchers have come up
with hybrid platforms, that aim to combine the best of differ-
ent worlds.

Some examples of hybrid platforms include tilt ro-
tor/wing UAVs, tail sitters, transformable UAVs, and quad-
planes. Tiltrotor/wing UAVs like designs by [14] and [15]
mechanically change the orientation of their propulsion units
to either generate lift during vertical take-off and landing or
horizontal thrust while flying horizontally with wing induced
lift. Similarly, tail sitters as discussed by [16] and [17] change
the orientation of the entire vehicle when transitioning from
vertical take-off and landing orientation to horizontal flight.
This reduces the mechanical complexity of the system, result-
ing in a more reliable, lighter, and cheaper platform, albeit at
the cost of sensitivity to wind gusts. A completely different
class of hybrid UAVs are the ones that are transformable like
the one designed by [18]. By changing the configuration of
the entire vehicle, they can transform between very different
types of UAVs, like for instance a monocopter and a fixed-
wing aircraft.

Lastly, a common class of hybrid UAVs is formed by
quadplanes, like the one used as an experimental platform
for this research (See Figure 1). Earlier designs include those
by [19, 20, 21, 22] and [23]. The quadplane has a static con-
figuration with both upward-facing rotors for vertical take-
off and landing and fixed wings with a horizontal propulsion
unit for horizontal flight. Despite the added weight of flight
phase-specific actuators, its mechanical simplicity makes this
versatile and enduring vehicle a promising research platform.
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Making such a Quadplane fly as efficiently and safely as
possible poses a number of challenges. These include dealing
with large flight envelopes, over-actuation, its non-linear na-
ture, and its sensitivity to wind gusts. The quadplane used for
this research and its control challenges are described in Sec-
tion 2. An existing control method called Incremental Non-
linear Control Allocation (INCA) is discussed in Section 3,
and its optimization methods in Section 4. A proposed ex-
tension of this control method, called Extended Incremental
Non-linear Control Allocation (XINCA), is presented in Sec-
tion 5. The implementation of the INCA and XINCA con-
trollers on the TU Delft Quadplane is shown in Section 6,
and Sections 7 and 8 respectively present results from sim-
ulations and test flights performed using this novel control
method. Lastly, Section 9 gives the conclusions.

2 THE TU DELFT QUADPLANE

xy
z

δrlr

δrrr

δrlf

δrrf

δrt

δal

δar

δrl

δrr

Figure 2: Overview of the nine quadplane actuators
= quadcopter actuator set, = fixed wing actuator set

The quadplane is a hybrid of a fixed-wing aircraft and a
quadcopter. A conventional example of a quadplane is the one
used for this research, the TU Delft Quadplane. A schematic
representation of this platform is shown in Figure 2. It shows
the quadplane’s nine actuators: four upward-facing rotors that
could be considered as the quadcopter actuator set, and four
control surfaces, and a tail rotor that could be considered the
fixed-wing actuator set. Having actuator sets that can oper-
ate simultaneously, quadplanes are considered over-actuated.
Literature shows that this over-actuation is often dealt with
by using only one actuator set during specific flight phases,
and only briefly combining them during a transition phase
between vertical and horizontal flight [19, 20, 21, 22].

+ −
Controller

+ −
Controller System

xr xe θr θe δ

outer control loop
x inner control loopθ

Figure 3: Simplified schematic UAV controller diagram
(x = position, θ = attitude, δ = system input)

UAV controllers often use cascaded outer and inner loops
shown in Figure 3. The outer loop, also called the position or

guidance loop, controls the position error and outputs a refer-
ence attitude. The inner loop or attitude loop controls actual
attitude and uses that to allocate control to suitable actuators.
This allocation is quite straightforward when the vehicle is
not over-actuated or when only a single actuator set is used.

Quadplanes could however fly more efficiently when con-
tinuously assessing each actuator’s suitability to satisfy a cer-
tain control demand. This assessment should take into ac-
count each actuator’s effectiveness based on the system’s
states, but could also penalize large deviations from preferred
actuator positions. Such an optimization problem is known
as a control allocation problem. The advantages are that first,
it can minimize the control effort of a UAV, potentially re-
sulting in more efficient flight and enhanced flight endurance.
The other advantage is that when certain actuators are satu-
rating, it can allocate control to other actuators to still satisfy
a given control demand, resulting in safer and more reliable
flight. The control allocation method used in this research is
called Incremental Non-linear Control Allocation or INCA,
which solves the inner loop’s control allocation optimization
problem and is presented in Section 3.

Another challenge in controlling quadplanes is caused by
the fundamentally different outer loop dynamics of the quad-
plane during different flight phases. When flying as a quad-
copter, for instance, a change in pitch angle causes the quad-
plane to accelerate in a longitudinal direction. When flying
as a fixed-wing aircraft, however, a change in pitch will cause
the quadplane to either climb or descent. Furthermore, the
quadplane is over-actuated in its outer loop as well as its inner
loop, since it can control a positive forward acceleration dur-
ing hovering with both its pitch angle and pusher rotor. The
latter is often preferable since negative pitching maneuvers
might introduce an undesirable negative wing-induced lift.
A positive backward acceleration however is only achievable
by pitching the quadplane backward. To address the chal-
lenges named above, an extension of the INCA controller is
presented in Section 5, which performs an outer loop opti-
mization similar to the INCA inner loop optimization. This
method is called Extended Incremental Non-linear Control
Allocation, or XINCA.

3 INCA

Incremental Non-linear Control Allocation or INCA, is
a very promising control allocation algorithm. It has al-
ready theoretically been demonstrated on over-actuated ve-
hicles like the Lockheed Martin Innovative Control Effector
aircraft by [24]. [25] have proven the control method to be
effective in actual flight on non-over-actuated quadcopters.
The architecture of INCA augments a method called Non-
linear Dynamic Inversion, or Non-linear Dynamic Inversion
(NDI). NDI measures a vehicle’s states and uses an accurate
model to predict angular and linear accelerations as a result of
these states. Their difference with the vehicle’s desired accel-
erations is then used to calculate appropriate control inputs

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 75
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Figure 4: A schematic representation of an INCA controller (x = state vector, v = virtual input, δ = control input vector)

using reliable actuator models. A successful example of an
implementation of NDI is the work by [26].

However effective, NDI highly relies on detailed and ac-
curate models of the vehicle it controls. A variation on this
approach provides a solution to this problem and is called
Incremental Non-linear Dynamic Inversion, or Incremental
Non-linear Dynamic Inversion (INDI) [25]. While it still re-
lies on an actuator model, instead of using a vehicle model
to predict its angular and linear accelerations as a result of
its states, it uses inertial measurement data to observe these
accelerations. And the control effectiveness model does not
need to be as accurate, since the controller will compensate
for any unexpected effects of the actuators by incrementing.

An example where INDI has been proven successfully in
quadcopter flight is presented by [27].

Both NDI and INDI invert actuator effectiveness models
in order to calculate appropriate actuator commands. When
dealing with over-actuated UAVs however, it is mathemat-
ically challenging to derive appropriate actuator commands
by simply inverting these actuator effectiveness models, since
any calculated actuator command solution is no longer sin-
gular, and there exist infinite solutions. INCA deals with
this by expressing this control allocation problem as an op-
timization problem, that needs to be solved by minimizing a
certain cost function. A schematic representation of INCA
is shown in Figure 4. Like an INDI controller, INCA uses
the difference between desired accelerations and inertial mea-
surements to determine an incremental control demand, also
known as the virtual input to the INCA optimization. The
optimization scheme then calculates an optimal actuator in-
crement to satisfy the control demand. Note that while the
rotor effectiveness is relatively constant, the effectiveness of
the aerodynamic surfaces is proportional to the square of the
true airspeed. The optimization method is presented in Sec-
tion 4.

4 INCA OPTIMIZATION

Let H be a matrix containing the linearized effectiveness
of all actuators, and τc the control demand that will be used
as virtual input to the INCA optimization. An unconstrained
control command increment ∆δ should then always satisfy

the following equation:

H∆δ = τc (1)

When this increment is constrained by actuator limits, an
error between the control demand and the achieved control
might occur, but should still be minimized. Also minimizing
control effort, i.e., the difference between actual actuator in-
crements ∆δ and preferred actuator increments ∆δp, yields:

min
∆δ
‖γWτ (H∆δ − τc)‖2 + ‖Wδ(∆δp −∆δ)‖2 (2a)

subject to ∆δmin ≤ ∆δ ≤ ∆δmax and δ̇ ≤ δ̇max (2b)

where Wτ and Wδ are weighing matrices to prioritize
selected control demands and actuators over others, and γ is
a constant that prioritizes one sub-objective over the other.
This type of objective function is called a Quadratic Pro-
gram and can include as many separate sub-objectives as
needed. Quadratic Programming is often used for Control
Allocation problems. [28] presents proof that it can provide
automatic redistribution of control in case of actuator satura-
tion. [24] and [27] both apply it, on a modern fighter jet and
a quadcopter UAV respectively. The objective function is of-
ten rewritten to a standardized quadratic form, which many
solvers can easily work with:

min
∆δ

∆δTQ∆δ + cT∆δ (3a)

subject to A∆δ ≤ b (3b)

where Q = FTF, c = 2FT g,

F =

(
γWτH
Wδ

)
, g =

(
γWττc
Wδ∆δp

)
,

A =

(
I
−I

)
and

b =

(
min(δmax − δ0, δ̇max∆t)

−max(δmin − δ0,−δ̇max∆t)

)
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Point Description
Active
constraints

1 Starting point None
2 Unconstrained optimum None

3
Best feasible solution in
direction of optimum δ2 ≥ 0

4
Optimum with active set
as equality constraints δ2 ≥ 0

5
Best feasible solution in
direction of optimum
and final solution

δ1 ≥ 0, δ2 ≥ 0

Figure 5: The Active Set Method performed on a hypothetical cost function J with a two-dimensional input space
(Constraints: 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1, starting point: (δ1, δ2) = (0.8, 0.2)

When the inequality constraints are treated as equality
constraints (A = b instead of A ≤ b), the solution to the
optimization problem is given by the following linear system,
as long as Q is a positive definite matrix [29] and A has full
row rank [30]:

[
Q AT

A 0

] [
∆δ
λ

]
=

[
−c
b

]
(4)

where λ is known as the vector containing the Lagrange
multipliers. Explicit solutions for both the optimal input in-
crement ∆δ and Lagrange multipliers λ can be derived alge-
braically as:

∆δ = −Q−1(ATλ+ c) (5a)

where λ = −(AQ−1AT )−1(AQ−1c+ b) (5b)

The values of the Lagrange multipliers are used to deter-
mine what constraints to release during the optimization pro-
cess, and whether or not the solution has already reached its
optimum.

Since the calculation of UAV control demands typically
needs to be performed several hundred times per second, the
optimization used in an INCA controller needs to be as effi-
cient as possible. Based on control allocation research per-
formed by [24] and [27], the optimization method selected
for this research is the Active Set Method. This method re-
quires similar amounts of computing power as e.g. the Re-
distributed Pseudo-Inverse method and the Fixed-Point algo-
rithm, yet yields more accurate solutions. It also scales effi-
ciently with larger amounts of actuators, which is validated in
Section 8.

A detailed description of the Active Set Method [31] is
summarized below and illustrated in Figure 5 for a hypotheti-
cal optimization problem with a constrained two-dimensional
input space:

Step 1:

Choose a feasible starting point

Step 2:

Determine the active set of constraints, i.e. all con-
straints at which a control command saturates. Rede-
fine the optimization problem using only the active
constraints as equality constraints.

Step 3:

Calculate the Lagrange multipliers and solution to
the redefined problem using Equations 5a and 5b.

Step 4:

If the solution is infeasible:
Correct the solution by taking the maximum relative
step to the new solution without losing feasibility and
determine the new active set of constraints.

Else if not all λ ≥ 0:
Release the constraint corresponding to the most
negative value in λ from the active set of constraints.

Else: The optimal solution has been found.

Step 5:

Repeat from Step 3 with the new active set of con-
straints while the optimal solution has not been
found.

k
=

1,
2,
..
.,
N

Choosing a suitable starting point for the Active Set
Method has a significant effect on the solver’s efficiency. In
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Figure 6: A schematic representation of a XINCA controller (x = state vector, v = virtual input, δ = control input vector)

control allocation, each solution is likely to be in the neigh-
borhood of the solution of the previous time step. The Active
Set Method has a relatively low computational cost [31], and
since the solution progresses towards the final solution each
time step, even when cut off before reaching the optimum to
save computational time, the solution will be close to optimal.

5 XINCA

To simplify the outer loop control, hybrid UAVs like
quadplanes are often controlled in either a vertical, horizon-
tal or short transitional flight mode. Separating these flight
modes however often results in sub-optimal flight control, not
always using the most effective or efficient actuators nor mak-
ing use of redundant actuators in case of actuator saturation.
Worse even, actuator sets can even counteract each other. In
hover, for instance, a downward pitch to move forward with a
non-zero wind will cause a negative lift of the wing counter-
acting and possibly saturating the hover motors.

To solve this, a new control scheme is proposed,
called Extended Incremental Non-linear Control Allocation
(XINCA). It is an extension of INCA which takes the spe-
cific quadplane outer-loop dynamics into account as addi-
tional constraints. As shown in Figure 6, a linear controller
on the position errors selects the desired linear reference ac-
celerations. The error between these reference accelerations
and measured accelerations then enters the XINCA optimiza-
tion block. Like the INCA optimization, the XINCA opti-
mization possesses several constrained actuators to achieve
this control demand with, albeit these XINCA actuators do
not only include physical actuators of the platform, but also
some of its attitude angles and its vertical thrust command. In
the case of this research, the XINCA output includes the tail
pusher rotor command, the vertical thrust command, and the
vehicle’s pitch and roll commands. The tail rotor command
is directly fed to the tail rotor itself. The thrust command
and two attitude angle commands serve as input for the inner
loop’s INCA optimization. The XINCA optimization is also
performed with the Active Set Method. Since the effective-
ness of the XINCA actuators is also highly dependent on the
aircraft’s states, it needs to be re-assessed at every iteration.
But the resulting controller does not need to differ anymore
for any of the flight regimes or flight modes.

6 IMPLEMENTATION

XINCA is implemented in the open-source drone hard-
ware and software platform Paparazzi UAV [32]. The quad-
plane itself makes use of a Lisa/MX autopilot board. Since
this board can control a maximum of eight actuators, the two
ailerons share one control command, making them respond
symmetrically yet in the opposite direction while reducing
the computational cost of the INCA optimization.

The INCA module in Paparazzi UAV is based on an INDI
module from [25], and used by [13]. It is extended to include
seven of the quadplane’s eight actuators, and scale the effec-
tiveness of the three actuators that are aerodynamic surfaces,
i.e. two separate ruddervators and the combined ailerons. The
achieved control is calculated as follows:

[
∆ṗ ∆q̇ ∆ṙ ∆z̈

]T
= H∆δ (6)

where δ =
[
δrlf δrrf δrrr δrlr δa δrl δrr

]T

The control effectiveness matrix H is separated into two
parts. H1 accounts for increments in actuator inputs, and H2

accounts for counter-torque effects during the spin-up of the
upwards facing rotors, such that:

H = H1 + ∆tH2 (7)

The actuator effectiveness matrix units are either rads−2

PPRZ−1 or ms−2 PPRZ−1, where PPRZ stands for Paparazzi
actuator units ranging from -9600 for bi-directional or 0 for
mono-directional actuators to 9600. To illustrate INCA’s
ability to handle inaccurate actuator models because of its in-
cremental nature, only a simple approximation of the actuator
effectiveness is used to control the quadplane. This approxi-
mation is based on theoretical calculations using estimations
of the inertial properties and their actuator positions. The re-
sulting actuator effectiveness matrices are:

H1 = 10−3 ·

δrlf δrrf δrrr δrlr δa δrl δrr





11 −11 −11 11 0.15u2 0 0 ∆ṗ
9 9 −9 −9 0 0.11u2 −0.11u2 ∆q̇
−0.6 0.6 −0.6 0.6 0 −0.03u2 −0.03u2 ∆ṙ
−0.8 −0.8 −0.8 −0.8 0 0 0 ∆z̈

(8a)
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H2 = 10−3 ·

δrlf δrrf δrrr δrlr δa δrl δrr





0 0 0 0 0 0 0 ∆ṗ
0 0 0 0 0 0 0 ∆q̇
−55 55 −55 55 0 0 0 ∆ṙ

0 0 0 0 0 0 0 ∆z̈

(8b)

where u represents the true airspeed over the aerody-
namic control surfaces, which in this work is simplified by
the substitution of the forward body velocity since tests are
performed in an indoor environment without wind. Negative
values are replaced by zero.

Since the actuators do not provide any form of feedback,
an estimation of the current actuator deflection is performed
each time step. This is done by a first-order approximation
with a time constant τ :

Hact =
K

τs+ 1
(9)

Each actuator position is estimated as:

δest = δprev + α(δ − δprev) (10)

where α = 1− e−τ∆t

The used time constant used for the four upwards facing
rotors is 29 s−1. For the control surfaces, an estimation of
100 s−1 is used. The optimization parameters in Equations
2a and 2b are chosen as:

Wτ = diag
[
100 100 1 1000

]

Wδ = diag
[
10 10 10 10 1 1 1

]

γ = 10000

δp =
[
0 0 0 0 0 0 0

]T

These values are selected to prioritize pitch and roll and
especially thrust over yaw commands while Wδ penalizes the
use of rotors over aerodynamic surfaces as the latter use less
energy. Finally, γ prioritizes achieving the control demand
over minimizing control effort. The actuator limits are set to
either 0 and 9600 for rotors or -9600 and 9600 for control
surfaces, again expressed in PPRZ units.

The XINCA controller works in a similar manner as the
INCA controller and is based on an existing outer loop INDI
module by [33, 34]. This existing module uses the vertical
thrust vector to control the position, by either changing this
thrust itself or changing its orientation by pitch or roll incre-
ments. It is augmented by including a tail rotor command as
its fourth actuator. The control is then calculated as follows:

[
∆ẍ ∆ÿ ∆z̈

]T
= H

[
vr δrt

]T
(12)

where vr =
[
∆θ ∆φ ∆T

]T

The actuator effectiveness highly depends on the current
state. At low speeds aerodynamics do not play a great role
yet, so it could be calculated as follows:

∆θ ∆φ ∆T δrt[ ]−cθcφT −sθsφT sθcφ cθ ∆ẍ
H = 0 −cφT −sφ 0 ∆ÿ

sθcφT −cθsφT cθcφ −sθ ∆z̈

(13)

where s and c represent the sine and cosine functions re-
spectively, and T represents the vertical specific-force vector,
which is estimated by taking the vertical body acceleration
and subtracting the gravitational acceleration:

T = z̈ − g (14)

When flying at higher velocities, however, the quadplane
will start to behave more like a fixed-wing aircraft. The con-
troller should start using the wings to generate lift instead of
the hover motors, and as a positive angle of pitch leads to a
positive angle of attack on the main wing, one term is added
to the actuator effectiveness matrix as follows:

H =

∆θ ∆φ ∆T δrt





−cθcφT −sθsφT sθcφ cθ ∆ẍ
0 −cφT −sφ 0 ∆ÿ

cφ

(
sθT − CLαρu

2S

2m

)
−cθsφT cθcφ −sθ ∆z̈

(15)
where CLα is the change in lift per change in angle of

attack, ρ is the air density, u is the true airspeed, S is the wing
surface area, and m is the platform’s mass. In Equations 2a
and 2b the XINCA optimization parameters are chosen as:

Wτ = diag
[
10 10 1

]

Wδ = diag
[
10 10 100 1

]

γ = 10000

δp =
[
0 0 0 0

]T

Wτ prioritizes pitch and roll over thrust demands since
an unstable attitude can be more dangerous than a controlled
descent. Moreover, the pitch is used in lift generation. Wδ

penalizes the use of pitch and roll and especially thrust com-
mands compared to using the tail rotor, and γ prioritizes
achieving the control demand over minimizing the control ef-
fort. The maximum pitch and roll angles are set to 10◦, the
vertical thrust limits to -9.0 and 9.0 ms−2, and the tail rotor’s
limits to 0 and 9600 PPRZ units. To prevent the tail rotor
from hitting the ground, it is completely shut off for altitudes
below 0.5 m by setting its effectiveness to zero.
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-9 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

−5

0

5

C
on

tr
ol

de
m

an
d

[m
s−

2
]

−∆z̈

1,000

1,100

1,200

1,300

A
ct

ua
to

rP
ul

se
W

id
th

M
od

ul
at

io
n

(P
W

M
)

Pu
ls

e
L

en
gt

h
[m

s]

δrlf
δrrf
δrrr
δrlr
δrt

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

Time [s]

Po
si

tio
n

[m
] −z

Figure 7: Simulation of vertical quadplane takeoff and land-
ing using XINCA and INCA with five actuators
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Figure 8: Simulation of a vertical quadplane takeoff and land-
ing with actuator saturation occurring at an actuator PWM
pulse length of 1310 ms using XINCA and INCA with five
actuators
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7 FLIGHT SIMULATIONS

To prove XINCA’s performance, several simulations are
performed. These are executed within the Paparazzi UAV
software to fully assess the performance of the actual code
that will also fly onboard the quadplane.

Figure 7 shows a simple simulation of a quadplane taking
off (green) and landing (red). The top plot shows the control
demand the INCA controller aims to achieve. The middle plot
shows the resulting actuator commands expressed in PWM
pulse length. The bottom plot shows the height profile of the
flight.

To assess how well the INCA controller handles actuator

−0.5

0

0.5

C
on

tr
ol

de
m

an
d

[m
s−

2
]

∆ẍ
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Figure 9: Simulation of forwards and backward flight using
XINCA with both pitch increments and tail rotor inputs and
INCA with five actuators

= forward acceleration by tail rotor, = tail rotor brak-
ing

saturation, a second simulation is performed with an artificial
upper actuator limit slightly higher than the nominal throt-
tle level needed for hovering. The result can be seen in Fig-
ure 8, which shows that saturation occurs during takeoff. The
INCA controller achieves stable flight since its pitch and roll
commands are prioritized above its thrust and especially yaw
commands.

In the third simulation, the UAV moves forward and back-
ward. Figure 9 shows the control demand and position in
the x-direction. The green and red areas show where the tail
rotor is being activated by the XINCA controller for accel-
eration and reducing backward speed respectively. The tail
rotor is first activated to accelerate forward. The UAV then
uses pitch increments to brake and accelerate backward, after
which it activates the tail rotor again twice to brake and move
forward again. Finally, it slows down using pitch increments
and lands.

Two last simulations are performed to illustrate the ben-
efits of using XINCA over conventional outer loop control
methods. Both simulate forward flight of the quadplane and
compare a traditional INDI outer-loop controller [33, 34]
with the novel XINCA controller. Using the main wing’s
aerodynamic properties in combination with the quadplane’s
pitch angle and forward velocity, an estimation is made of
the wing-induced lift force. Figure 10 shows the actuator
commands, pitch angle, and lift force for both simulations.
The most evident difference can be seen in the pitch angles.
Where the INDI controller aggressively pitches forward to
achieve forward acceleration, the XINCA controller proves
to be able to minimize this negative pitch by using its tail ro-
tor. This difference is reflected in the lift force estimations

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 80
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Figure 11: Flight profile comparison of forward flight simulation with INDI and XINCA showing wing-induced lift estimations.
Note that illustrated angles of attack are magnified and force vectors are scaled for readability

shown in Figure 11, where the XINCA controller manages to
completely avoid the negative lift caused by pitching forward.
The INDI controller does inflict some negative lift. At higher
wind speeds this negative lift can become very significant and
result in an important loss of altitude.

8 FLIGHT EXPERIMENTS

The XINCA controller was tested in real flight tests of
the TU Delft quadplane shown in Figure 1. The flight tests are
performed in the Cyberzoo, which is equipped with an optical
position tracking system for precise vehicle positioning.

During initial attempts to fly the Quadplane with both the
INCA and XINCA optimizations, the 32-bit STM32-F4 Cen-
tral Processing Unit (CPU) processor running at 266 MHz
could get overloaded. The first measure to reduce the com-
putational cost of the controllers is to run the optimizations
of both the inner and outer loops only once every second it-
eration of the autopilot, which runs at a cycle frequency of
512 Hz. A system monitoring module in Paparazzi has been
used to estimate the autopilot’s CPU loads with different con-

figurations using this reduced optimization frequency. These
configurations include a combination of the INCA controller
with a lower cost outer loop controller, a combination of a
lower cost inner loop quadcopter controller with the XINCA
controller, and a combination of both the INCA and XINCA
controllers. For configurations using the INCA controller, the
amount of INCA actuators is varied to determine its effect on
computational cost. The results of these measurements can
be seen in Table 1. These measurements are obtained on the
quadplane itself, yet without flying.

Because of the Active Set Method, the numbers clearly
show a quasi-linear correlation between the number of actu-
ators and the CPU load, and that the configuration with both
INCA and XINCA does indeed demand a lot of the autopi-
lot’s computing power. The fact that the maximum recorded
CPU load is still well below 100% can be explained by the
fact that the optimization schemes only run once every two
cycles, resulting in an average load under 100%. The ac-
tual load during one optimization cycle might however re-
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Inner loop: INCA Other INCA

Outer loop: Other XINCA XINCA

IN
C

A
A

ct
ua

to
rs

4 38% 32% 48%
5 46% 54%
6 54% 62%
7 62% 71%
8 74% 83%

Table 1: CPU load estimations for different inner and outer
loop controllers with different numbers of INCA actuators
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Figure 12: Stable quadplane takeoff and landing
using INCA with seven actuators

= takeoff, = landing

quire significantly more computing power, resulting in un-
predictable behavior of the quadplane. Especially some time-
critical processes need to be re-evaluated to perform well un-
der high CPU load. Ideally, the quadplane’s autopilot board
is to be replaced by one with sufficient computing power. For
this research, however, flight tests will be performed with ei-
ther both INCA and XINCA without any control surfaces, or
INCA with all inner loop actuators and a low-cost outer loop
controller.

The first test flight aims to confirm that the INCA con-
troller chooses suitable actuators during flight. All inner loop
actuators are included in the optimization, so a low-cost outer
loop controller is used for this test. Since the Cyberzoo’s con-
fined space only allows for low-velocity testing, the controller
is not expected to allocate a significant amount of control to
the control surfaces. The results in Figure 12 confirm this.
They show varying inputs for the quadplane’s upwards fac-
ing rotors, due to a slight asymmetrical configuration, but
successfully ensure a stable takeoff and landing. As soon as
the Quadplane touches down, the ground forces result in un-
reachable control demands. This causes the rotors to saturate

at their minimum values, after which the control surfaces are
saturated as well in a maximum effort to reach the setpoint.
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Figure 13: Stable quadplane takeoff and landing with actuator
saturation occurring at an actuator PWM pulse length of 1460
ms using INCA with five actuators
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Figure 14: Forwards and backwards quadplane flight
using XINCA with both pitch increments and tail rotor inputs
and INCA with five actuators

= forward acceleration by tail rotor, = tail rotor brak-
ing

The difference in actuator inputs between different rotors
seen in the first flight can be exploited in the second, where
INCA’s resilience against actuator saturation is being put to
the test. The saturation level is chosen in such a way that
one actuator especially saturates, in this case, δrlr . Like with
its corresponding simulation, Figure 13 shows that INCA pri-
oritizes its pitch and roll commands above its thrust and es-
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pecially yaw commands, resulting in slower but stable take-
off. Saturating actuators does result in the INCA optimization
having to perform more iterations before it reaches its opti-
mum since the Active Set Method has to explore the edges
of the actuator input space in multiple steps. This eventually
results in a higher computational load. This test is therefore
performed with the INCA controller using only four actuators
and a low-cost outer loop controller.

The final flight is the one where the novel XINCA module
is being tested. For this flight, the quadplane is controlled by
both the INCA and XINCA controllers that together allocate
control to a total of five rotors. The flight consists of a takeoff,
forward flight, backward flight, and landing. Figure 14 shows
that the quadplane effortlessly manages to perform this longi-
tudinal maneuver. Peaks in the tail rotor command show that
this actuator is indeed used for both forward acceleration and
backward braking as expected.

9 CONCLUSIONS AND RECOMMENDATIONS

During both the simulations and the actual test flights,
it was confirmed that the INCA controller chooses suitable
actuators and achieves stable flight even in the case of ac-
tuator saturation. Prioritizing certain control demands over
others successfully ensures stable flight when saturation oc-
curs. Furthermore, the XINCA controller seamlessly takes
the fixed-wing constraints into account in all flight phases
without needing to switch modes. Furthermore, it proves
to not require very detailed models of its controlled vehicle,
and the Active Set Method makes it suitable for real-time op-
timization at high frequencies. Recalculation of the actua-
tor’s effectiveness at every time step results in high automated
adaptability to changing states and conditions to ensure effi-
cient flight control, using the most suitable and efficient actu-
ators available. When optimizing commands for too many ac-
tuators, however, this INCA controller is not efficient enough
to be used on the TU Delft Quadplane in its current hardware
configuration. Allocating control to seven actuators while us-
ing a low-cost outer loop controller is at the edge of its com-
putational capacity. Future research on this specific platform,
therefore, requires hardware upgrades to achieve more com-
puting power.

Finally, the novel XINCA controller is capable to perform
an optimization in the outer control loop by combining atti-
tude angle commands as well as direct actuator commands.
This method eliminates the inefficient use of separated flight
modes while avoiding pitfalls like negative main wing lift in
hover. This can contribute to a safer, more efficient, and there-
fore greener future of human aerial transportation.

Future research on the application of INCA on hybrid ve-
hicles like the quadplane and the application of XINCA in
general should focus on their performance during level flight,
as this has not been sufficiently addressed during this work.
Outdoor flights should serve two main research objectives.
One objective would be to assess how the quadplane allocates

more control to its aerodynamic control surfaces as soon as it
has an amount of forward airspeed making them more effec-
tive. The other objective focuses on XINCA, assessing its
capabilities to adapt to the different dynamics of a hovering
quadplane and one in forward flight.
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-9 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

[12] Teppo Luukkonen. Modelling and control of quad-
copter, Aug 2011.
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Position controller for a flapping-wing drone using UWB
Guillermo González*, Guido C.H.E de Croon, Diana Olejnik and Matěj Karásek

Delft University of Technology, Mekelweg 5, Delft

ABSTRACT

This paper proposes an integral approach for
accurate ultra wide band indoor position control
of flapping wing micro air vehicles. Three
aspects are considered to reach a reliable and
accurate position controller. The first aspect
is a velocity/attitude flapping-wing model for
drag compensation. The model is compared
with real flight data and shown to be applicable
for more than one type of flapping wing drone.
The second improvement regards a battery-level
dependent thrust control. Lastly a characteri-
sation of ground effects in flapping-wing flight
is obtained from hovering experiments. The
proposed controller improves position control
by a factor ∼ 1.5, reaching a mean absolute
error of 10cm for position in x and y, and 4.9cm
for position in z.

1 INTRODUCTION

The fact that drones are becoming increasingly popular
is intimately related with the development of more sophis-
ticated automation resources. In the case of drones, weight,
processing speed, and energy consumption are critical aspects
to accomplish fully autonomous flights. Therefore, elements
such as motors, micro-processors, memory units and batteries
need to be continuously improved to meet these requirements.
These conditions have fostered the development of flapping
wing micro-air vehicles (FWMAV). This type of UAV is in-
spired on the flight of birds and insects, and has become at-
tractive in the field of small-scale micro-air vehicles, since it
provides both the ability of hovering and flying into any di-
rection. After the foundational work from Ellington [1] and
Dickinson [2], many experiments have been carried out in or-
der to get an optimal physical design of FWMAVs, as well as
velocity and position controllers to keep a stable flight.

Regarding position feedback, the most common option is
an indoor positioning system (IPS). Some of the technolo-
gies used for for IPS are Wi-fi, Radio Frequency Identifica-
tion (RFID), and infrared (IR) motion tracking systems. Wi-fi
and RFID can be found for tracking mobile devices, but not
specifically for drones [3]. IR is used for indoor tracking of

*Email address(es): g.gonzalezarchundia@student.tudelft.nl,
g.c.h.e.decroon@tudelft.nl,
d.a.olejnik@tudelft.nl,
matej@flapper-drones.com

drones (e.g. VICON/OptiTrack), but it is an expensive option
and its accuracy can be affected by lighting conditions [4].

Another option for IPS is ultra wide band (UWB) which
was already defined in 2006, but just recently started to gain
popularity. UWB is able to transmit in nano-second scale
periods. Thus it allows excellent timing for signal arriving,
which translates to centimeter level accuracy. Its low spec-
tral density reduces the interference with other RF devices.
However, it also has some drawbacks like high computational
and memory capacity of the controller and its vulnerability
to multi-path effect when signals bounce with the physical
boundaries of the environment [5].

Inertial navigation systems (INS) are usually added in in-
door environments to complement IPS. Usually INS systems
employ micro-electro mechanical systems (MEMS) or iner-
tial measurement units (IMU). Furthermore, data fusion is
also applied for better accuracy, by means of a Kalman fil-
ter. Hence many combinations of integrated systems have
been proposed. For example a GPS/UWB/MEMS navigation
system with Kalman filter [6] and INS/UWB system based
on a fuzzy adaptive Kalman filter [7]. Although most of
these implementations provide a basis for designing an au-
tonomous position controller, it is important to keep in mind
they are specifically designed either for fixed-wing or quadro-
tor UAVs. In the case of flapping wing drones some extra
constraints shall be considered like the physical limitations in
terms of payload and energy consumption, or the noise influ-
ence in IMU measurements due to high frequency mechanical
vibration [8]. To overcome these circumstances, the existing
solutions must be adapted, leaving a potential research devel-
opment for position controllers of FWMAVs.

One of the challenges of working with FWMAVs comes
from the aerodynamics of the system. A reliable model of
the dynamics can significantly increase the performance and
accuracy. Nevertheless, most aerodynamic models for flap-
ping wings require extensive system identification techniques
for numerous parameters, whose values only remain valid
for a specific drone. A widespread alternative is the use of
quasi-steady models where force coefficients are obtained ei-
ther from experimental data or from theoretical principles [9].
The control strategy proposed in this paper follows a sim-
pler solution where the model is obtained by directly aver-
aging aerodynamic parameters as functions in terms of the
body velocities. Albeit the method may be considered just
a rough approximation compared to quasi-steady models, it
tends to be more practical since just a reduced amount of pa-
rameters is required. When validating averaging parameters
with real flight data, several authors address the issues of un-
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-10 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

steady flight due to mechanical vibrations [10, 11]. However
just some models follow an approach based on drag compen-
sation. Within the few cases where drag compensation mod-
els are implemented, most of them are linear models, which
are only valid for a limited range of velocities [8, 12].

Similar to most MAVs, FWMAVs are also prone to short
flights due to the limited size of the batteries they are able
to carry. Thus it is common that voltage will significantly
change during flight, affecting as well the required throttle
level for hovering [13]. This condition poses a challenge in
height control, for both reaching and keeping a specific posi-
tion along the z axis.

Another issue affecting height control is the ground effect.
This phenomenon particularly occurs when the drone is flying
close to the ground [14]. An extra thrust is generated because
the wind currents underneath the drone bounce against the
ground, causing the drone to behave like sitting on a cushion
of air [15]. Thus, an extra lift is generated, causing the output
thrust to be higher than the input thrust.

This paper addresses the three aforementioned challenges
of FWMAVs. Sections 2, 3 and 4 provide the background
for the implementation. Section 5 describes how averaging
parameters are applied for drag compensation. Section 6
discusses the issues of changing voltage and ground effects.
Lastly, Section 7 shows the results on how the transient re-
sponse is improved in any of the three axes: forward (x-axis),
sideways (y-axis) and vertical (z-axis).

2 EXPERIMENTAL SETUP

Since the work on this project relies mainly on feed-
back through UWB, the experimental setting should be a grid
where UWB receivers are strategically located in the vertices
and the transceiver is mounted on the FWMAV. This way, the
drone flies inside the volume of a cube bounded by the posi-
tion of the anchors. A similar set-up is used in [16], where the
eight anchors on the corners optimise the possibility for the
drone to have line-of-sight at least with one anchor. Such a
grid was set-up at the Cyberzoo (shown in Figure 1), the flight
arena of the TU Delft Faculty of Aerospace, which is known
as the main facility of the university for performing tests on
drones, and has a size of 10m×10m×7m. A reliable choice
for UWB sensor is the Decawave DWM1000, as it has proven
to give successful results for UAV tracking [17]. The UWB
sensors are used as the anchors of the IPS and are set to work
using a time difference of arrival (TDOA) algorithm.

In order to have a reference for the UWB measurements, a
motion tracking system is used for measurements of position
and rotations. It consists of 12 OptiTrack Prime 17W mo-
tion tracking cameras (set to resolution 1664 px × 1088 px,
50 fps) and has proven to deliver accurate results for MAV
test flights [18]. When working with the motion tracking sys-
tem, the drone was equipped with four retro-reflective mark-
ers placed on the landing gear of the drone, and the UWB
sensor was placed at the top to optimise direct line of sight

Figure 1: Cyberzoo structure where the UWB anchors are
placed (left) and detail of UWB anchor mounted on the struc-
ture (right)

(Figure 2).
About the flapping-wing drone, referred in this paper as

Flapper, is a design from the company Flapper-drones [19]. It
is a 102g tailless FWMAV with a wingspan of 49cm, able to
keep flapping frequencies up to 12 Hz when hovering. The
on-board processing hardware consists of a Crazyflie Bolt
autopilot board, including an IMU with 3-axis accelerom-
eter/gyroscope (BMI088). The data link between the au-
topilot and the ground station is done with a Crazyradio PA
(also from Bitcraze), which is a USB radio dongle based on
nRF24LU1+ from Nordic Semiconductor. The system can be
powered with a 300-mAh two-cell 7.4V LiPo battery, reach-
ing a flight time between 4-6 minutes, depending on the in-
ternal resistance of the battery.

Figure 2: Flapper drone equipped with IR markers and UWB
sensor

3 CONTROL LOOP

For autonomous flight, the flapping-wing drone uses a
cascaded PID-controller, based on the structure presented by
[20]. The controller consists of three loops. The output pro-
vides the control signals for the motors involved in the flight
dynamics of the drone: two brush-less motors in charge of
the flapping frequency for thrust and roll, one servo-motor
that modifies the angle of the dihedral for pitch, and another
servo-motor that changes the deflection of the wings for yaw.

Regarding the structure of the cascaded loops, the inner-
most loop is in charge of attitude rate and runs at 500Hz. The
intermediate loop also runs at 500Hz and is in charge of atti-
tude control. The outer loop is the position/velocity control,
which runs at 100Hz and can take either position or velocity
commands.

Another remark is the trimming values for servos in
charge of pitch, roll and yaw. This procedure must be done
in order to get the proper behaviour from the controller. For
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trimming, one should fly the drone manually until it hovers at
a steady position. The trim values are the pitch, roll and yaw
commands given to keep the drone hovering. The values are
specific for each flapping-wing drone, as they change depend-
ing on manufacturing factors. Thus it is important to properly
set the appropriate trimming values before going further with
any flight test.

4 STATE ESTIMATION

The state estimation is done by means of an Extended
Kalman Filter (EKF) which fuses the measurements of the
IMU and the UWB positioning system. The model of the
EKF is the same as the one proposed by [21], which consid-
ers a nine-dimensional state vector defined as:

S =
[
xE vB d

]T
(1)

Where xE is the position vector in global frame, vB is the ve-
locity vector in body frame and d is an attitude error vector,
where the error is defined as the difference between the last
measured attitude and the current attitude. The purpose for
using attitude errors instead of the conventional Euler angles
is to simplify the state prediction equations because it only
considers the increments in roll, pitch and yaw. A more de-
tailed explanation on the implementation of the filter is given
in [21].

The main advantage of fusing UWB with IMU through
the Kalman filter is the attitude correction to account for the
drift in pitch and roll caused by sensor noise and bias. For in-
stance, when the Flapper is left standing up, the Kalman filter
resets correctly the roll and pitch to zero when UWB mea-
surement are coming in. On the other side, a complementary
filter, which relies only on IMU data, will converge to a cer-
tain drift and thus propagates it through time.

One last adjustment done to the EKF aims to diminish the
detrimental effects on position estimation caused by multi-
path UWB signals. Specially when going close to the ground,
the position estimates tend to drift for more than 20 cm.
A way to account for the wrong measurements when flying
close to the ground is to use a variable sensor noise value
Ruwb for measurements from UWB, rather than a constant
value. Consequently, the sensor noise is defined as:

Ruwb = λ(ẑ)σ2
uwb (2)

Where λ(ẑ) is a factor dependent on the estimated height ẑ,
in meters. For the implementation, λ = 0.5, for z ≥ 1;
λ = 1.5 − ẑ, for 0.5 < ẑ < 1; and λ = 1, for z ≤ 0.5.
The effect of variable sensor noise in position estimation was
tested by placing the drone static on the ground, at the origin
(0,0,0) of the UWB IPS. The plots from Figure 3 show the
estimated position (est) in contrast to the real position (cmd),
Both values were sampled at 50Hz, during 8 seconds. Using
the variable sensor noise Ruwb significantly increases the ac-
curacy in estimation approximately by 0.2m in the three axes.

Figure 3: Effects in position estimation before using variable
sensor noise (left) and after implementing it (right).

Once the variable sensor noise term was implemented
into the EKF, several flight paths were tested (linear, square,
rhombus and hexagonal paths). The measurements from
UWB using a TDOA algorithm proved to be reliable enough
for position estimation. The mean absolute error obtained in
all cases remained between 8-10 cm, when compared to the
measurements from the Optitrack system.

5 DRAG COMPENSATION

The first technique for yielding a better control strategy
for FWMAVs was to obtain a model for drag compensation.
Since the drag is typically neglected in aerodynamic models,
there tends to be an offset between the commanded veloc-
ity and the velocity output by the controller. Usually a feed
forward term is used to compensate for these drag effects.
Following the structure of the controller in Section 3, the ve-
locity loops provides the input for the attitude loop. Thus,
feed forward is modelled as a function of velocity:

θFF = f(vxE) (3)

ϕFF = f(vyE) (4)

Where Eq. (3) is the feed forward term for pitch and Eq. (4)
is for roll. In order to derive such a model, a system identi-
fication experiment is proposed based on the supplementary
materials from [22], where step inputs in roll and pitch are
given to the flapping-wing drone and then the transient re-
sponse is recorded. The experiments are done using manual
flight via a Frsky RC-controller where the pitch and roll step
inputs are pre-programmed. The tracking data is recorded
with the motion tracking system mentioned in Section 2.

Figure 4 is given as an example of the transient response
in velocity obtained for different step-inputs in pitch (a sim-
ilar response is obtained for roll angles). Due to limitations
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Figure 4: Velocities attained at different pitch step inputs

on the size of the flight arena, only for the small angles (be-
low 45°) it is possible to reach the steady-state velocities. For
higher angles, a common technique to reach the steady-state
velocities is to perform wind-tunnel experiments [23]. In this
case, an alternative method is used where a non-linear regres-
sion model is obtained for the smaller angles and then it is
used to extrapolate the data at higher angles. From figure 4, it
can be appreciated that the transient response approximates to
the behaviour of a first-order system. Hence, the equation for
the transient response is modelled as an exponential function
of the form:

v(t) = a− be−ct+d (5)

The parameters a, b, c and d from Eq. (5) have to be initialised
with certain values, depending on the shape of the curve ob-
tained from the measured data points. The final steady-state
values obtained from the extrapolation model strongly de-
pend on how many data points are considered for the regres-
sion model. Hence, Table 1 shows the absolute error between
the last measured velocity for each angle, and the respective
value calculated from the extrapolation model. For the angles
of 30° or less, this velocity approximates to the steady-state
velocity. For angles of 45° or above, the last measured veloc-
ity is used as ground truth equilibrium velocity, although it is
still part of the transient response.

Final velocity error at different pitch angles [m/s]
Data taken for regression 12° 22° 33° 45°* 52°*

10% 0.124 0.0752 0.1842 0.2641 0.276
30% 0.0318 0.0459 0.0347 0.1899 0.1259
50% 0.0166 0.0636 0.015 0.2048 0.0038
70% 0.0183 0.0632 0.0282 0.1379 0.0402
90% 0.0142 0.0561 0.0289 0.0857 0.0185

Final velocity error at different roll angles [m/s]
Data taken for regression 12° 22° 33° 47°* 52°*

10% 0.1007 0.1479 0.0391 0.2972 0.3028
30% 0.10 0.1216 0.0452 0.2303 0.2366
50% 0.0262 0.1427 0.0325 0.0499 0.0849
70% 0.0234 0.0802 0.0378 0.0486 0.095
90% 0.0268 0.0247 0.0261 0.0266 0.0757

Table 1: Extrapolation errors taking different amounts of data
for regression model. *Indicates that for those angles the final
velocity is not considered as ground truth. Hence these errors
are overestimated.

As expected, results from Table 1 show on the angles of
accurate ground truth (12º,22º and 33º) that the overall accu-
racy of the extrapolation model, for both pitch and roll, in-
creases as more data points are taken for the regression. Indi-
vidually, for each angle, accuracy remains approximately the
same with 50% of the data points or more. For illustration
purposes, Figure 5 shows the predicted steady-state velocity
for each angle when taking 70% of the data points for the
regression model. Nevertheless, the real steady-state values
used were the ones obtained taking all of the data points since
those ones result in the lowest error.

Once the steady-state velocity for each angle is available,
the pitch-velocity and roll-velocity models can be obtained.
Given the mapping of the steady-state velocity/attitude pairs,
different regression models were tested to approximate the
relationship the models (linear, quadratic and exponential).
Since the maximum roll and pitch angle is 90° for a FWMAV,
it is expected that the velocity will converge to a maximum
value as the angle approaches 90°. Thus, the model is ap-
proximated as the exponential function in Eq. (6). Linear or
quadratic models could be used as well, but they would only
be valid within specific ranges since they do not converge to
a constant value.

v(θ) = a+ be−cθ (6)

Using the obtained steady-state velocity, a nonlinear re-
gression model is obtained using Eq. (6). For both pitch and
roll the parameters are initialised as: a = −90, b = 90 and
c = 0.3. Moreover, to test the applicability of the exponential
model, the same described procedure was applied to the data
sets from [22] regarding the Delfly Nimble (a 33cm-wingspan
FWMAV of the same type). Then the nonlinear regression
model is applied initialising the parameters with exactly the
same values. Figure 6 shows how the exponential curves of
the Flapper and the Delfly properly approximate to the given
data points for both roll and pitch.

6 HEIGHT CONTROL

Having a reliable height control strategy is essential to
guarantee successful autonomous flight. Mainly it is used
to keep the drone flying at a certain altitude and for hov-
ering. Nevertheless, it also plays a major role in landing,
which is known to be as the most challenging phase of flight
for any aircraft. Height control is intimately related with
thrust. Therefore, two approaches for improving thrust com-
mand were considered, first one is a voltage-dependent thrust
model, and second one is an analysis of the ground effects.

6.1 Voltage-thrust model
Thrust is part of the position and velocity control of the

drone, it also involves a PID controller which takes a com-
manded throttle and delivers an output signal for the motors.
The signal from the controller is summed with a feed forward
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Figure 5: Extrapolation models for pitch (left) and roll (right) at different velocities
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Figure 6: Pitch/velocity (left) and roll/velocity(right) models obtained from extrapolated data

term known as base thrust, which is the thrust required to
keep the drone hovering at a certain altitude. In most cases
the base thrust is a constant value, but there is evidence that
the required base thrust tends to increase as the battery volt-
age drops off [13]. In order to observe this behaviour, a series
of experiments were done where the drone started flying with
a fully-charged battery and then let it hover until the battery
got discharged. all values were sampled at 50 Hz and mapped
as depicted in Figure 7.

Throttle is used instead of thrust because this is the signal
that is directly input into the motors. In this case, throttle is a
dimensionless value where 30000 sets the motors to the low-
est speed and 60000 indicates full speed. The data points are
then filtered and used to create a regression model. The im-
provement when increasing the order of the regression model
is not significant. First, second and third-order models yield
R2 ≈ 0.756. Albeit there is noisy data involved, it is not
considered for the regression model since it is already known
that the noise comes mainly from the feedback of the con-
troller and the IMU measurements. Nevertheless, there is the
option of using alternative regression models to account for
the stochastic behaviour observed in Figure 7, which may re-
sult in a better R2 value.

Once the model is implemented, the base thrust turns into
a variable base thrust whose value will tend to increase the
longer the drone keeps flying. To evaluate the model, a series
of experiments was conducted using four different thrust con-

trollers: a P and PI height controller, using both the constant
and variable base thrust. For each controller, the flight was
analysed in five different directions: X-motion, Y-motion, Z-
motion, XZ-motion and YZ-motion. For each motion, a flight
test was done consisting on five repetitions of step-input com-
mands in the given motion, in order to get an average be-
haviour. Hence, Table 2 summarises the standard deviation
and the mean absolute error between the transient response
and the commanded height for each motion and controller.
Notice from the table that for most of the motions, using a PI
will result in lower error than a P controller, regardless of the

Figure 7: Throttle and voltage mapping with tendency lines
for different regression models
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variable or constant base thrust. For most conditions, vari-
able PI reaches the lowest mean absolute error and standard
deviation, showing the utility of varying thrust model.

Figure 8 depicts the averaged transient response in height
for each controller, for the cases of X motion and XZ mo-
tion. The reduction of steady-state error caused by the inte-
gral gain is clear in the X motion, where the drone should
keep flying at the same height when moving from one posi-
tion to another. The XZ motion shows a case in which vari-
able thrust model performs less well. In motions where a
change in height occur, performance is more similar between
P and PI controllers. From one side the integral gain tends to
increase the settling time compared to the P controller, but at
the same time the oscillations of the PI response reduces the
error to minimum whenever it crosses the commanded value.

Figure 8: Extrapolation models for pitch (left) and roll (right)
at different velocities

6.2 Ground effect

For the second approach in height control, the target was
to investigate whether the ground effect has a large effect
when flying low. According to [14], the range of height in
which ground effects usually occur is 3d > h > d, where
d is the diameter of propellers in quadrotors. Similarly, for
a FWMAV, the range would be proportional to the wingspan
(0.5m). Hence, the experiments to model the ground effect
consisted on keeping the drone hovering at different heights
between 0.33m and 1.2m for over a minute. The lowest height
tested was 0.33m above the ground, since this was the lowest
height at which the drone can be kept hovering autonomously
due to the location of the UWB anchors. In this section, the
height is considered to be the distance between the landing
gear and the ground. For each different height, a mean thrust
and mean voltage is obtained. Using the thrust-voltage re-
lationship found previously, the corrected thrust can be ob-
tained. The ratio between the corrected thrust and the mean
thrust is specific for each different height, as depicted in fig-
ure 9. Notice that for each data point an upper and lower
bound is also provided based on the standard deviation of the
thrust and battery voltage. According to [24], the relationship

between thrust ratio and height can be modelled as:

Tinput
Toutput

= 1− λ
(

1

h− a

)2

(7)

After mapping the thrust ratio with their respective height,
a non-linear regression model using equation Eq. (7) is ap-
plied. Such model approximates the coefficients λ = 0.00093
and a = 0.4213. In Figure 9, the regression model stays
within the bounds of each data point. At the tested heights the
ground effect still has relatively little influence on the thrust
ratio. The thrust ratio only decreases to 92% at the lowest
height of 0.33m. Thus, the ground effect is little up to 0.33m.
Lower heights are not considered relevant, because, due to
the disposition the UWB anchors, the drone is unlikely to fly
lower except during take-off and landing. Nevertheless, the fit
shows a sharp drop-off below 0.33m. Whether this is correct
will have to be confirmed with future experiments.
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Figure 9: Thrust ratio for each height
.

7 EXPERIMENTAL VALIDATION

Once all the modifications were done, two versions of the
controller were tested for validation. The first version is re-
ferred as ”raw” version, which is the working implementation
with the default EKF and PID controller mentioned in Section
3, without the proposed enhancements. The second version is
referred as the ”modified” version, and is the implementation
with the adaptations mentioned in Sections 4, 5, and 6.

The validation consists of analysing the transient re-
sponses in position and velocity when position step-inputs
were given in x, y, and z. For a wider perspective on the
stability of the controller, the amplitude of the step input was
changed from 1m to 2m. Thus, any difference in the aggres-
siveness of the response can be detected as well. For each
motion and step-input, a series of five repetitions was done
and averaged to obtain the general behaviour of the transient
response. Table 3 presents how the mean absolute error, for
both position and velocity, decreases when using the modi-
fied controller instead of the raw controller. In general, errors
are approximately 1.5 times lower after the modifications.
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X motion Y motion Z motion XZ motion YZ motion Overall
Controller Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.
Constant P 0.109 0.08 0.098 0.075 0.077 0.117 0.035 0.166 0.043 0.143 0.072 0.116
Constant PI 0.061 0.159 0.048 0.093 0.06 0.075 0.047 0.09 0.047 0.1175 0.053 0.107
Variable P 0.114 0.069 0.086 0.079 0.065 0.069 0.057 0.116 0.046 0.1038 0.074 0.09
Variable PI 0.049 0.107 0.025 0.083 0.06 0.056 0.05 0.092 0.037 0.061 0.044 0.08

Table 2: Errors and standard deviations for each controller. Best result for each condition is bold-cased.

Mean absolute error for position step input 1
X motion Y motion Z motion

Version Raw Modified Raw Modified Raw Modified
Position [m] 0.1706 0.105 0.1898 0.1048 0.0496 0.043

Velocity [m/s] 0.3945 0.1297 0.3001 0.1199 0.1001 0.0892
Mean absolute error for position step input 2

X motion Y motion Z motion
Version Raw Modified Raw Modified Raw Modified

Position [m] 0.3316 0.1978 0.2989 0.2055 0.1245 0.1097
Velocity [m/s] 0.6330 0.2859 0.4583 0.1802 0.2476 0.1613

Table 3: Mean absolute errors of validation experiments. Best
performance for each case is bold-cased.

Lastly, Figure 10 illustrates how the absolute error ob-
tained in the transient response of the modified version is
smaller and more consistent than the one of the raw version.
For the sake of simplicity, only the transient responses of ve-
locity in x and y to the step input of 2m are given, as the
increase in performance in those two is the largest, according
to Table 3. In Figure 10 the error is defined as the absolute
difference between the output value and the corresponding
commanded value. The plotted error corresponds to the tran-
sient response when the step input of amplitude 2 is given at
t = 1s. Notice that almost throughout the whole response the
error of the modified version is lower than the one of the raw
version. Moreover, most of the peaks of the modified version
are roughly 75% smaller than the ones from the raw version.

8 CONCLUSIONS

The achievement from this work was defining a strategy
for enhancing position control for FWMAVs. From the esti-
mation perspective, the strategy uses an extended Kalman fil-
ter to fuse UWB and IMU data, and it also incorporates a vari-
able sensor noise term. Altogether, state estimation achieves
accuracy between 8-10 cm error. From the control side, three
specific aspects are considered.

Firstly, a velocity/attitude nonlinear model, which showed
to be valid for two different kinds of FWMAVs. Thus, prov-
ing that it can be adapted, as long as there is experimental
data from which the steady-state velocity can be extrapolated
for a certain angle. Moreover, the model was validated using
real flight data and proved its efficacy for drag compensation
as part of the feed-forward term in the velocity control loop.

Secondly, the lower standard deviation of voltage-
dependent thrust, compared to constant thrust, demonstrates

(a) Absolute error in Velocity X

(b) Absolute error in Velocity Y

Figure 10: Comparison of velocity error during transient re-
sponse to a step input of amplitude 2

a more consistent performance through time. A more notori-
ous contrast can be obtained if the FWMAV flies for longer
periods.

Thirdly, the ground effect experiments prove that as long
as the drone’s wings fly above 0.5m from the ground, no sig-
nificant additional thrust will appear. Nevertheless, to know
how much extra thrust is produced below 0.5m, experiments
should be done through manual flight.

Lastly, in order to improve performance in autonomous
flight using UWB, further development can be done in the po-
sition estimation. For instance drag is not considered in the
EKF for the estimation of body velocities. An option would
be deriving a drag model from IMU data. Other approach
would be fusing data from other sources (e.g. barometer and
magnetometer data) to compensate for the noisy accelerome-
ter measurements due to inherent mechanical vibrations from
flapping wing flight.
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[3] Juan J Pomárico-Franquiz, Moises Granados-Cruz, and
Yuriy S Shmaliy. Self-localization over RFID tag grid excess
channels using extended filtering techniques. IEEE Journal of
Selected Topics in Signal Processing, 9(2):229–238, 2014.

[4] Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Al-
saleh, Ahmad Alnafessah, Suheer Al-Hadhrami, Mai A Al-
Ammar, and Hend S Al-Khalifa. Ultra wideband indoor posi-
tioning technologies: Analysis and recent advances. Sensors,
16(5):707, 2016.

[5] Bardia Alavi and Kaveh Pahlavan. Modeling of the TOA-based
distance measurement error using UWB indoor radio measure-
ments. IEEE Communications Letters, 10(4):275–277, 2006.

[6] Zengke Li, Guobin Chang, Jingxiang Gao, Jian Wang, and
Alberto Hernandez. GPS/UWB/MEMS-IMU tightly coupled
navigation with improved robust kalman filter. Advances in
Space Research, 58(11):2424–2434, 2016.

[7] Qigao Fan, Yaheng Wu, Jing Hui, Lei Wu, Zhenzhong Yu,
and Lijuan Zhou. Integrated navigation fusion strategy of
INS/UWB for indoor carrier attitude angle and position syn-
chronous tracking. The Scientific World Journal, 2014, 2014.

[8] Karl Martin Kajak, Matej Karásek, Qi Ping Chu, and GCHE
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[22] Matěj Karásek, Florian T Muijres, Christophe De Wagter,
Bart DW Remes, and Guido CHE de Croon. A tailless aerial
robotic flapper reveals that flies use torque coupling in rapid
banked turns. Science, 361(6407):1089–1094, 2018.

[23] Taimur Ali Shams, Syed Irtiza Ali Shah, Ali Javed, and Syed
Hossein Raza Hamdani. Airfoil selection procedure, wind tun-
nel experimentation and implementation of 6dof modeling on
a flying wing micro aerial vehicle. Micromachines, 11(6):553,
2020.

[24] Li Danjun, Zhou Yan, Shi Zongying, and Lu Geng. Au-
tonomous landing of quadrotor based on ground effect mod-
elling. In 2015 34th Chinese Control Conference (CCC), pages
5647–5652. IEEE, 2015.

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 92
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Onboard Time-Optimal Control for Tiny Quadcopters
Jelle Westenberger1, Christophe De Wagter1 and Guido C.H.E. de Croon1 *

ABSTRACT

Time-optimal model predictive control is impor-
tant for achieving fast racing drones but is com-
putationally intensive and thereby rarely used
onboard small quadcopters with limited compu-
tational resources. In this work, we simplify
the optimal control problem (OCP) of the po-
sition loop for several maneuvers by exploiting
the fact that the solution resembles a so-called
’bang-bang’ in the critical direction, where only
the switching time needs to be found. The non-
critical direction uses a ’minimum effort’ ap-
proach. The control parameters are obtained by
means of bisection search schemes on an ana-
lytical path prediction model. The approach is
compared with a classical PID controller and
theoretical time-optimal trajectories in simula-
tions. We explain the effects of the OCP sim-
plifications and introduce a method of mitigat-
ing one of these effects. Finally, we have im-
plemented the ’bang-bang’ controller as a model
predictive controller (MPC) onboard a Parrot
Bebop and performed indoor flights to com-
pare the controller’s performance to a PID con-
troller. We show that the light novel controller
outperforms the PID controller in waypoint-to-
waypoint flight while requiring only minimal
knowledge of the quadcopter’s dynamics.

1 INTRODUCTION

Unmanned air vehicles (UAV) are used in an increas-
ing variety of applications [1]. Several applications, such
as emergency response or race tasks require the drones to
fly as fast as they can. Autonomous drone racing has re-
cently emerged as a discipline to boost the development of
fast-flying robots [2–4].

Traditionally the problem of time-optimal control gener-
ation is solved offboard as available hardware lacks the com-
putational performance to quickly solve the Optimal Con-
trol Problem (OCP) onboard a quadcopter [5]. Fast flight is
achieved by tracking these trajectories with high-performance
controllers [6].

*1All authors are with the Faculty of Aerospace Engineering, Delft Uni-
versity of Technology, 2629 HS Delft, The Netherlands
jellewestenberger@gmail.com
c.dewagter@tudelft.nl
g.c.h.e.decroon@tudelft.nl

Recent work demonstrated efficient trajectory optimiza-
tion for snap and leveraging differential flatness to derive the
corresponding control inputs [7, 8]. However, the snap op-
timization method does not optimize for minimum-time. In
fact, the total flight time must be predefined and the dynam-
ical limits of the quadcopter are not taken into account. In-
cluding time and dynamic feasibility constraints in the opti-
mization process increases the computational complexity of
the problem [9]. On the other hand, [10] defines a sequen-
tial quadratic programming problem to simultaneously opti-
mize control inputs for action and perception objectives. Al-
beit that in this work the reference trajectories are precom-
puted. [11] has extended on this work and demonstrated a
pipeline that is fully embedded and is efficient enough to be
implemented as a robust MPC. While the results are great,
this comes at a very high computational cost. To address
this, optimal control has also been approximated with deep
neural nets, which are lighter than the original optimization
[12–14]. This approach is powerful but very data intensive.
Model predictive control remains very computationally ex-
pensive and few onboard implementations exist for very light
drones [11, 15]. In this category, classical control remains
common [16].

For a lot of trajectories, the time-optimal solution sim-
plifies to a well-timed maximal control deflection. This pa-
per therefore, proposes a light strategy to approximate time-
optimal control by computing this timing onboard (See Fig-
ure 1).

Figure 1: A comparison of a circular flight path between
the proposed controller (green) and a classical PID controller
(red)

Section 2 shows that the time-optimal position control
simplifies to a bang-bang action on the attitude under well-
selected conditions. In Section 3 we derive the differential
equations that drive the proposed light MPC controller. Sim-
ulation results are presented in Section 4. Section 5 augments
the model for the latency in attitude. Section 6 shows the re-
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sults obtained onboard a Parrot Bebop before Section 7 gives
the conclusions.

2 SIMPLIFIED TIME-OPTIMAL CONTROL
We have simplified the OCP by assuming a constant al-

titude and using the fact that for second-order systems the
time-optimal solution consists of a ‘bang-bang’ motion. For
quadcopter position control this translates to a double step
in either pitch or roll with maximal amplitude. The OCP is
hereby reduced to a problem in which the only parameter to-
be optimized is the switching time, which reduces the compu-
tational complexity of the problem sufficiently to even allow
implementation onboard very small quadcopters. The collec-
tive thrust is governed by the constant altitude assumption and
is therefore considered to be always equal to W/cosθ cosφ ,
where W is the weight, θ and φ are the pitch and roll angles,
respectively. The lateral dynamics can then be further simpli-
fied.

2.1 Proving bang-bang solution for constant angles
Hehn, Ritz, and D’Andrea [5] show in their work that

with Pontryagin’s minimum principle it can be proven that
the time-optimal solution for a two-dimensional quadcopter
trajectory consists of a bang-bang input in thrust and bang-
singular-bang in rotational rate. We show that this solution
remains valid in our simplified OCP in which we neglect the
rotational dynamics, to further reduce the computational ex-
pense. Continuing with the Hamiltonian from [5]:

H(x,u,p)= 1+ p1 ˙̂x+ p2uT sinθ + p3 ˙̂z+ p4(uT cosθ−1)+ p5uR
(1)

where uT is the thrust input and uR is the rotation rate input.
pi are the costates. Our model assumes instantaneous attitude
changes and no changes in altitude. Therefore we can dis-
card the last three terms of equation 1 and change the state θ
to input uθ . Pontryagin’s minimum principle states that the
optimal control input u∗ minimizes the Hamiltonian [17].

u∗ = argmin p2uT sinuθ (2)

Depending on the sign of p2, u∗θ is either ±0.5π or singular
when p2 = 0. However, at these pitch angles, it would be
impossible to maintain altitude. Therefore, maximum pitch
and roll angles are determined based on the thrust-to-weight
performance of the quadcopter while reserving a margin of
available thrust for additional control.

2.2 Minimum-effort Approach
We apply the ‘bang-bang’ solution to one critical axis.

Intuitively, this axis is selected to be the direction with the
largest initial position error. Control of the direction perpen-
dicular to this axis is based on a ‘minimum effort’ approach.
The intuition behind this approach is to only spend the min-
imum required thrust on decreasing the position error in the
non-critical dimension such that a maximum available thrust
can be spent on the critical dimension. This is achieved by

calculating the constant attitude for which the non-critical po-
sition target is reached at the same time the critical target is
reached.

3 BANG-BANG MPC
Based on the simplified OCP, we have created a controller

that calculates the optimal roll and pitch angle from path pre-
dictions. We refer to this pipeline as the ‘bang-bang’ con-
troller.

3.1 Path Prediction
For the sake of computational efficiency, we have sim-

plified the dynamics such that the quadcopter’s position and
velocity can be evaluated analytically. By discarding the ro-
tational and vertical dynamics, and partially decoupling the
longitudinal and lateral dynamics we have derived a set 2nd

order differential equations to describe the quadcopter’s posi-
tion and velocity.

Figure 2: 2-D Quadcopter Dynamics

Based on the aforementioned assumptions and the force
diagram depicted in Fig. 2 we state that the pitch angle θ and
the thrust are constant and Tz equals the weight W . Further-
more, we assume that drag force D, consists only of flapping
drag and is linearly proportional to airspeed ẋ, which is gov-
erned by drag coefficient Cd . So we can write:

ẍ = g tanθ − Cd

m
ẋ (3)

Where g and m are the gravitational acceleration and mass,
respectively.

Equation 3 is a 2nd order, non-homogeneous equation and
is easily solved with the characteristic equation and method
of undetermined coefficients. This yields:

x = c1e
−Cd

m t + c2+
W tanθ

Cd
t (4a)

ẋ = c1
−Cd

m
e
−Cd

m t +
W tanθ

Cd
(4b)

Constants c1 and c2 are solved with the quadcopter’s ini-
tial position x0 and initial velocity ẋ0. This procedure can be
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repeated for the lateral direction, which is the direction out-
of-plane in Fig. 2, taking into account the proper Euler angle
rotations when deriving the lateral component of the thrust
force:

y = c3e
−Cd

m t + c4 +
W

cosθ
tanφ
Cd

t (5a)

ẏ = c3
−Cd

m
e
−Cd

m t +
W

cosθ
tanφ
Cd

(5b)

c3 and c4 are solved with the quadcopter’s initial lateral
position y0 and lateral velocity ẏ0.

Figure 3 illustrates an example of a single path prediction
and the corresponding pitch and roll angles. The bang-bang
maneuver of the longitudinal path can be described by eval-
uating equation 4 for two segments; One segment up to the
switching instant (the acceleration phase) and a segment up
to the time of arrival (the braking phase). Only the constants
and pitch angles change between the two sets. The final ve-
locity and position of the first segments are used as initial
conditions for the second segment.
The lateral path can be described by one segment because in
the ‘minimum effort’ approach the roll angle is assumed to be
constant for the entire maneuver up to the target.
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Figure 3: Example of predicted longitudinal and lateral paths.
The longitudinal direction takes on a bang-bang motion that
consists of two segments with opposing constant pitch angles.
The lateral direction takes a minimum-effort approach which
consists of a single segments and a constant roll angle.

3.2 Optimizing

In the OCP, the switching time and the non-critical angle
are the two parameters that are to be optimized. Thanks to the
analytical nature of the path equation a fast iterative bisection
scheme can be used to find the optimal switching time and
angle.

3.2.1 Solving Switching Time

To solve the switching time a desired velocity at the position
target must be given in advance. The bisection scheme then
iteratively adapts the switching time to minimize the velocity
error at the target position. This procedure is described in
Algorithm 1. In addition to an optimized switching time, an
estimated time of arrival (ETA) is given as well. This is used
in optimizing the non-critical angle.

Algorithm 1
t0← 0
t1← initial guess
Et ← error threshold
yd ← desired position
while E > ET do

ts← t0+t1
2

tt ← get time from desired speed(vd)
E← get position(tt)− yd
if E > 0 then

t1← ts
else

t0← ts
end if

end while
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Figure 4: Illustration of the switching time, ts, optimization
process. The goal is to reach the target at 30m with zero rest
speed.

3.2.2 Solving Minimum-Effort Angle

Analogously to the critical direction, a bisection scheme is
used to iteratively change the angle to minimize the non-
critical position error at the estimated time of arrival. The
goal for the quadcopter is to reach the critical and non-critical
targets simultaneously.
Moreover, during the braking phase of the ‘bang-bang’ mo-
tion, the related angle will also be optimized in this fashion
to correct for prediction inaccuracies in this phase.

4 SIMULATIONS
Simulations have been performed to compare the ‘bang-

bang’ controller flight performance to a classical PID con-
troller and to time and snap optimized trajectories, provided
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Figure 5: Trajectory comparison in simulation
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Figure 6: Development of the ETA of a simulated flight, cor-
rected for passed simulation time. For perfect predictions, the
time of arrival would be constant.

by the well-known ICLOCS toolbox [18]. This toolbox uses
direct collocation to optimize a nonlinear OCP from an initial
guess. Two maneuvers, a straight and a cornered trajectory,
have been simulated to individually test the longitudinal and
lateral flight behavior. The resulting flight times are summa-
rized in table 1.

Forward Corner

Bang-Bang 1.52 s 2.53 s
PID 2.51 s 4.16 s
Min. Snap 1.77 s 2.53 s
Min. Time 1.30 s 1.87 s

Table 1: Simulated flight times

It can be seen that the bang-bang controller outperforms
the PID controller in all maneuvers and is on par with the
snap-optimized solution, but at a fraction of the computa-
tional cost.

5 TRANSITION COMPENSATION

It was found in simulations that the instantaneous angle
assumption of the path predictor has the largest negative ef-
fect on the performance of the ‘bang-bang’ controller. Since
a quadcopter cannot achieve infinitely high rotation rates the
second part (further called the braking phase) of the bang-
bang maneuver will always be initiated too late. As Figure 6
illustrates, path predictions deviate during the rotation from
rest to acceleration at 0 s, and during the transition from ac-
celerating to braking around 1.6 s.

In order to mitigate this issue, we have implemented a
method that approximates the elapsed time and change of
speed and position during the transition. Subsequently, the
initial conditions of the braking phase are augmented with
these values to improve the path predictions, as figure 7 il-
lustrates. Figure 8 shows the effect of different degrees of
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Figure 7: The initial conditions of the braking phase are
shifted with ∆t,∆y and ∆v to compensate for the rotation dy-
namics during the transition from accelerating to braking.

compensation for a simulated flight.
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Figure 8: Different degrees of transition compensation are
illustrated here. The shaded area indicates the period at which
braking is forced. The desired target speed vt is 0 m/s.

6 EXPERIMENTS
Flight tests have been performed with a commercial Par-

rot Bebop quadcopter in which all software was changed. The
performance of the ‘bang-bang’ MPC is compared to a tradi-
tional PID controller for different types of maneuvers.

6.1 Experimental Setup
The ‘bang-bang’ controller has been implemented in the

open-source autopilot framework Paparazzi-UAV [19] and is
executed onboard a Parrot Bebop quadcopter. The flights
were performed in TU Delft’s ’CyberZoo’ indoor flight area
outfitted with an Optitrack position and attitude tracking sys-
tem. The position and heading are sent to the drone via
WiFi and the state estimation is executed on board by means
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of the inertial measurement unit and complementary filters.
The ‘bang-bang’ MPC and PID controller give roll and pitch
commands while the inner control loop, based on Incremen-
tal Nonlinear Dynamic Inversion (INDI) [20], controls the
rotational rates. Figure 9 gives an overview of the control
pipeline.

6.1.1 PID Controller

The PID controller is a high-gain cascaded position-velocity
controller. That is, the position error will govern the desired
speed, which in turn governs the pitch and roll commands. A
single set of gain values has been selected that gives the best
overall result in all tests. This set is kept constant throughout
all flight experiments. Furthermore, we have defined satura-
tion limits for the allowable speed and pitch and roll angles.
For a fair comparison, the same limits have also been applied
to the ‘bang-bang’ controller.

6.2 Transition Estimators

As discussed in section 5, we can compensate for the un-
modeled transition dynamics by approximating the transition
losses. These dynamics are difficult and costly to simulate for
a real quadcopter, therefore we have derived a simple linear
regression model to approximate transition losses ∆t,∆y and
∆v from flight measurements. We assumed that these losses
are a function of the speed at the switching time, and of the
total angle the quadcopter needs to rotate. We found that the
transition losses varied between forward, backward and side-
ways flight maneuvers. Therefore, three different sets of es-
timators have been derived, each corresponding with one of
these directions. In the control pipeline, one set of estima-
tors is selected based on the direction in which a ‘bang-bang’
maneuver is planned.

6.3 Motion Primitives Flights

Test flights have been performed to test the bang-bang
controller for different motion primitives. That is, six differ-
ent maneuvers have been established to test the longitudinal
and lateral performance in which the quadcopter starts and
ends at rest. For each maneuver, a comparison is made be-
tween the ‘bang-bang’ controller, the ‘bang-bang’ controller
with transition compensation, and the high-gain PID con-
troller.
During these maneuvers the heading is kept constant and
the critical direction for which the ’bang-bang’ maneuver is
planned is based on the largest component of the initial posi-
tion error.
Table 2 lists all maneuvers and their initial and target posi-
tions. The controllers are assessed on the time it takes to
reach their target, the degree of overshoot, and the velocity
error while passing the target.

Maneuver Initial→ Target Position (x,y,z) [m]

Forward (−2,0,1.5)→ (2.5,0,1.5)
Backward (−2,0,1.5)→ (2.5,0,1.5)
Sideways (0,−2,1.5)→ (0,2,1.5)
Forward-Sideways (−2,−2,1.5)→ (2,1,1.5)
Forward-Up (−2,0,1)→ (2.5,0,2.75)
Forward-Down (−2,0,2.75)→ (2.5,0,1)

Table 2: Translated distances for each motion primitive ma-
neuver.

6.3.1 Results

Table 3 summarizes the flight results. It can be seen that the
non-compensated bang-bang controller has the largest veloc-
ity errors and overshoot. Furthermore, it becomes obvious
that the compensation system has a positive effect on the path
prediction performance. Unfortunately, the transition loss
model is not accurate enough to completely mitigate the tran-
sition losses and some degree of overshoot still occurs. In
these simple start-stop tests, the PID controller is marginally
slower than both bang-bang controllers but has lower over-
shoot and velocity errors.

6.4 Consecutive Waypoints Flight

To test the proposed controller in a setting that more
closely resembles an autonomous drone race, a flight plan
with consecutive positional waypoints has been implemented.
In this flight plan, the quadcopter is no longer instructed to
come to a full stop at each waypoint. The desired speed at
each waypoint has been set to 2 m/s as it was found itera-
tively that this value in combination with a position thresh-
old of 70 cm resulted in smooth trajectories for both the PID
and bang-bang controllers (See Figure 1). However, it is ex-
pected that the optimal threshold values are controller- and
trajectory-dependent.
Because currently no heading changes were incorporated into
the ‘bang-bang’ maneuver planning, the heading is kept con-
stant. The critical direction in which a ‘bang-bang’ motion is
planned is automatically adjusted based on the direction with
the largest position error.

6.4.1 Results

Figure 10 shows top views of flights with the two controllers.
Both controllers have been assessed on the time it takes to
complete one circle and the minimum position error. The re-
sults are displayed in figure 11. Here, the ‘bang-bang’ con-
troller is seen to outperform the PID both in speed and target
accuracy. The PID controller is unable to give priority to one
direction over the other. Due to the high gain values, roll and
pitch angles are quickly saturated even if the position error
of one direction is much smaller than the other, which slows
down the critical axis. In the various flight runs of the PID
controller, large lateral oscillations can be seen. It was also
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Figure 9: Control Pipeline
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Figure 10: Top-view of consecutive waypoints flights
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Figure 11: Circle completion time and minimal waypoint dis-
tance for consecutive waypoint flights

found that the PID controller was more likely to reach un-
stable situations due to the high simultaneous pitch and roll
angles compared to the bang-bang controller.

The predicted times of arrival for a single run are illus-
trated in Figure 12. From this figure, we can derive the real-
time path prediction performance. As expected the time in-
creases during the angular rotations. However, during the ac-
celeration phases, the time is seen to decrease. We think that
this is caused by inaccurate aerodynamic drag estimation and
by the effect the non-critical angle has on the acceleration in
the critical direction.

7 CONCLUSIONS
We have proposed the ‘bang-bang’ MPC which ap-

proaches time-optimal control principles while being com-
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Figure 12: Estimated time of arrival corrected for passed
time.

putationally efficient enough to run onboard a commercial
quadcopter. This is achieved by assuming that the solution
consists of a double step control input in attitude angle for
one ‘critical’ direction while the non-critical direction has a
constant angle as solution. This simplifies the OCP and dras-
tically reduces the computational complexity. For efficient
control parameter optimization, a bisection scheme in combi-
nation with an analytical path prediction model is used. We
have shown both in simulation and in real-world flights that
the ‘bang-bang’ controller is a feasible option for fast flight.
In fact, for the consecutive waypoint flight, the ‘bang-bang’
controller is shown to be 17.5% faster than a traditional high-
gain PID controller on average. The entire control pipeline
easily runs at the main control loop frequency of 512Hz on
the Bebop and is sufficiently light to run on even smaller
and computationally-limited quadcopters. However, a more
thorough analysis is needed to quantify the required compu-
tational effort.
The bang-bang MPC also shows promise to be an attractive
easy-to-implement solution. For the pipeline requires min-
imal knowledge of the dynamics (only Cd and mass). And
despite that the transition compensation in its current state
relies on measurement data, future work could mitigate this
process with on-line transition loss estimation. Currently, the
constant altitude constraint forms the largest deviation from
the theoretical time-optimum solution found by ICLOCS. Fi-
nally, the pitch, roll, and thrust limits are set conservatively
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Controller Maneuver

Forward Backward Sideways Forward-Sideways Forward-Up Forward-Down

Mean Time of Arrival [s]

Bang-Bang 1.38 (n=4) 1.41 (n=4) 1.29 (n=5) 1.47 (n=4) 1.25 (n=3) 1.50 (n=3)
Bang-Bang Comp. 1.42 (n=15) 1.47 (n=12) 1.37 (n=11) 1.53 (n=15) 1.32 (n=7) 1.52 (n=7)
PID 1.48 (n=10) 1.54 (n=8) 1.43 (n=8) 1.51 (n=8) 1.40 (n=5) 1.54 (n=5)

Mean Overshoot [m]

Bang-Bang 0.62 (n=4) 0.81 (n=4) 0.53 (n=5) 0.27 (n=4) 1.20 (n=3) 0.77 (n=3)
Bang-Bang Comp. 0.18 (n=15) 0.22 (n=12) 0.06 (n=11) 0.11 (n=15) 0.51 (n=7) 0.20 (n=7)
PID 0.05 (n=10) 0.04 (n=8) 0.04 (n=8) 0.04 (n=8) 0.03 (n=5) 0.14 (n=5)

Mean Velocity Error [ m
s ]

Bang-Bang 3.05 (n=4) 3.51 (n=4) 3.06 (n=5) 1.85 (n=4) 3.82 (n=3) 3.38 (n=3).
Bang-Bang Comp. 1.60 (n=15) 1.88 (n=12) 0.69 (n=11) 0.38 (n=15) 2.63 (n=7) 1.63 (n=7)
PID 0.08 (n=10) 0.08 (n=8) 0.14 (n=8) 0.06 (n=8) 1.01 (n=5) 0.20 (n=5)

Table 3: Performance values the different controllers in 6 maneuvers. n is the number of runs performed.

and flight performance could be improved if these parameters
are made adaptive.
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Fast simulation model for control law design and
benchmark of high aspect ratio flexible UAVs

Romain. Jan (ISAE-SUPAERO, University of Toulouse, 31400 Toulouse, France)*, Jean-Philippe Condomines (ENAC,31400
Toulouse, France),Jean-Marc Moschetta(ISAE-SUPAERO)

ABSTRACT

A low/middle range fidelity model is highlighted
in this work through the development of a con-
servative extension in order to assess a signifi-
cant part of the UAVs community’s current is-
sues. Such as flutter control, gust alleviation,
trajectory tracking, energy harvesting strategies,
parametric studies... One aims at providing an
efficient tool for the quick design of high aspect
ratio UAVs coupled with advanced control laws.
The work recalls the theoretical background used
on the model, the methodology applied to en-
hanced it, and 3 illustrative examples.

1 INTRODUCTION

Nowadays’ the trend regarding UAVs is the improvement
of efficiency, endurance, and impact on the environment lead-
ing to lighter and flexible aircraft, rising new problems re-
garding its sensitivity to the surrounding environment.

The last works regarding UAVs rise the need for modu-
lar and fast simulation model to capture sophisticated flight
dynamics as well as the structure behaviours both coupled
with advanced control strategies. Such a tool could assess the
different issues risen by UAVs such as flutter damping ([1],
[2],[3]), energy harvesting strategies ([4], [5], [6]), flap in-
version behaviour due to structural deformation ([7]), flight
envelopppee extension ([8]), gust alleviation ([9],[10])

There exists differents tools to asses those problems
adapted to high aspect ratio UAVs such as ASWING [11],
UM/NAST [12], CA2LM [13] and others used in [14]. De-
spite the recency of some of them, after an overview of the
theoretical background used, the authors choice converged to
ASWING for 3 main reasons derived below:
structural part:
Some of them do not consider all the 6 degrees of freedom,
inertial coupling, and local damping. Moreover, coupling be-
tween local beam variables is not considered (cross-sectional
bending/twisting). Few models assume small beam deflec-
tions and a linear beam behavior. Elastic, tension, and grav-
ity’s center’s positions can not be specified. Others use a rect-
angular beam assumption for bending and stiffness matrices
computation.
aerodynamic part:

*Email address(es): romain.jan@isae-supaero.fr

Figure 1: ASWING working with MATLAB

Propeller jet-induced velocities are neglected in most of
cases. For some compressibility effects are not taken into
account as well as ground effects. Shed vortices are approx-
imated by a temporal Theodorsen function. Other models do
not present a post-stall behavior capture.
applied forces:
Added mass effects, unsteady effects on propeller blades,
joints, and struts loads are not usually considered as well.
Joints degrees of freedom restriction, and concentrated efforts
neither.

Furthermore, as most of those low order models are de-
signed on MATLAB, calling external libraries costs a lot of
time especially in temporal loops. Memory is dynamically
allocated and freed leading to slower simulation. As a com-
piled program ASWING is very fast and works in real-time
with nowadays computers. With an improved temporal solver
and a compiled version on a dedicated device, it could show
interesting performances.

However, MATLAB remains a very efficient and pro-
ductive tool for analysis and post-simulation data treatment.
Consequently, one’s objective is to present an extension of
ASWING that the user could run through MATLAB as an
”opened” black box as shown in figure 1 The use of a fast
compiled simulation software with MATLAB would allow
large parametric studies of flexible UAVs for a small com-
putational time cost.

Unfortunately, ASWING provides a very limited control
law toolbox which limits its use in the flight control commu-
nity highlighting the main contribution of this work.

2 PROBLEM STATEMENT

In ASWING [15],[16] the dynamic of a given aircraft is
described by a non linear system with x as a states space vec-
tor:
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Figure 2: ASWING configuration representation [15]

x =

(~ri, θi,Mi, ui, ωi, ṙi, ω̇i : beam node variables (18NB)
rJ , θJ ,MJ , FJ ; joints variables (12NJ )

A1, . . . , AK , Ȧ1, . . . , ȦK : circulation modes (2K)

~RE ,
~̇RE , ~Θ, ~̇Θ, ~U, ~̇U, ~Ω, ~̇Ω : global position and rates (32)

~a0, ~α0 : absolute accelerations variables (6)
δF1, . . . δFN , δE1, δEN : flaps and engine level (32)

)T

y is the output variables measured at each sensor location
which are x dependant. The feedback-able variables are the
local freestream velocity, angle of attack and sideslip, local
positions, angles, velocities, rotations rates and accelerations,
internal beam loads and circulations.
u denotes the forcing vector defined by :

u =

(y∗ : desired output behaviour
δ∗F1, . . . δ

∗FN , δ
∗E1, δ

∗EN : desired flaps,
engine levels

~Vwind(x, z, y, t) : turbulence velocity model

)T

The 6 degrees of freedom of every beam node are gov-
erned by the non-linear Euler Bernouilli beam equations in its
multivariable differential form. By denoting q = (~ri, ~θi)i ∈
[1, NB ].

[M(x)]q̈ + [C(x)]q̇ + [K(x)]q = 0 (1)

where [M(x)], [C(x)] and [K(x)] are non linear mass,
damping and stiffness matrices. They take into account the
effect of structural damping, loads and rates, external dis-
tributed and concentrated loads. Distributed loads are lift and
drag, added mass effect, inertial and gravity loads integrated
along the beam. Concentrated loads recover the effect of en-
gine thrust and drag, point mass, struts, and joints loads.
Joints variables are introduced to connect and constraint
beams. Circulation modes are used in an extended unsteady

lifting line theory taking into account compressibility effect
and velocity influence of wing thickness; shed and steady
vortices of every lifting beam and propeller jet stream. Cir-
culation modes are constraints in a flow tangency condition
with post-stall modelization. Those circulation modes are
used to compute lift and drag. Distributed lift is computed
with the unsteady form of Kutta-Joukowsky theorem for sur-
face beams, and with slender body theory for fuselage beams.
Distributed drag sums up the friction and pressure drag and
post-stall contributions. For both lift and drag, the knowledge
of tangent and orthogonal relative stream velocity is neces-
sary which is a function of infinite freestream, local beam
node positions and rates, turbulence, and induced velocities.
The global position, rates, and absolute accelerations vari-
ables are governed by the ”rigid” kinematic and trajectory
equations known as :

d~RE
dt
− T̄E ~U = 0 (2)

d~Θ

dt
− C̄E~Ω = 0 (3)

d~U

dt
+ ~Ω× ~U − ~ao = 0 (4)

d~Ω

dt
− ~αo = 0 (5)

where T̄E and C̄E are global position and orientation de-
pendant transformation matrices. Moreover, absolute accel-
erations can be constrained for a free flight or anchored con-
figuration.

The flaps and engine-level variables are governed by a
control law equation introduced later in the document.

In the end, the behavior of the state space vector x is gov-
erned by the non linear system :

(Σ) :

{
ẋ = f(x, u)

y = h(x, u)
(6)

Depending on the number of beams and their associated
mesh, the total number of states variables can rise very fast
and reach more than 10000. Using this discrete model as an
analytical tool for control law design would be unadapted.
Therefore ASWING provides a reduced-order model (ROM)
generator function leading to the linear system

(ROM) :

{
ż = Λz +Bu

y = Cz +Du
(7)

where Λ is a diagonal matrix containing the aircraft modes
and z is an alternative state vector equivalent to x defined as:

z = V x (8)
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Control laws
Linear Non Linear

PID Gain Scheduling
LQG Slidding mode control

H∞/H2 Control-Lyapunov functions
µ-analysis Backstepping

Guardian mapping Non linear damping
Fractional order Controller Feedback Linearization

Table 1: Examples of implementable control laws

In practice, the user can select slower and fast undamped
or unstable modes to drastically reduced the dimension of z.
Moreover, he can select different outputs to study the small
perturbations’ effects of each mode. The system (7) is then a
useful intel for control laws design.

Unfortunately, ASWING comes with a limited control
law known as outputs proportional feedback :

δ = δref +Ky(y − yref ) (9)

where Ky is a bi-scheduled matrix. One must note that
integral errors are part of the y vector allowing the user to im-
plement PID controllers. However the main problems of this
form are the assumptions of perfect knowledge of the outputs
and direct impact of actuators (no noise, no sensors/actua-
tors dynamics or saturations), and the lack of the controller’s
internal dynamic. Consequently, advanced control synthesis
and benchmark are limited leading to the contribution of this
article.

3 ASWING ADVANCED CONTROL LAWS

One is seeking to implement a multi-inputs multi-outputs
(MIMO) non-linear control law as depicted on figure 3. To
fulfill this objective, one must introduce a new state vector to
consider its internal dynamic. Thus for a set of control states
variables vector xc the control law takes the form:

(C) :

{
ẋc = fc(xc, y, yref , δref ) = f(xc, uc)

δ = hc(xc, uc)
(10)

10 recovers many control law forms used in MIMO non
linear and linear theory sum up in table 1. Moreover, this
form remains conservative, meaning that the original PID can
still be implemented. Thus the next lines aim at giving the
critical steps to apply so that such control laws could be used
on ASWING.

3.1 Modal analysis and time marching

For the next lines one will prefer the residual form of 6
written as :

r(x, ẋ, u) = ẋ− f(x, u) (11)

The state vector temporal evolution can be solved by us-
ing a multivariable Newton alogorithm depicted in [17] and
[18] as :

xi+1
n = xin −

[
∂r

∂x
+ k0

∂r

∂ẋ

]−1

i

ri (12)

where i is the Newton iteration index and n is the time index
such that t = nTe. Again for the next lines one will prefer
the shorter notation of the matrix:

[
∂r

∂x, ẋ

]

i

=

[
∂r

∂x
+ k0

∂r

∂ẋ

]i
(13)

To solve 12 a Gaussian block elimination [17] is used to
invert the matrix (13). Such matrix representation appears
suitable for different types of analysis. In fact by forcing k0
to zero, one force 12 to the steady case and by inspection of
13 eigenvalue one recovers the modal response of the aircraft
for a given steady flight condition. Secondly, it provides an
accurate time-marching behavior for a relatively small time
step choice. To embed 10 in the solver 12 one must split the
state vector x such as :

xT =
(
xTQ, x

T
V , x

T
P , x

T
D

)
(14)

with:

xTQ =
(
~ri ~θi ~Mi

~Fi ~ui ~ωi

)
i∈[1,NB ]

xTV =
(

∆~rJ ∆~θJ ~MJ
~FJ A1 A2

. . . AK e)J∈[1,NJ ]

xTP =
(
~RE ~Θ ~U ~Ω ~ao ~αo

)

xTD = (δF 1, . . . , δFN, δE1, . . . , δEN)
T

where evey variables from xQ, xV , xP , xD have been
described in section 2. At the light of the state vector form,
12 is equivalent to invert the matrix:

[
∂r

∂x, ẋ

]−1

i

=




[
∂rQ
∂Q,Q̇

]
i

[
∂rQ
∂V,V̇

]
i

[
∂rQ
∂P,Ṗ

]
i

[
∂rQ
∂D,Ḋ

]
i[

∂rV
∂Q,Q̇

]
i

[
∂rV
∂V,V̇

]
i

[
∂rV
∂P,Ṗ

]
i

[
∂rV
∂D,Ḋ

]
i[

∂rP
∂Q,Q̇

]
i

[
∂rP
∂V,V̇

]
i

[
∂rP
∂P,Ṗ

]
i

[
∂rP
∂D,Ḋ

]
i[

∂rD
∂Q,Q̇

]
i

[
∂rD
∂V,V̇

]
i

[
∂rD
∂P,Ṗ

]
i

[
∂rD
∂D,Ḋ

]
i




−1

(15)

As mentioned before a Gaussian block elimination of order 4
is used to solve 15. Note that, the jacobian matrix

[
∂rQ
∂Q,Q̇

]
i

follows a bi-tridiagonal block pattern. Thus the order of def-
inition of the state vector in Eq. (14) is relevant because the
first step of Gaussian Block elimination will not affect the up-
per left matrix block. For the rest of the inversion, one uses
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LU factorization to invert the diagonal matrix blocks. Con-
sequently one must not change the order of definition of the
state vector, otherwise, a huge slow down effect during simu-
lation will be witnessed.

3.2 Extension to a control law with an internal dynamic
As one rises the state vector x with xc, the problem be-

comes:



[
∂r
∂x,ẋ

]
i

[
∂r

∂xc,ẋc

]
i

... Rx
[
∂rc
∂x,ẋ

]
i

[
∂rc

∂xc,ẋc

]
i

... Rxc




(16)

which leads again to the seek of:

[
∂r

∂x, ẋ

]−1

i

=



[
∂r
∂x,ẋ

]
i

[
∂r

∂xc,ẋc

]
i[

∂rc
∂x,ẋ

]
i

[
∂rc

∂xc,ẋc

]
i



−1

(17)

As one was seeking to modify as less as possible
ASWING code and as it implements a 4th order Gaussian
Block Elimination and not a generic one, it is consequently
not possible to just add the Jacobian matrix associated to Xc

andRXc (bottom right block in (17)). Consequently, the code
has been modified so that the new set of control law xc is a
part of the xD state vector.

Note that it’s not necessary to give all the jacobian ma-
trices. Concidering the definition of the control law from
Eq. (10) and by having in mind that ∂y∂x is automatically pro-
vided by ASWING code [16], the user only needs to provide
fc(xc, u, y), hc(xc, u, y),

[
∂fc
∂Xc

]
,
[
∂fc
∂y

]
,
[
∂hc
∂Xc

]
and

[
∂hc
∂y

]

With thoses intels, one can recover both residual forms of the
controller defined in Eq. (10)

rD = δ − hc(xc, u, y)

rXc = ẋc − fc(xc, u, y)
(18)

and its associated Jacobian matrices:

[[
∂rXc
∂Q, Q̇

]

i

[
∂rXc
∂V, V̇

]

i

[
∂rXc
∂P, Ṗ

]

i

[
∂rXc
∂D, Ḋ

]

i

]
=

− ∂y

∂x

∂fc
∂y

[
∂rXc

∂Xc, Ẋc

]

i

=

[
k0I −

∂fc
∂Xc

]

[[
∂rD

∂Q, Q̇

]

i

[
∂rD

∂V, V̇

]

i

[
∂rD

∂P, Ṗ

]

i

[
∂rD

∂D, Ḋ

]

i

]
=

−
[
∂y

∂x

∂hc
∂y

]
+ [0 0 0 InD ]

[
∂rD

∂Xc, Ẋc

]

i

=

[
∂hc
∂Xc

]

[[
∂rQ

∂Xc, Ẋc

]

i

[
∂rV

∂Xc, Ẋc

]

i

[
∂rP

∂Xc, Ẋc

]

i

]T
=

[0 0 0]T

(19)

Figure 3: Proposed closed loop in Aswing including ad-
vanced control laws

3.3 Linear Pattern
Equations (19) and (10) are the milestone of the ASWING

control laws extension but they still need to be implemented
in the source code. Therefore one proposes a linear pattern
depicted in figure 4. The user only needs to provide every
A,B,C,D matrices of each block in a MATLAB format. If a
block is not used, it will be automatically removed from the
program. Regarding the pattern itself, one can implements
sensors and actuators dynamics and saturations, a full MIMO
linear controller, and an anti-windup system. Moreover, every
block can be bi-scheduled by every measurable output. Fur-
thermore, noise can be added to the simulation for temporal
robustness studies in a stochastic environment. This pattern
is motivated by the fact that UAVs are using small embedded
sensors and actuators leading to a noisy environment, satura-
tions delays, etc. The authors consequently thought it would
be relevant to consider them directly in a numerical tool. Let
xc = (xA, xS , xAW , xK)T be the control states vector, fol-
lowing Eq.(18), In its full configuraiton (every block used)
one has :

h(xc, y, u) = sat(CAxA) (20)

where sat(CAxA) sat(CSxS) are the saturation function as-
sociated to actuators and sensors
Moreover, one has

∂h(xc, y, u)

∂xc
=
(

∂sat(CAxA)
∂xA

0 0 0
)

(21)

The jacobian matrix becomes :

∂h(xc, u, y)

∂y
= 0nδ,ny (22)

At the light of figure 4 fc expression comes:
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f(xc, y, u) =



AaxA +BACKxK +BADK,Qsat(CSxS)
ASxS +BS(y + wy)
AAWxAW +BAW (CAxA − sat(CAxA))
AKxK +BK,Qsat(CSxS)−BK,QQ∗

+BAδ
∗

. . .

. . .
BK,AW (CAWxAW +DAW (CAxA − sat(CAxA))




(23)

With its associated jacobians:

∂f

∂xc
=




Aa BADK,Q
∂sat(CSxS)

∂xS
0ns,nA AS
BAWCA −BAW ∂sat(CAxA)

∂xA
0nAW ,nS

DAW

(
CA − ∂sat(CAxA)

∂xA

)
BK,Q

∂sat(CSxS)
∂xS

OnA,nAW BACK
0nS ,nAW 0nS ,nK
AAW OnAW ,nK
BK,AWCAW AK




(24)
And

∂f

∂y
=




0nA,ny
BS
OnAW ,ny
OnK ,ny


 (25)

Adding 23, 24, 25, 20, 21 and 22 to 19 recovers 10 for the
linear pattern case.
Interpolation methods:
Interpolation methods have been implemented to set up the
A,B,C and D matrices of each block regarding their discrete
scheduled values. The first method is the nearest neighbor,
the second a bilinear interpolation and the third is a 2D poly-
nomial interpolation. Interpolation methods are often used as
gain scheduling methods, however, a stability study must be
made to ensure that the flight envelope is not too coarse to
threaten the stability of the overall closed-loop system dur-
ing working point switches. ASWING modification does not
provide such an analytical tool. The user will consequently
make sure that the aircraft flight envelope has enough points
to avoid such stability problems.

4 EXAMPLES

The authors must notify, that the change in ASWING
code lets the previous one unchanged meaning that the exam-
ples presented in [11] are still valid and usable. The lecturer
must see this work as a conservative exension.

Span 4.4m Time range 36h
Weight 14kg Range 3000km

Cruise speed 24m/s nominal altitude 100m

Table 2: Mermoz main specs

4.1 open loop control behavior with actuator dynamic:

The first example aims at showing the effect of an added
dynamic and saturations to an aircraft actuator such as an en-
gine. The aircraft used in the next examples is the Mermoz
UAV hydrogen prototype [4] shown on figure 5 whose main
characteristic are depicted on table 2. The engine limits are
arbitraly set to 0 and 7N for a non negative thrust behavior
and limited engine. A first order linear system with a time
response of 3s is used to recover its dynamic. To ensure that
the simulation would not crashed, the aircraft is cantilevered
to the ground. The figure 6 shows the benefit of added pattern
to take into account actuators dynamic and saturations. The
black line accounts for the previous way, and the blue the new
one.

4.2 Output feedback Longitudinal controller for gust har-
vesting: effect of actuators or sensors dynamics

As Mermoz is supposed to fly around 100m over the at-
lantic ocean, one plans to harvest or alleviate the turbulence
created by the sea waves. Futhermore as the altitude is quite
low, the aircraft trajectory must be holden in a given range ris-
ing a control law problem. [6] [5] have shown that there exists
control law stategies for small UAVs which lead to power sav-
ing using the surrounding aircraft environement. They firstly
shown that for a single pulsation sinewave vertical gust, one
could harvest energy and witness a positive gain in altitude.
The proposed control law was a PD control using the encoun-
tered vertical gust velocity measurement as input. In this ex-
ample, one proposes a simple propotionnal feedback of the
aircraft pitch angle as a horizontal stab control law, leading to
a gain in altitude. However one presents the effect of actuator
or sensor dynamic on the performance. 3 different first order
dynamics have been studied with a time response of : 0.1 s
1s and 10s (respectively blue, orange and yellow on figure 7).
The vertical gust is a 1Hz sinewave with hyperbolic tangent
activation function, the amplitude is 1.5m/s. The feedback
gain is set to -1.8. The figure 7 shows that for slow actua-
tors one witness a delayed flap answer with smaller ampli-
tude. However the performance in gain of altitude seems to
be better with a slow actuator. This means that the optimum
feedback gain used for the simulation should be smaller. Con-
sequenlty if the actuator dynamic response is slower or near
the aircraft one, it is highly possible that the control law will
witness a change in its performance.

4.3 Performance robustness to a full bandwith gust model:

The last example follows the same protocole as the pre-
vious example. However the authors has extended the gust
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Figure 4: Linear control pattern proposed

Figure 5: Mermoz aircraft: ASWING configuration

model function of ASWING with a full 3D spatio tempo-
ral Von Karman turbulence model based on the adaptation
to UAV work of []. The figure 8 clearly show that the control
does not satisfy the energy harvesting objectives no matter
the dynamic of the actuator. One must consequently seek for
a better and more robust control law to fullfill the objective
for an extended gust bandwith.

5 CONCLUSION

This article has presented a methodology to modify
ASWING source code so that control laws with internal dy-
namics commonly used by the control theory community can
be implemented. One has presented the different algorithms
used in ASWING and the proper modifications that have to
be made to fulfill this objective. Some theoretical results
have been recalled for a better understanding of the method-
ology. Moreover, one has to make sure that the modifica-
tions brought do not lead to an added stiffness on the dif-
ferential equations leading to the solver divergence. Finally,

the modification has been illustrated with 2 examples to have
a quick partial view of the modification. From this modifica-
tion, the users can use this methodology to quickly implement
and benchmark sophisticated bi-scheduled controls law such
for example Linear quadratic Gaussian, H∞ / H2, Guardian
mapping, Fractional order controller, µanalysis. He can also
investigate sensors and actuators’ saturations effects and im-
plement anti-wind-up and or observers. Sensors noises can
also be taken into account for robustness study to stochas-
tic environment. Future works aims at providing a ”craftable
fyable aircraft” design tool which respects ASWING theoret-
ical background for automatic and parametric design of UAVs
based on modern crafting technics
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ABSTRACT

Drones are commonly used for many civil appli-
cations and the procedures to operate them have
evolved during the past years to make them ac-
cessible to those with limited piloting skills in
several scenarios. However, the deployment of a
fleet in the context of scientific research can lead
to complex situations that require an important
preparation in terms of logistics, permission to
fly from authorities, and coordination during the
flights. This paper is a field report of the flight
campaign held end of January 2020 at the Bar-
bados Island as part of the NEPHELAE project.
The main objectives of the project were to fly
into trade wind cumulus clouds to understand the
microphysical processes involved in their evolu-
tion, as well as to provide a proof of concept of
sensor-based adaptive navigation patterns to op-
timize the data collection. After presenting the
overall flight strategy and the context of oper-
ation, the main challenges and the solutions to
address them will be presented, to conclude with
the evaluation of some technical evolution devel-
oped from these experiments.

1 INTRODUCTION

Drones are commonly used for many civil applications
and the procedures to operate them have evolved during the
past decade to make them accessible to those with limited pi-
loting skills in myriad scenarios. However, the deployment of
a fleet in the context of scientific research can lead to complex
situations that require an important preparation in terms of lo-
gistics, permit to fly from authorities and coordination during
the flights. This paper is a field report of the flight campaign
held end of January 2020 at the Barbados Island as part of the
NEPHELAE project.

The context and main goal of the project are detailed in
section 2. After presenting some of the preparation and logis-

*Corresponding author: gautier.hattenberger@enac.fr

tic constraints, the overall flight strategy, its challenges and
the solutions to address them will be presented. To conclude a
summary of the flights will be provided with the evaluation of
some technical evolution developed from these experiments.

2 CONTEXT

The purpose of the NEPHELAE project is to develop and
deploy a fleet of autonomous drones to collect data within
and around cumulus clouds. The final objective for the at-
mospheric scientists at the Centre National de Recherches
Métérologiques (CNRM) that are leading the project is to bet-
ter understand the mixing processes during the evolution of
these clouds. The main region of interest for these observa-
tions is the border of the cloud that needs to be sampled at the
frontier between the open air and the water-saturated region.
Several publications have already described the flight patterns
specifically designed for this task [1, 2] and showed the ad-
vantage of these strategies in cloud exploration in a simulated
cumulus field [3, 4].

As a summary, the general idea is to use the real-time
data from the on-board sensors to decide whether or not the
plane is inside the cloud or not. Based on this decision and
the general flight strategy (border exploration, border+center
exploration, . . . ) a sequence of arcs and straight lines is per-
formed. Figure 1 presents the area of interest and some of the
possible flight patterns.

The key element of this project is the operation of sev-
eral drones at the same time with several objectives: increase
the spatial and temporal sampling resolution by deploying a
network of sensors, extend the observational footprint of the
in-situ observations using advanced mapping techniques, and
perform synchronized measurements of the same volume at
different locations to estimate the transport of water and heat
inside and surrounding the cloud.

Finding the right location to carry out the flights is already
a challenge. The target clouds are trade wind cumuli, which
means that the flights will be over the sea and in the trop-
ics. The prevailing winds average 8 m/s and it is required to
follow the same cloud as long as possible (the life-time of a
cloud is around 20 to 30 minutes), it means that the flight
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Figure 1: Cloud interest zones (illustration and design by
Sarah Gluschitz)

area has to be large enough, and the flight ceiling at least
1500 to 2000 meters above sea level (ASL). Several places
have been considered, and visited by a team member prior to
the mission, depending of their weather, accessibility, local
regulation, etc.

We finally had the opportunity to participate to an inter-
national flight campaign, called EUREC4A [5, 6], at the be-
ginning of 2020 on the island of Barbados. This campaign
already involved boats, piloted planes and two other types of
drones. It is important to note that UAV flights are strictly
forbidden by Barbados authorities, except where specifically
allowed in the context of this scientific mission, as long as
the drones have permit to fly from authorities from their own
country. Since the selected location for drones was the same
for all teams, the airspace had to be shared.

The next sections details the flight operation and the re-
quired preparation and logistics for a long mission abroad.

3 PREPARATION AND LOGISTICS

The selection of the flight location was complex as sev-
eral factors had to be considered. The first constraint was to
be located on the east coast as the prevailing wind is blow-
ing west from the ocean and the goal is to catch the clouds
before they reach the island. The international airport is lo-
cated at the south end of the island, which means that our
flight area should be north to avoid conflicts with the planes
during their initial climb. Finally, for fixed-wing operations
the field should be flat, far enough from populated area and
void of surrounding obstacles. None of the three possible
spots perfectly matched all the criteria, but the one called
Morgan Lewis (see figure 2) was the best option with a long

field well-oriented toward the sea and with few obstacles, ex-
cept for hills on the side and a downward slope that made the
automatic landing impossible. The landings were finally all
performed by the safety pilot.

Figure 2: Map of Barbados Island with flight location at
Morgan Lewis, Barbados Cloud Observatory (BCO) and
Bridgetown Airport (BGI)

A total of 10 people (researchers, engineers, PhD stu-
dents) took part of the mission for a duration between 1 week
to almost 4 weeks. The planes, ground equipment and com-
puters, scientific sensors and batteries were sent two months
in advance by ship. Containers served as the base station for
operation and storage as seen in the figure 3.

Figure 3: View of the temporary operation center and storage

4 FLIGHT OPERATION STRATEGY

The flight operation strategy has been defined during the
preparation time before the mission to take into account the
needs and the maturity of the technology being deployed. The
details of the overall software architecture and the algorithms
can be found in [1]. As a summary, during a typical flight five
operators were working together each with a specific role:
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- The atmospheric scientist is monitoring the real time
sensor values collected by the UAVs. When he esti-
mates that a UAV is crossing a cloud worth sampling,
he requests to deploy a specific pattern to the map-
maker operator. He is also in charge of the regional
weather forecast and near real-time satellite images to
determine if clouds are coming within the next hour.

- The mapmaker operator is checking the real-time map-
ping process based on Gaussian Process Regression.
Once he receives new instruction from the atmospheric
scientist, he creates a new mission element with the de-
sired parameters.

- The UAV operator is controlling the flights from the
Ground Control Station (GCS). In particular, he is in
charge of take-off, landing and waiting procedures, as
well as the general safety of the flights.

- The flight director is the coordinator of the three other
operators. He is checking the created mission and will
decide if they should be accepted or rejected. He is
also in charge of the coordination with the other teams
sharing the airspace and is the point of contact for the
local Air Traffic Control.

- The safety pilot is outside with the remote control and
is handling the planes. He can take back the control
when flying in line-of-sight and is piloting for the very
last part of the landing.

Figure 4 shows the operation center with a display for the
atmospheric scientist to confirm cloud detection (left), the op-
erator in charge of the real-time mapping system (center), and
the UAV operator (right). The safety pilot remained outside
during take-off and landing operation, and the flight director
stands behind the other operators to have a global view of the
flight operations.

Figure 4: Operation center with from the left: atmospheric
data and mapping display, map operator and UAV operator

The role of the safety pilot is always to guarantee the
safety of the operations during critical phases (take-off and
landing, flight near populated area, . . . ). When dealing with

several aircraft, the problem is even more complex. The pre-
campaign configuration of the Paparazzi UAV is that each
drone has a dedicated pilot and remote control receiver (RC).
However, considering the initial goal of the project to have up
to 4 or 5 UAVs at the same time, it was not a viable option
as the number of qualified safety pilots would not have been
sufficient. In addition, previous experiences have shown that
the risk of mixing the RC transmitters is real and has lead to
catastrophic situations. The solution that has been selected
for this project was to use a single safety pilot with only one
controller. All planes were bonded to the same RC and a spe-
cial software tool was developed for the UAV operator to se-
lect which plane is being controlled at a particular time. This
does not go without risks – if a plane is selected in the wrong
mode, it might enter to a safety mode and go back home. To
reduce this risk, the RC selector was also checking the status
of the autopilot (flight and RC mode) to decide if the selection
of a particular UAV is valid or not.

5 DEPLOYMENT AND PRACTICAL CONSTRAINTS

5.1 Airframe and ground equipment
The requirements for the plane to be used for the

NEPHELAE project were particularly hard to meet. A proto-
type of custom aircraft had been designed [7], conforming to
the requirements in terms of flight performances (flight speed
and time, altitude and range, payload capacity). However, the
result of the high-performance design was a UAV that was
too fragile and complex to operate in a scientific field exper-
iment, without proper facilities for maintenance and repairs.
The decision was finally made to used commercial foam air-
frame, called X6, modified to integrate the scientific payload
as seen in figure 5. They have been used in previous missions
[8, 9, 10] and proven to be robust and easy to repair.

The main impact was a limited flight time of 1 hour (plus
10 minutes for margins) instead of more than 2 hours for the
custom design.

The post-campaign analysis and further flight testing have
shown that it was a good decision to give the priority to
the robustness of the aircraft as the repeated landings and
occasional mishaps would have put the 3D-printed high-
performance planes beyond repair. The flight time was in-
deed a limitation but was still compatible with the allowed
airspace dimensions. A better integration of the batteries, sen-
sors , flight controller, optimized flight performance (cruise
airspeed, climb rates, etc,) would have allowed to increase
this flight time to 1.5 hours. In addition, a cloud-targeting sys-
tem would also reduce the time required to intercept a cloud
– allowing more time for the scientific part of the mission.

In total, 4 planes were available, but only 3 flew, with at
most 2 planes at the same time. This was much less than the
initial plan, involving up to 4 or 5 planes. Several reasons can
be found. One was that the time to operate the drones on the
ground, with a bungee launch is quite long, as well as the time
to reach the altitude and position to start tracking the clouds.
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Figure 5: Skywalker X6 with integrated sensor for cloud de-
tection and measurements, details in [8, 9]

Using more than 2 planes would have resulted in a very short
time of effective simultaneous cloud exploration. One of the
main issues was that the automatic, or at least assisted, task
allocation algorithm had not been sufficiently developed prior
to the experiment in Barbados. Priority had been given to the
real-time cartography and adaptive flight patterns. As a result,
the burden for conflict avoidance and synchronization was left
on the shoulder of the UAV operator, in addition to the usual
flight parameter monitoring. Conducting the ensemble of the
missions requires training and experienced UAV operators in
conjunction with a safety pilot, especially for the take-off and
landing phases of the mission.

Concerning communications, the 2.4GHz long range
modems P2400 from Microhard have been tested and proven
themselves to be reliable, with a constant data flow up to
14km from the base station (equipped with a directed antenna
and set to the maximum power).

5.2 Flight plan

The flight space has been organized as shown in Figure 6.
The red trapezoidal zone is the allowed flight area, defined
with the Barbadian Civil Aviation Authorities. This flight
zone is trapezoidal to account for variability in the prevail-
ing wind, and also inhibits the UAV from exiting the flight
zone in case of a Return to HOME procedure. The flight ceil-
ing was limited to 1000 m ASL because our airspace was
below the approach zone for the international airport (BGI).
On several occasions, a 2000 m ASL ceiling was requested
on a per-use basis and only in the afternoon. The maximum
allowed distance from the GCS (pink arc) is 15 km.

The Green area (figure 6) is the normal operation area
inside which adaptive navigation patterns were used based on
the ground operator’s instructions. If a plane deviated from

this area while tracking a cloud, it was automatically assigned
to a standby safe position close to the sea shore. Finally, the
orange rectangle represents the flight airspace used by a team
from the University of Colorado to fly a small drone below
the cloud base [11].

Since we are flying inside clouds, therefore above cloud
base, it is possible to fly together, but with great care. In
general, this space was avoided when the two teams were op-
erating simultaneously . Another large drone (4m wing span,
25 kg; BOREAL SAS, Toulouse, France) was operated from
the same field for long distance missions. All operations with
light drones where forbidden during takeoff and landing of
this drone.

Figure 6: Flight zones: limit of the allowed area (red), nor-
mal operation area (green), shared airspace with another team
(orange)

Figure 7 presents the steps in a typical flight:

Step E1 Take off, initial climb and waiting on a circle.

Step E2 Go to a climb point above the sea and reach the fi-
nal altitude, defined by the altitude of cloud base and
the objectives of the flight. Cloud base had been deter-
mined prior to the mission using real-time observations
from remote sensing instruments at the Barbados Cloud
Observatory (BCO). Flight altitudes were at least 100
m above cloud base.

Step E3 Reaching the eastern end of the flight zone at fi-
nal altitude. During this time, the cloud sensor offset
is computed from background noise outside of clouds.
When reaching the search zone, the planes are perform-
ing hippodromes (10 to 14 km from the GCS) perpen-
dicular to the prevailing wind until a cloud is detected
or mission is aborted.

Step E4 When a cloud is detected, the adaptive flight pat-
terns are activated to track the cloud and achieve the
required measurements.

Step EF The final step is the descent to waiting circle and
landing under the supervision of the safety pilot.

In this example (Figure 7), two planes have been deployed at
the same time, at two different altitudes (50 meters of vertical
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separation). Only the yellow plane was able to catch and track
a cloud. The second plane was too far to join the first one and
went back home directly. While only one UAV tracked the
cloud during this mission, there were two missions during
which both UAVs tracked the same cloud simultaneously.

Figure 7: The different steps a typical mission

5.3 Improvements and corrections
Despite several preparation flights before the actual cam-

paign, it was not possible to anticipate all the possible issues.
Ideally, the entire system including the sensors, adaptive sam-
pling strategies and mapping software would have been tested
in marine clouds near the coast of France prior to deployment
in Barbados; however, delays in the fabrication and instru-
mentation of the UAVs, as well as necessary changes in the
adaptive sampling strategy and difficulties in securing an au-
thorized airspace rendered a complete demonstration of the
system prior to the experiment impossible. Consequently,
several modifications to the setup in the field were needed
to improve the safety and efficiency of the flight.

One of the unforeseen issues to solve concerned the real-
time interpretation of the data from the cloud sensor. While
the cloud sensor had been used in prior field experiments [8],
it had not been possible to test the sensor in conjunction with
the adaptive sampling strategy prior to the experiment in Bar-
bados. For example, the signal is sensitive to the input volt-
age, which also varied with the throttle commanded by the au-
topilot – the inline voltage regulators were insufficient for this
application of the cloud sensor and hardware modifications
were not technically possible. During the turns, the autopi-
lot increased the throttle to maintain the prescribed altitude
and created artificial peaks in the cloud sensor. It was antic-
ipated that both a hysteresis filter and low-pass filter would
be needed to correctly detect the cloud edge. However, the
correlation with motor power consumption made the sensor
more challenging to use during the adaptive sampling phase
of the mission. Correction factors proportional to the battery
voltage have then been added during the mission. Several cal-
ibration flights were needed to achieve a proper calibration,
delaying the schedule for scientific operations.

Another issue not previously anticipated was the loca-
tion of the cloud sensor, which initially pointed horizontally
out the side of the fuselage. During previous experiments,
anomalies related to direct sunlight on the cloud sensor could

easily be removed in post-processing. However, during the
flight campaign in Barbados, direct sunlight on the cloud sen-
sor also interfered with the adaptive sampling. Fortunately,
the foam structure allowed to move the sensor to look 45 de-
grees down as seen in Figure 5 and no further issues were
reported.

In addition, several flights have been interrupted or even
resulted in a mishap due to bad GPS reception. To mitigate
this issue, the GPS receiver was moved outside of the fuselage
on an metallic sheet connected to the battery ground wire.
Tape was used to protect the electronic from humidity and
water droplets while sampling inside the clouds.

Finally, the transition from the open ocean to the hilly
terrain generated turbulent structures that caused the UAVs to
stall during landing procedures. After around a dozen flights,
we settled on a landing corridor that seems to generate less
turbulence and increased the airspeed to penetrate the areas
that were turbulent. The safety pilots also initiated the landing
procedures prior to turning for the final approach.

6 SUMMARY AND IMPROVEMENTS FOR FUTURE
OPERATIONS

6.1 Flights summary

Table 1: Summary table of the flights during the experimental
Barbados flight campaign

Number of
flights 48 22 flights realized with two

UAVs
Data

recorded
45

hours Flight time average around 53
minutes per flight

Calibration
flights 23 Cloud sensor and UAV calibra-

tion, validation of the flight pat-
tern

Measurement
flights 25 Vertical profile and cloud track-

ing mission
Viable

scientific
flights

18 Autonomous tracking of a cloud
during more than 2 minutes. Av-
erage following time around 5
minutes per tracking.

Table 1 presents a summary of the flights during the Bar-
bados campaign. Each ‘flight‘ refers to a complete operation
involving one or more drones at the same time. The only at-
tempt to fly with three drones was aborted due to the unsafe
behavior of one of the planes.

The first remark is that the number of calibra-
tion/validation flights comprised nearly half of the total num-
ber of flights. As stated previously, complete testing of the
system including the sensors, adaptive sampling strategies
and mapping software in real clouds could not be done before
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the experiment, and a number of issues had to be addressed
once operations began in the field.

The second point is that only 18 flights were able to track
a cloud for more than 5 minutes. As there were no dedi-
cated cloud targeting systems implemented during this cam-
paign, the UAVs orbited in a hippodrome pattern perpendic-
ular to the prevailing wind up to 10 km from the GCS until
intercepting a cloud by chance and start the tracking. For-
tunately, the altitude of cloud base was well identified using
remote sensing information from BCO. Nonetheless, a spe-
cial device, called AllSky, with two cameras a few hundreds
of meters apart could have provided the initial position of the
clouds [12] allowing multiple UAVs to immediately intercept
the cloud and start the scientific mission.

Some flights have also aborted after loosing the track of
the cloud as the environment is very dynamic at the border of
the cloud. When trying to turn back inside the cloud, if the
shape is too different from the previous turn, the plane may
continue on its circle without reentering the cloud again.

Out of the 18 usable flights, 6 were used to process mean-
ingful data to build diagrams about the exchange of heat and
water between the cloud and the surrounding atmosphere.
This includes a flight with 2 drones tracking the same cloud
with the adaptive patterns designed for the project. Given
that cloud cover is usually less than 10 percent, the fact that
we could track any clouds at all is quite an accomplishment.

6.2 Lessons learned and possible improvements

The NEPHELAE flight campaign was ultimately a suc-
cess as we managed to deploy several drones, with novel
adaptive flight patterns to autonomously track clouds for the
first time and gather scientific data, which are being ex-
ploited to improve the understanding of entrainment mixing
and cloud evolution. However, several points could be im-
proved and lessons learned form the difficulties faced during
the project.

The first one is that the robustness of the plane and the
possibility to repair in the field is extremely important, even
more than adhering to flight performance objectives. In the
case of optimizing the airframe design for NEPHELAE, ac-
counting for desirable conditions in term of flight time, air-
speed and payload capacity, led to an interesting prototype,
but unable to operate in field campaign conditions. An other
aspect of the robustness is the quality of the electronic boards
integration, both for payload and autopilot, which is particu-
larly important when conducting a field experiment where the
salt from the sea spray corrodes electrical components. The
malfunctions with the GPS receivers and some issues with
the cloud sensor were related to insufficient voltage regula-
tion, corrosion or damaged cabling.

The second issue to mention is the robustness of the au-
tonomous navigation patterns, which should be able to re-
cover and continue the adaptive sampling after losing track
of a cloud. This issue has been addressed after the campaign

and validated with hybrid flights (real planes flying in sim-
ulated clouds) at the Centre de Recherches Atmosphériques
(Lannemezan, France). After running the planes in different
scenarios, they were able to relocate the border and continue
the exploration.

In one occasion, the use of the RC switching mechanism
to fly multiple aircraft from the same transmitter almost led to
a mishap, because the UAV operator selected a plane already
flying in autonomous navigation while the safety pilot RC
was on manual position. Fortunately, the plane was in line-
of-sight of the safety pilot who managed to stabilize the flight
before switching the UAV back to autonomous flight. Since
the GCS tool for plane selection does not have direct feedback
from the RC (except through the status of the plane), the only
way to prevent a repeat of this situation is by ensuring proper
dialog between the UAV operator and safety pilot to assess
the currently selected mode on the RC before switching.

As discussed earlier, a dedicated cloud targeting system
would have reduced the time needed to intercept the clouds
and begin the scientific part of the mission. An integrated
cloud targeting would guide the UAVs automatically and
could have been accomplished with onboard cameras or by
deploying a ground-based system such as the AllSky system.

Finally, the last point that needs improvement is the au-
tomatic task allocation in order to deploy a larger fleet. The
workload on the different operators is already high and sev-
eral tasks should be automated. This includes improvements
to take-off procedures, assistance for collision avoidance and
the possibility to assign high level goals to the fleet, leading
to less manipulation by the UAV operator and safety pilot.

7 CONCLUSION

Within the NEPHELAE project, an atmospheric science
driven study, a dedicated architecture has been developed to
operated multiple drones during an international field cam-
paign to follow the evolution of clouds. In addition to the
usual technical challenges to fly beyond visual line-of-sight
up to 14 km from the GCS and at relatively high altitude,
many operational constraints had to be addressed. The over-
all campaign was a success considering the number of flights,
and the value of scientific results that have been extracted
from them. Nonetheless, several difficulties were encoun-
tered during the mission and the lessons learned will be con-
sidered for future projects. Notably, some key elements of the
original architecture could not be developed in time, particu-
larly, task planning and a cloud targeting system, which are
the main focus of future work. Preliminary scientific results
can be found in [4].
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Developing a modular tool to simulate regeneration
power potential using orographic wind-hovering UAVs
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ABSTRACT

Applications of Unmanned Aerial Vehicles
(UAVs) are often limited by flight endurance. To
address the limitation of endurance, we propose
a regenerative soaring method in this paper. The
atmospheric energy from updraft generated by
obstacles such as hills and ships can be harvested
by UAVs using a regenerative electric drivetrain.
With fixed-wing aircraft, the vehicle can hover
with specific wind condition, and the battery can
be recharged in the air while wind hovering. In
order to research the feasibility of this regen-
erative soaring method, we present a model to
estimate hovering locations and the amount of
extractable power using the proposed method.
The resulting modular regeneration simulation
tool can efficiently determine the possible hov-
ering locations and provide an estimate of the
power regeneration potential for each hovering
location, given the UAVs aerodynamic charac-
teristics and wind-field conditions.

1 INTRODUCTION

UAVs are performing more and more diverse missions
every year, but are often limited by the maximum achiev-
able endurance and/or range. Using the principle of oro-
graphic soaring to extend the range and endurance of UAVs
has already been extensively researched, often based on tech-
niques used by various bird species that have been observed
[1, 2, 3]. However, conventional orographic soaring tech-
niques do have some limitations that limit their usability in
certain environments and conditions.

With traditional soaring method, the only energy-storage
mediums are the potential energy (altitude) and kinetic en-
ergy (airspeed) of the aircraft. The associated aircraft state
variables, altitude & airspeed, are often desired to stay con-
stant to be able to take advantage of the favourable conditions
to gain energy from the atmosphere [4]. A great example
of this is when one is, for instance, soaring upwind along a
ridge to try to take advantage of the updrafts it generates. It
is possible to store the gained energy in the form of altitude,
but the higher the altitude, the weaker the updrafts are from

*Email address(es): midasgossye@gmail.com, S.Hwang-1@tudelft.nl,
B.D.W.Remes@tudelft.nl

the obstacle. At a certain altitude, the updrafts become so
weak that the glider is barely able to maintain altitude with-
out losing airspeed. Once this ”ceiling altitude” is reached,
it is not possible to store any more energy. It is possible to
trade the potential energy for kinetic energy, and dive back
down to the original altitude while gaining airspeed. The air-
craft is now positioned once again in a region with stronger
updrafts. However, due to the increased airspeed, the glider
has a higher sink-speed which may render it unable to gain
energy from the updrafts anymore.

Regenerative soaring introduces another energy storage
medium to store harvested energy from the environment. The
regenerative soaring method was first proposed by Paul Mac-
Cready already back in 1998 [5]. Instead of having to change
the altitude and/or airspeed to be able to store energy, an on-
board energy accumulator in the form of a rechargeable bat-
tery can harvest the energy through the use of a regenerative
drivetrain. This means that the aircraft can stay positioned
in the altitude region where the most favourable updrafts are
present, and keep its optimum airspeed.

One problem with the suggested regenerative orographic
soaring methods is that a long ridge or hill range is required
to take advantage of this, such that the aircraft can fly straight
along the ridge in the most favourable updraft regions for an
extended period of time. It would be beneficial if small UAVs
could also use the updrafts present around smaller, single ob-
jects such as a small hill, a building or a ship on the open
sea. This could be achieved by altering the orographic regen-
erative soaring methods by applying a technique called wind
hovering or static hovering.

Achieving static hovering while using the orographic
soaring method (called wind hovering) is a topic that was
found to only be covered by a very small amount of research.

Fisher [1] introduced the concept of a ”feasible soaring
region”, a spatial region inside a wind-field where wind hov-
ering is possible for a given wind-speed. A point in the wind-
field is deemed feasible for wind hovering if the local verti-
cal wind component/updraft velocity is larger or equal than
the minimum sink speed of the aircraft when flying at zero
ground speed in the wind field. In their paper, the feasibil-
ity of having a fixed-wing UAV autonomously hover in the
updraft region of a hill and a building was investigated. The
paper concluded with the experimental results proving that
a small UAV can indeed apply wind-hovering techniques to
statically hover in the favourable updraft region.

The remainder of this paper is structured as follows: Sec-

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 116
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tion 2 introduces the wind field estimation method, Section
3 describes how to calculate extractable power generated by
the wind field, Section 4 presents how the feasible soaring lo-
cations and generated power at each location are determined.
Finally, Section 5 gives a summary and further discussions.

2 WIND-FIELD ESTIMATION

To be able to determine the power available in the wind-
field, it is first vital to have a good understanding of the wind-
field. To achieve this, a wind-field estimation tool is required
that can simulate the flow around various simple obstacles.
The following subsections will describe what methods are
available to achieve this and how the wind-field estimation
program was implemented.

2.1 Methods

There exist numerous methods to estimate the behaviour
of air around obstacles, greatly varying in complexity and re-
quired computational power. The most common choice lately
has been to use a complex Computational Fluid Dynamics
(CFD) simulation package like ANSYS fluent, openFOAM,
etc. The CFD simulations performed with these packages re-
quire a large amount of computational power and are very
complex to set-up. It was opted to first search for another
method as a basis of the wind-field estimator. Langelaan used
a simplified potential flow method to find the wind field up-
wind of an idealised circular shaped hill [6] to gain a better
understanding of the general behaviour of the wind-field and
to estimate the ideal location relative to the circular hill for
ridge soaring. This methodology sparked the idea to use po-
tential flow theory to estimate the flow field present upwind
of the hill.

2.2 Potential flow estimator

The standard potential flow equations describing the ide-
alised flow around circular and oval shaped obstructions were
used as a basis.

The equations used to determine the flow-field are listed
below, with U∞ being the free-stream velocity, R the radius
of the circular hill and r the distance between the aircraft and
the centre of the hill. θ represents the angle between the hor-
izontal axes and the radial of the aircraft:

ur =

[
1− R2

r2

]
U∞ cos θ (1)

uθ = −
[
1 +

R2

r2

]
U∞ sin θ (2)

Transforming the polar velocity components into carte-
sian velocity components results in the following velocity
functions for the x and y components:

Figure 1: Potential flow field around cylinder

ux = cos θ · ur − sin θ · uθ (3)
uy = sin θ · ur + cos θ · uθ (4)

with θ = arctan
y

x
(5)

Another set of equations for oval shaped hills can also be
selected, which correspond to the equations representing the
flow-field over a rankine oval [7]:

x2stag − a2 −
ma

πU∞
= 0 (6)

⇔ m =
πU∞
a

(x2stag − a2) (7)

ux(x, y) = U∞ +
m

2π

[
x+ a

(x+ a)2 + y2
− x− a

(x− a)2 + y2

]

(8)

uy(x, y) =
my

2π

[
1

(x+ a)2 + y2
− 1

(x− a)2 + y2

]
(9)

Where the x-coordinate of the stagnation point xstag and
the x-coordinate of the focal point a determine the geometry
of the oval shaped hill.

These equations were then altered with a simplified
boundary/shear layer model equation to include an estimate
of the Atmospheric Boundary Layer.

Equation 10 shows the used model that alters the vertical
wind-speed distribution with a logarithmic function to try to
estimate the Atmospheric Boundary Layer.

One problem arises by using this simple model to estimate
the varying wind speeds in the boundary layer, the function
is only able to estimate the boundary layer effects to the hori-
zontal wind-speed over flat terrain. It has been proven though
that the log wind-profile can produce accurate results even
above non-flat terrain [8] in certain circumstances at higher

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 117
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altitudes above the obstacle. The log wall function can cer-
tainly be applied to the regions of the flow that are not greatly
affected by the presence of the hill (mainly upwind of the
hill-side). The proposed boundary layer model will however
most likely not predict the boundary layer effects close to the
hill surface. It was still opted to use this model for the entire
hill region since the resulting flow patterns are more closely
resembling real-life wind conditions where the flow velocity
decreases close to the surface due to friction. If more accurate
flow behaviour needs to be predicted close to the surface of
the hill, a CFD simulation including models for laminar and
turbulent boundary layer behaviour would be more applica-
ble.

u(z2) = u(z1)
ln ((z2 − d)/z0)
ln ((z1 − d)/z0)

(10)

3 POWER CONTOURS

Now that a wind field estimate is available around dif-
ferently sized obstacles, it is time to determine the feasible
power that can be extracted at each point.

Before going into the details of the ability of the UAV to
perform wind hovering at each location, it is helpful to first
estimate the theoretical maximum power that can be extracted
at each location assuming the UAV can maintain to hover at
that location indefinitely. In this case, the energy harvesting
UAV can essentially be modelled as a Horizontal Axis Wind
Turbine (HAWT) where the upstream wind velocity is equal
to the total wind velocity at the location of the UAV in the
wind field. This is not totally accurate, since this assumes that
the upstream wind velocity is constant along the axis of the
propeller, but since the propeller dimensions of small UAV
are at least an order of magnitude smaller than the obstacle
dimensions it can be assumed that this will only have a very
minor effect.

To be able to determine the theoretical maximum power
that a HAWT can extract from the wind stream, it is evident
to first have a closer look into the so called Betz law:

3.1 Betz law
One of the most famous theories concerning wind turbine

theory is the Betz law (also called Betz condition or limit).
Simply put, it states that even an ideal wind turbine that

contains no centre hub and has an infinite number of blades
that cause no additional drag (e.g. skin friction drag) can
only extract roughly 59 % of the power available in the wind
stream [9]. For power to be continuously be able to be ex-
tracted, it is evident that a continuous mass flow of air must
pass through the propeller/turbine disc. For this to occur, both
the incoming and outgoing flow must have a positive flow ve-
locity. If, hypothetically, the turbine was able to extract all
of the available energy from the incoming flow, the flow past
the disc area should have a velocity of zero (otherwise there
would still be unextracted energy present). Having a zero
fluid flow velocity at the exit of the turbine, directly means

that no mass flow can be present, so no power can be ex-
tracted at these conditions.

Using the continuity equation, Euler’s theorem and ki-
netic energy equations the following ideal power limit fol-
lowing the Betz law can be derived [9]:

Pideal =
16

27

1

2
ρSturbV

3
air (11)

This first estimate for the maximum theoretical power can
be used as a basis to generate the power contours for the wind
field. The following assumptions have to be kept in mind
though:

• The wind turbine is assumed to not have a hub, the en-
tire disc area region only contains blades

• It has an infinite number of blades that cause no addi-
tional drag (e.g. skin friction drag, induced drag due to
tip vortices)

• The incoming flow is assumed to be constant, laminar
and axial to the wind turbine axis

• No swirl is generated, the outgoing flow is also flowing
axial to the wind turbine axis

• The air is considered to be an incompressible fluid

3.2 Using Betz law to generate potential power contours
Figure 2 shows the ideal maximum power at every loca-

tion in the wind field that could be extracted from a 15m s−1

free-stream velocity over a circular hill section with a radius
of 50m for a wind-turbine with a rotor disc area of 0.1m2. It
basically represents the absolute ideal maximum power that
a regenerating UAV could achieve at every point in the wind
field if static hovering can be achieved at that point and if the
turbine can operate at its maximum power operating point,
which will obviously not be the case for the majority of the
wind field.

It is logical that the highest ideal power estimates are
located directly above the hill since this is where the wind
speeds are the highest (for the idealised potential flow case).
It can be seen however that close to the surface of the hill the
power figure is lower since this region has a lower velocity
due to the added boundary layer wall function.

4 DETERMINING HOVERING LOCATIONS & POWER
GENERATION POTENTIAL

Now that the absolute maximum theoretical power that
can be extracted at each point in the wind field is known, the
next step is to determine if the UAV can actually hover at that
location, and if so, what power fraction should be extracted
from the turbine to generate the required drag equalising the
”thrust” generated by gravity, to enable the hovering to be
stable?
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Figure 2: Ideal power contour plot for a 15m s−1 free-stream
velocity over a circular hill section with a radius of 50m for
a rotor disc area of 0.1m2

To be able to answer this question, the equations govern-
ing the longitudinal flight dynamics of a hovering UAV needs
to be studied.

4.1 Longitudinal hovering flight dynamics
The following equations (Equations 12, 13 and 14) ex-

press the system of differential equations for longitudinal
flight dynamics (following from the FBD given in Figure 3),
including a non-zero wind, in the air-path reference system
[10]:

Figure 3: FBD Air path reference system longitudinal flight
dynamics (courtesy of Langelaan [10])

T −D −W sin γ =
W

g

(
V̇air + u̇x cos γ − u̇z sin γ

)

(12)

−L+W cos γ =
W

g

(
−V̇airγ̇ + u̇x sin γ + u̇z cos γ

)

(13)

M = θ̈Iyy (14)

The equilibrium equations governing the balance of
forces required for a UAV to hover in a steady state can be
easily derived by setting the time derivative of the airspeed
and both wind speed components (horizontal and vertical) to
zero. The thrust force is also replaced with a (negative) tur-
bine drag force which will represent the additional variable
drag generated by propeller/motor drivetrain that can act as a
turbine. To avoid possible confusions between the total drag
force (encompassing both the aircraft and turbine drag forces)
and the drag force purely generated due to the aerodynamic
properties of the aircraft, the symbolD which represented the
latter was replaced by DAC . Lastly, it is assumed that all of
the forces acting on the aircraft are acting at the CG, mean-
ing no moments are generated. The simplifications and alter-
ations are shown below in Equations 15 and 16. An altered
FBD which reflects the changes and simplifications made is
shown in Figure 4.

���
−Dturb

T −DAC −W sin γ =
W

g

(

�
��>

0

V̇air +��>
0

u̇x cos γ −��>
0

u̇z sin γ

)

(15)

−L+W cos γ =
W

g

(
−��

�*0
V̇airγ̇ +��>

0
u̇x sin γ +��>

0
u̇z cos γ

)

(16)

This results in the following system of equations:

{
−Dturb −DAC −W sin γ = 0

−L+W cos γ = 0
(17)

Wind

Figure 4: FBD Air path reference system longitudinal hover-
ing flight dynamics

4.2 Estimating turbine drag
Assuming that the turbine behaves as an ideal wind tur-

bine as discussed in Subsection 3.1, it can be assumed that the
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wind only exerts a net axial force on the rotor. This means the
useful power that the wind turbine extracts can be written as
the product of this axial force (Dturb) and the air velocity at
the rotor disc/turbine (Vturb): Pturb = Dturb ·Vturb. Further-
more, when the rotor is operating at the theoretical maximum
efficiency conditions Betz proved that the air velocity at the
rotor disc/turbine must be equal to two thirds of the incoming
air velocity [9]. Using these equations and observations, it is
possible to derive a simple expression for the estimated drag
produced by an ideal turbine which is shown below:

Pideal =
16

27

1

2
ρSturbV

3
air (18)

Dturb =
Pideal
Vturb

(19)

Vturb =
2

3
Vair (20)

Substituting Equation 20 in Equation 19:

Dturb =
Pideal
2
3Vair

(21)

Finally. substituting Equation 21 in Equation 18 results in
an equation expressing the estimated turbine drag (Dturb) in
terms of incoming airspeed (Vair) and rotor disc area (Sturb):

Dturb =
1

2

2

9
ρSturbV

2
air (22)

Figure 5: Ideal wind turbine diagram

4.3 Finding the required lift and drag coefficients for hov-
ering

Now that both the systems of equations describing the
force equilibrium during hovering flight and an estimate for
the turbine drag are found, it is possible to derive a set of
equations that determine the required lift and drag coefficients
to enable static hovering.

Following from the system of equations that describes the
force equilibrium during hovering flight derived in Subsec-
tion 4.1 (Equation 17), the required lift and drag terms can be
expressed as follows:

{
L =W cos γ

Dturb +DAC = −W sin γ
(23)

Rewriting this system of equations in terms of the lift and
drag coefficients results in the following system:

{
1
2ρV

2
airSCLhover =W cos γ

1
2
2
9ρSturbV

2
air +

1
2ρV

2
airSCD,AChover = −W sin γ

(24)

Dividing both sides by 1
2ρV

2
airS:

{
CLhover = W

1
2ρV

2
airS

cos γ

2
9
Sturb
S + CD,AChover = − W

1
2ρV

2
airS

sin γ
(25)

The resulting non-dimensionalised contribution of the tur-
bine to balance the horizontal force equilibrium (the bottom
row of Equation 25), 2

9
Sturb
S , can be thought of being the

maximum achievable drag coefficient of the turbine, since
multiplying this figure by 1

2ρV
2
airS results in the ideal max-

imum drag caused by the turbine. Setting CDturb = 2
9
Sturb
S

results in the following system of equations:

{
CLhover = W

1
2ρV

2
airS

cos γ

CDturb + CD,AChover = − W
1
2ρV

2
airS

sin γ
(26)

Next, the sine and cosine of the flight path angle (γ) can
be substituted with the fractions uz

Vair
and ux

Vair
respectively.

This can be done because the velocity of the UAV with re-
spect to the inertial reference frame is assumed to be zero
during stable hovering. This means that the airspeed vec-
tors magnitude and direction is purely determined by the local
wind speed vectors (see Figure 4).

{
CLhover = W

1
2ρV

2
airS

ux
Vair

CDturb + CD,AChover = − W
1
2ρV

2
airS

uz
Vair

(27)

Finally, if the lift-drag polar can be estimated using the
following standard equation relating the drag and lift coeffi-
cient to each other:

CD,AC = CD0
+

C2
L

πAe
(28)

And substituting this equation in Equation 27:




CLhover = W

1
2ρV

2
airS

ux
Vair

CDturb + CD0
+

C2
Lhover

πAe = − W
1
2ρV

2
airS

uz
Vair

(29)

This leaves a system of equations that can easily be solved
for both the required lift coefficient (CLhover ), and turbine
drag coefficient CDturb if the local air speed (which is equal
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to the wind speed magnitude during hovering), horizontal and
vertical wind speed components are known.

Some important observations can be made from the final
equations:

• The required lift coefficient, determined by the first
part of Equation 29, should be less than the maximum
lift coefficient of the aircraft. If this would not be the
case, the aircraft would effectively stall when trying to
achieve these conditions.

• The drag that the clean aircraft itself can provide is
fixed by the required operating point on the lift-drag
polar. If the required drag coefficient is lower than this
value, the aircraft will not be able to achieve hovering
equilibrium, even if the turbine is fully switched off or
assumed to not be present;

• At specific wind speed and direction conditions, the
clean aircraft will be able to provide just the right
amount of drag at a certain required lift coefficient to
satisfy both equilibrium equations, the turbine doesn’t
need to be switched on, and no power can be regener-
ated, since CDturb will have to be equal to 0.

• At wind conditions where more drag is required than
the clean aircraft itself can provide, the turbine needs to
be switched on to close the ”drag deficit” and equalise
both terms of the second part of Equation 29. If the
required extra drag from the turbine is less than its
ideal maximum, the regen drivetrain should regulate
the drawn power from the turbine in such a way that
the drag provided by the turbine satisfies the equations.

• There exist another specific set of wind conditions
where the required drag from the turbine to achieve
hovering equilibrium will be equal to the maximum
drag that the turbine ideally can provide. Note that al-
though the maximum amount of power (imposed by the
Betz limit) that can be drawn from the turbine in this
scenario at the specific conditions, it is not necessar-
ily the optimum resulting in the maximum amount of
regeneration power, since the regeneration power also
depends on the wind speed and other locations in the
wind-field might exist where not all ideally available
power can be extracted, but due to a higher wind speed
the total regenerated power potential is still higher.

With the finalised equations for the turbine drag coeffi-
cient and above observations in mind, the calculation of the
regen power contours can now be performed.

4.4 Regen power contour calculation

The finalised equations presented in the previous subsec-
tion enable one to determine if static hovering is achievable

(given the local wind conditions at a certain point in the wind-
field and aircraft parameters). If this is the case, the corre-
sponding static hovering power regeneration potential can be
calculated for that point.

The resulting equations can be used to determine both the
required lift coefficient (CLhover ), and combined drag coef-
ficients (one being the turbine drag coefficient CDturb , the
other being the drag coefficient of the aircraft CD,AChover ) to
enable stable static hovering.

This function determines if the UAV is theoretically able
to statically hover with zero ground speed at each point of the
calculated wind field. At each potential hover location, the
required additional drag and power needed from the turbine
is calculated as well as the angle of attack.

First, the required lift coefficient to satisfy the hovering
equilibrium equations is calculated:

CLhover =
W

0.5 · ρ · V 2
air · S

· ux
Vair

(30)

If the resulting lift coefficient is larger than the maximum
achievable lift coefficient (CLmax ), the aircraft would stall
if it tried to approach the conditions required for hovering
and the corresponding point in the wind field will have a zero
power regeneration potential using static hovering since hov-
ering cannot be achieved.

Next, the total required drag coefficient to enable hover-
ing (CDturb + CD,AChover ) is calculated:

CDturb + CD,AChover =
W

0.5 · ρ · V 2
air · S

· uz
Vair

(31)

For the aircraft to be able to achieve static hovering, the
combined required drag coefficient can not be smaller than
the minimum achievable total drag coefficient. This mini-
mum achievable total drag coefficient is equal to the clean
aircraft’s drag coefficient, since the least amount of drag will
be generated when no additional turbine drag is generated

(hence CDmin = CD,AChover = CD0
+

C2
Lhover

πAe ).
The combined required drag coefficient can also not be

larger than the maximum achievable drag coefficient, which
is equal to the clean aircraft’s drag coefficient plus the max-
imum achievable turbine drag coefficient. As stated in the
previous subsection, the maximum achievable turbine drag
coefficient can be estimated using the Betz limit and is equal
to CDturb,max = 2

9
Sturb
S . Summarising, the acceptable com-

bined required drag coefficient bounds to achieve static hov-
ering leads to the following expression:

CD0
+
C2
Lhover

πAe
≤ CDturb + CD,AChover

≤ CD0
+
C2
Lhover

πAe
+

2

9

Sturb
S

(32)
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If the total required drag coefficient falls within these
bounds and the required lift coefficient is not larger than the
maximum lift coefficient (as stated earlier), it can be assumed
that the aircraft can achieve static hovering, and a valid power
regeneration potential can be calculated.

The resulting required turbine drag coefficient to achieve
stable static hovering can be calculated as follows:

CDturb,hov = CDturb + CD,AChover −
(
CD0

+
C2
Lhover

πAe

)

(33)
The corresponding turbine drag generated during hover-

ing can easily be found by multiplying the turbine drag coef-
ficient with 0.5 · ρ · V 2

air · S:

Dturb,hov = 0.5 · ρ · V 2
air · S · CDturb,hov (34)

Finally, by rearranging Equation 21 the estimated turbine
power can be found:

Pturb.hov =
2

3
· Vair ·Dturb,hov (35)

4.5 Results
By incorporating the finalised turbine drag and power

equations and only populating the values for locations where
hovering is deemed feasible by satisfying the maximum
lift coefficient constraint and conditions set in Equation 32,
power contour plots can be generated for any given wind-
field. This results in figures like the one shown below:

Figure 6: Regen power contour plot for a 15m s−1 free-
stream velocity over a circular hill section with a radius of
50m for a rotor disc area of 0.1m2 using aerodynamic pa-
rameters in Appendix A

It can immediately be seen that the estimated maximum
amount of power that can be regenerated using the turbine
while hovering is roughly 1 order of magnitude lower than
then the ideal Betz limit power contour graph of the entire
wind-field (see Figure 2). The primary reason for this is that
the UAV is unable to statically hover with these conditions

at the point in the wind-field that has the maximum potential
power, which is the point with the highest wind velocity.

Power contour plots were calculated for a range of con-
ditions, such as different wind-speeds, hill-sizes, rotor disc
areas, UAV masses, etc. The resulting plots showed the ex-
pected behaviour for the change in conditions.

5 CONCLUSION

A simplified wind-field model around obstacles such as
circular and oval shaped hills was constructed based on po-
tential flow theory. A model was developed to determine the
maximum theoretical regeneration power if wind-hovering
orographic soaring techniques are applied, given a certain
wind-field and aerodynamic characteristics of the UAV. The
resulting modular simulator program is able to determine the
hovering locations and gives an estimate of the maximum
achievable regeneration power. For the source wind-field, ei-
ther the simplified potential-flow based model can be used,
which needs very little computational power making it suit-
able to be even run on on-board processors of UAVs, or a
wind-field generated by other more advanced software or
even from a measurement field. The tool should allow anyone
to easily get an estimate of the feasibility of the regenerative
hovering soaring method in their particular application.

For future work, additional simulations could be carried
out by simulating real-life conditions. The model can then
be validated by performing a flight-test in these conditions
with a regenerative drivetrain architecture like the one being
proposed and shown in Appendix B.

ACKNOWLEDGEMENTS

We would like to thank our colleagues from the Never-
Landing Drone working group for their continued support,
suggestions, ideas and feedback.

REFERENCES

[1] Alex Fisher, Matthew Marino, Reece Clothier, Simon
Watkins, Liam Peters, and Jennifer L. Palmer. Emulat-
ing avian orographic soaring with a small autonomous
glider. Bioinspiration and Biomimetics, 11(1), 12 2015.

[2] Nicholas R.J. Lawrance and Salah Sukkarieh. Wind en-
ergy based path planning for a small gliding unmanned
aerial vehicle. In AIAA Guidance, Navigation, and Con-
trol Conference and Exhibit, 2009.

[3] N R J Lawrance, J J Acevedo, J J Chung, J L Nguyen,
D Wilson, and S Sukkarieh. Long Endurance Au-
tonomous Flight for Unmanned Aerial Vehicles Aerial
Robotics Long Endurance Autonomous Flight for Un-
manned Aerial Vehicles. AerospaceLab, (8), 2014.

[4] Ramiro Carvalho. Development of the regenerative
soarer: Theoretical and Practical aspects. In 31st
Congress of the International Council of the Aeronauti-
cal Sciences, number September, Belo Horizonte, 2018.

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 122
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APPENDIX A: UAV AERODYNAMIC PARAMETERS
USED FOR SIMULATION

S 1 m2

CLα 5.7 rad−1

α0L -4 °
A 6 -
e 0.8 -

CD0
0.05 -

Table 1: UAV aerodynamic parameters for simulation

APPENDIX B: PROPOSED REGEN ARCHITECTURE

M 3-phase AC →	DC
rectifier DC boost converter LiPo charge controller

Flight control system

Set regen power
Control & read 

battery charge state

ESC

Set motor throttle
Signal flow

Electric current flow

Figure 7: Example regen architecture
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Estimating wind using a quadrotor
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ABSTRACT

The aim of this work is to estimate the wind
that the quadrotor drone is subject to only based
on standard navigation sensors and equations of
motion. It can be used in several situation, in-
cluding atmospheric studies, trajectory planning
under environmental constraints, or as a refer-
ence for studying flights in shear layer. For this
purpose, a small quadrotor drone with spheri-
cal shape has been developed. Flight data are
recorded from telemetry during indoor and out-
door flight tests and are post-processed. The pro-
posed solution is based on a calibration proce-
dure with global optimization to extract the drag
model and a Kalman Filter for online estimation
of the wind speed and direction.

1 INTRODUCTION

Estimating wind with a UAV has already been studied
with multiple approaches. A common way is to use a fixed-
wind aircraft and extract the wind from its GPS track [1] or
by adding sensors on the system, such as 5-hole probe [2, 3]
or a combination of simple Pitot tube and flags [4].

For a quadrotor, these approaches are not suitable, not
only due to the non-constant inclination angles and flight di-
rections, but also because of the low flight speeds. How-
ever, [5] compared the use of four different anemometers on
a quadrotor. The study revealed that a thermal anemometer
could be used, at the cost of modifications to the UAV struc-
ture in order to place it far enough from the disturbances in-
duced by propellers.

Instead of adding components on the UAV, an alter-
nate solution is to estimate wind from the quadrotor motion
[6, 7, 8, 9]. In [7], the different possible models are presented:
static, kinematic or full dynamic. In addition, a methodology
to extract the required parameters is presented. The propul-
sion system is characterized by a motor test bench in a wind
tunnel experiment, while the drag is extracted from flights
at constant GPS velocity in steady air. The observation is
made that the drag is proportional to the relative airspeed.
In [6, 10], experiments were led using a six-axis force bal-
ance, a very precise but fragile and expensive system. Finally,
[8] presents a nonlinear observer able to accurately predict
the wind components, using only low cost Inertial Measure-
ment Unit (IMU) and ground speed measurements. The drag-
force is considered proportional to the rotational speed of the

motors, that is almost constant during operation, leading to
a constant rotor drag coefficient, similar to [7, 11]. [9, 7]
have performed outdoor flights and compared the results with
ground reference measurements, demonstrating the feasibil-
ity of wind measurement from quarotor based on IMU and
GPS measurements. The general principals and equations of
motion from these studies have been used as a starting point
for the present article.

This paper is organized as follows. First, the problem
modeling focuses on the equations of motion, the hypothesis
and limitations, as well as the experimental airframe. Then,
the parameters identification method is presented and after
that, the wind estimation with a Kalman filter is exposed. Fi-
nally, in-flight experiments are described and their results are
analyzed.

2 PROBLEM FORMULATION

2.1 Kinematic and Dynamic model
With the assumptions that

• the center of gravity (CG) is located at the center and
origin of the body frame

• the frame and the propellers are rigid

• the inputs of the system are the thrust generated by the
motors

• the outputs are the position and orientation of the body
frame relative to the earth (inertial) frame, observed by
the GPS and IMU sensors

a simple dynamic particle model can be established as in [7],
leading to:

Ẋ = Vk = Vr +Vw (1)

mV̇k = mg+D(Va)+T (2)

where:

• X is the position vector relative to earth frame

• Vk is the ground speed vector relative to earth frame
(inertial velocity)

• Vr is the relative air speed vector

• Vw is the wind speed vector relative to earth frame

• equation 1 represents the wind triangle

• m is the mass of the model and g the gravity vector
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• Va = ‖Vr‖ is the norm of the airspeed

• D is the drag vector in earth frame, as a function of
airspeed

• T is the control forces vector (thrust) in earth frame

Finally, the last assumption is that the wind speed is seen
as a constant or slowly varying disturbance, therefore the
derivative of the wind triangle (equation 1) gives:

V̇w = 0 ⇒ V̇k = V̇r (3)

A typical drag equation is expressed as the product of the
dynamic pressure, a reference surface and a drag coefficient
function of α and β , the the two angles defining the direction
of the air velocity relative to the body frame (see Figure 1).
As a result, drag should be proportional to V 2

a . However,

α

Uz

Ux

−mgUz

Ux

Uy

Vr

β

Figure 1: Aerodynamic frame with angle of attack α and side
slip angle β

the experimental results presented in the calibration section 3
show that in the range of the considered wind speeds, the ro-
tor drag or H-force (see [11]) that is linear with the airflow
seems to be dominant, hence:

‖D‖= k Va (4)

As an additional remark, the airframe is not not supposed
to generate lift and is symmetrical to reduce the dependency
with the direction of the relative airspeed (independent of β ).

The control force vector T can be expressed from the
norm of the thrust Ttotal , assumed to be the sum of each mo-
tor thrust applied at the CG, and the orientation of the body
relative to earth frame represented by the rotation matrix R0b.
This matrix can be computed from Euler angles φ , θ and ψ
with the classic DCM matrix as in [7].

T =




Tx
Ty
Tz


= R0b

−1




0
0

Ttotal


 (5)

2.2 Airframe characteristics

A custom quadrotor frame have been designed for this ex-
periment. It is a simple cross shape made of thin aluminum
bars to hold the motors and a spherical 3D-printed central
body around the electronic components and the battery, as
seen on the Figure 2. The reason for this choice is to have
a symmetrical shape in order to reduce or eliminate the de-
pendency between the generated drag and the heading of the
drone.

The general characteristics and components are summa-
rized in the Table 1. The autopilot software used is the Pa-
parazzi UAV System [12].

component characteristic
material aluminum & plastic (PLA)
motors T-motor F30

propellers Dalprop 5x4 (3 blades)
battery 3S, 2200 mAh

autopilot Tawaki v1 with Paparazzi
GPS U-blox M8

size (motor to motor) 47 cm
sphere diameter 22 cm

mass 896 grams
flight time 7 minutes

Table 1: Quadrotor characteristics

Figure 2: Quadrotor with custom spherical body shape
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3 CALIBRATION METHODOLOGY

Estimating the wind from the quadrotor motion requires
to estimate the drag parameters. The methodology applied
is similar to [7] with the measurement of the bank angles φ
and θ at different airspeed. One of the difference is that in-
stead of moving at constant ground speed in steady air, the
drone is controlled to stay at the same position in front a
WindShape wind generator, as seen Figure 3. The calibra-
tion is done inside a flight arena at ENAC (École Nationale
de l’Aviation Civile, Toulouse, France) also equipped with
an Optitrack motion capture system. Hence the position and
velocity is accurately controlled in closed-loop and the flight
can be considered in equilibrium.

Figure 3: Quadrotor during calibration in from of the Wind-
Shape wind generator

The dynamic equation 2 in equilibrium state, illustrated
by the Figure 4, directly provides a measurement of the drag
force from the bank angle and the mass. Without loss of gen-
erality, the vertical component of the thrust compensate the
weight and the horizontal thrust compensate the drag:
{

Ttotal cos(α) = Tz = mg
Ttotal sin(α) = Tx = Dx = ‖D‖

⇔ mg tan(α) = Dx

The calibration procedure is as follow:

• start the wind generator and measure the reference
wind speed with an anemometer (hot-wire in our case)

• takeoff and place the quadrotor at a distance corre-
sponding to the reference measurement

Wind

α

~T

~Tz

~Tx

Uz

Ux

~D

−mg ~Uz

Figure 4: Side view of the forces applied on the quadrotor
model in presence of horizontal wind

• when stabilized, change the heading to make one or
more full turn on itself

• record the attitude (φ , θ , ψ)

• repeat the procedure at a different wind speed

For each reference wind speed, a fitting algorithm is used to
map the relation between the bank angles (φ or θ ) and the
heading ψ with a sinusoidal form:

φ or θ = c1 sin(c2 ψ + c3) (6)

where the coefficient c1 is the magnitude of the oscillation,
equal to the incidence αeq at equilibrium state, c2 and c3 are
frequency and phase parameters, not used later on. The Fig-
ure 5 shows the bank angle φ as a function of the heading ψ
after a full turn. The rotation is not continuous, but made a
3s steps every after a rotation of 20◦. The reference speed
for this case is 6.57 m/s, corresponding to a 50% throttle of
the wind generator. The curve fitting is done with Matlab and
gives the result c1 = 0.1274 with a R-square of 0.9271.
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Figure 5: Roll angle φ against heading angle ψ after a com-
plete turn in from of the wind generator, the sinusoidal fitting
curve is in blue

Similar results are obtained for θ , which confirms this in-
dependence of the drag with β , and for the different reference
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speeds. The final result is presented with the Figure 6 that
represents the relation between the angle of attack αeq and
the reference air speed. As mentioned in the previous section
with equation 4, the relation is linear and the fitting curves
gives:

tan(αeq) = cα ∗Va

cα = 0.0262

with a R-square of 0.9998. It gives for our quad model with
a mass of 896 grams a coefficient k = mg ∗ cα = 0.230 in
equation 4.
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Figure 6: Relation between the incident angle α versus the
reference speed measured from a hot-wire airspeed probe at
the same distance from the wind generator

4 WIND ESTIMATION WITH KALMAN FILTER

This problem considers simultaneous estimation of 2D
aircraft Earth-axis velocity Vr = (Vrx ,Vrx) and wind velocity
components (Vwx ,Vwy). Both process and measurement equa-
tions are dependent on aerodynamic force described above.
The attitude and heading estimation (AHRS filter) is per-
formed through a fusion algorithm of low-cost inertial sen-
sors used for UAV navigation.

All the sensors embedded are low-cost, and therefore have
imperfections. The major error sources in the navigation sys-
tem are due to: - all of the disturbances (noises) that affect
the instruments; - the potential incorrect navigation system
initialization (e.g. on magnetometers sensor); - and the inad-
equacy between the real local Earth’s gravity value and the
one used for computation. The largest error is usually a bias
instability (expressed respectively in deg/hr for gyros and µg
for the accelerometers). All these measurements are obvi-
ously corrupted by additive noises for which it appears rea-
sonable to assimilate their stochastic properties to the ones
of Gaussian processes. Their covariances matrices have been
identified in [13].

Using these values, the state space representation corre-
sponding to Ms can be described in a linear form:

ẋ = Ax+Bu+ν and y =Cx+µ

where: x = [Vrx ,Vwx ,Vry ,Vwy ]
T ,u = [Tx,Ty] and y = [Vkx ,Vky ]

T

are the state, input and output vectors respectively. Moreover,
ν ,µ are the zero-mean Gaussian process noise vectors with
covariance matrix, Q, R.

Ms





ẋ =




−k
m 0 0 0
0 0 0 0
0 0 −k

m 0
0 0 0 0


x+




1
m 0
0 0
0 1

m
0 0


u+ν

(
Vkx

Vky

)
=

(
1 1 0 0
0 0 1 1

)
x+µ

Obviously, to implement these equation a discrete form is
used such that :

{
xk+1 = Adxk +Bduk−1 +νk

yk =Cdxk +µk

where Ad = exp(Adt),Bd =
∫ dt

0 exp(Aξ )Bdξ ,Cd = C are the
discrete-time state matrices and dt is the sampling time of the
system. Process and measurement equations becomes :

Md








Vrx

Vwx

Vry

Vwy




k+1

=




1− kdt
m 0 0 0

0 1 0 0
0 0 1− kdt

m 0
0 0 0 1


xk + . . .




dt
m − kdt2

2m2 0
0 0
0 dt

m − kdt2

2m2

0 0


uk−1 +νk

(
Vkx

Vky

)

k

=

(
1 1 0 0
0 0 1 1

)
xk +µk

Computing the rank of the observability matrix shows that
the system is fully observable at all speed. It can be men-
tioned this results from the linear relation of drag with air-
speed in equation 4. The case of a sphere without propellers
in a airflow would give a drag as the square of the airspeed
and a loss of observability at the zero airspeed, in addition
with the need of an Extended Kalman filter form.

In the later experiments, the process noise relative to air-
speed evolution is νVa = 0.05, the process noise relative to
windspeed evolution is νVw = 0.001 and the sensor noise as-
sociated to ground speed measurement is µVk = 0.1. Second
order terms (in dt2) can be neglected.

5 EXPERIMENTAL FLIGHTS

5.1 Indoor flight in controlled wind speed
The wind estimation algorithm is first evaluated with a

flight indoor in front of the wind generator used for calibra-
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tion. The goal is to evaluate the stability and convergence of
the estimation in a controlled environment. In this setup, the
wind is coming from a virtual north and the quadrotor is hov-
ering at a fixed position. Ground speed and orientation are
recorded from the telemetry and post-process by the Kalman
filter in a Matlab script.
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Figure 7: Evolution of the Kalman filter state vector over time
during indoor flight

The Figure 7 shows the four elements of the state vector.
The convergence time is around 10 to 20 seconds. The noise
on the estimated airspeed is low thanks to the low noise on the
measured ground speed (from motion capture) and the stable
airflow.
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Figure 8: Wind speed and direction compared to the reference
value from the wind generator; wind is coming from a virtual
north (π rad) at a speed of 3.8 m/s

The Figure 8 is the norm of the estimated wind speed
‖Vw‖ =

√
V 2

wx +V 2
wy and the wind direction. During this ex-

periment, the wind generator throttle was set to 40%, corre-
sponding to 3.8 m/s at the location of hovering with a direc-

tion of 180◦. As we can see on this plot, the estimated wind
converges to the reference values. The response time for the
direction is much faster than for the norm of the speed. This
can be explained by the fact that our model states that the
wind has a very slow evolution. Since the initial condition for
the state vector is zero, it takes some time to reach the final
value, but even if the norm is not yet correct, the direction of
the wind is already valid.

5.2 Outdoor flights
Several flights have been performed outdoor to record

telemetry data, with attitude from IMU and this time ground
speed from real GPS sensor. Only two relevant flights are pre-
sented in this paper. They were performed at Muret’s model
airfield (close to Toulouse, France) on the 20th of May 2021.
The wind conditions for that day are coming from public me-
teorological data and are reported in Table 2.

time speed direction
9 am no wind N/A

10 am 7.4 km/h (2.06 m/s) 110◦

11 am 9.3 km/h (2.58 m/s) 120◦

12 am 9.3 km/h (2.58 m/s) 70◦

Table 2: Wind condition on the day of the outdoor experiment

Figure 9: Trajectories for the outdoor flights: vertical profile
in red, horizontal square at constant altitude in blue

The first flight corresponds to the vertical profile (red tra-
jectory on Figure 9). The quadrotor goes up and down at a
vertical speed of 1 m/s and with the heading changing at con-
stant rate. The horizontal speed is close to zero. The state
vector evolution is plotted on Figure 10. As expected, the
noise on airspeed estimate is stronger than during indoor ex-
periment due to sensor noise, but still acceptable.

The vertical flight was done a bit after 10 am, so according
to Table 2 between 2 and 2.5 m/s, with a direction between
110◦ and 120◦. The speed of 2.2 m/s and the direction of
115◦ have been kept as a reference. The Figure 11 shows
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Figure 10: Evolution of the Kalman filter state vector over
time during outdoor flight (vertical profile)

the norm and direction of the estimated wind compared to
these reference values. It can be seen that both values are
converging smoothly to the expected values.
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Figure 11: Wind speed and direction compared to the refer-
ence value from public meteo data during the outdoor flight
(vertical profile)

The second flight is a square (blue trajectory on Figure 9)
at low altitude. As a consequence, the ground speed is chang-
ing, with horizontal acceleration when changing direction.
These variations can be seen in the airspeed vector on Fig-
ure 12. The wind vector is also showing some variations and
is less stable than with the previous case.

The square flight was done at 9:30, so according to Ta-
ble 2 between 0 and 2 m/s, with a direction around 110◦. The
reference speed of 1 m/s have been kept. The norm and direc-
tion are still converging, but with more variations due to the
changes in ground speed as mentioned before. Nevertheless,
all parameters stay in acceptable range and provide a valid
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Figure 12: Evolution of the Kalman filter state vector over
time during outdoor flight (square trajectory)

estimation of the wind components.
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Figure 13: Wind speed and direction compared to the refer-
ence value from public meteo data during the outdoor flight
(square trajectory)

6 CONCLUSION

A wind estimation filter based on the orientation and
ground speed of a quadrotor have been presented. Experi-
mental flights were conducted to compute the calibration pa-
rameters of the model and validate the results in controlled
indoor flight, as well as outdoor conditions.

The next step is the implementation of the Kalman filter in
the flight controller of the autopilot to provide real-time esti-
mation on-board. Such information can be useful to improve
navigation or even state estimation.
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Hybrid UAV Attitude Control using
INDI and Dynamic Tilt-Twist
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ABSTRACT

The increased search for the performance of Un-
manned Aerial Vehicles (UAVs) has led to an in-
terest in hybrid concepts like the tail-sitter UAV.
A tail-sitter UAV is capable of combining verti-
cal take-offs and landings (VTOL) with efficient
long-endurance forward flights. During hover,
the wings do not provide lift but instead act as
disturbance and limit the yaw response. Atti-
tude control based on direct quaternion feedback
does not take the differences in reaction speed
for the three axes into account. Tilt-twist con-
trol has been proposed to overcome this prob-
lem as it splits the faster tilt (pitch and roll)
from the slower and less important twist (yaw)
and is successfully applied to quadrotor control.
This paper proposes a novel tilt-twist controller
based on Incremental Nonlinear Dynamic Inver-
sion (INDI). But in tail-sitter UAVs, the lift vec-
tor can differ a lot from the tilt angle, espe-
cially when partly or fully transitioned to for-
ward flight. To address this, a dynamic tilt-twist
controller is proposed that redefines the twist ac-
cording to the transition angle. Simulations and
test flight tests are performed with the Neder-
Drone hybrid tail-sitter to show the increased
performance.

1 INTRODUCTION

The market for unmanned aerial vehicles is increasing [1].
Due to the development of small processors, UAVs became
widely available for the public [2]. Many companies are cur-
rently developing UAVs for various purposes [3] [4]. The
reasons to use this type of aircraft are their low cost, high
maneuverability, and ease of use. Quadcopters can perform
VTOL but have limited flight endurance. Fixed-wing UAVs
can cover larger distances than quadcopters but are not able
to hover. A solution to achieve both is to use a hybrid UAV
(Figure 1).

The most common hybrid UAV types are tilt-rotors [5],
tilt-wings [6], tail-sitters [7] and quadplanes [8]. Both the tilt-
rotors and tilt-wings have components that can rotate during
the transition between hover and forward flight. A quadplane

*Email address(es): c.dewagter@tudelft.nl

Figure 1: The NederDrone, capable of performing VTOL.
The tail-sitter has 20 actuators (12 motors and 8 elevons) and
the energy is stored in a hydrogen tank.

uses different actuators for hover and forward flight. A tail-
sitter uses the same actuators in both flight phases and rotates
the entire body of the aircraft. One of the challenges with this
type of UAV is the controllability during the landing phase,
especially in turbulence [9]. During hover, some of the actu-
ators become less efficient while the wings create important
perturbing forces in turbulent or hard wind.

1.1 NederDrone

The tail-sitter used for this project is the NederDrone [7],
shown in Figure 1. The NederDrone has two wings that
carry twelve engines and hold eight elevons. The twelve en-
gines are all used during hover, but only four are used dur-
ing forward flight. One characteristic is that this UAV can
achieve much larger roll moments than pitch moments, and
even smaller yaw moments while the yaw also experiences a
lot of aerodynamic damping from the wings.

Simple quaternion control finds the shortest rotation be-
tween the current attitude and desired attitude. It then as-
sumes that all three axes can perform the desired rotation at
the same time. In hybrid aircraft like the Nederdrone where
not every axis is as fast, this results in either undesired ro-
tations or slowing down the fast axes to match the slowest.
Both options are undesirable. Tilt-twist control was proposed
to address this problem by splitting the tilt error (controlled
by the faster pitch en roll rotations) and the twist error (con-
trolled by the slower yaw axis) [10]. But this work used a
classical controller.

Recent advances in control have shown the benefits of
sensor-based approaches like Incremental Non-linear Dy-
namic Inversion (INDI) [11]. But INDI assumes that all ro-
tations can be executed at the same time and that the control
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demand can be met by the actuators. In hybrid aircraft such
as the Nederdrone, which fly in harsh weather conditions, this
is not the case.

This paper, therefore, proposes a combination of the tilt-
twist method and INDI control, called the dynamic tilt-twist.

In Section 2 the theory behind the feedback error is given
for quaternion, tilt-twist, and dynamic tilt-twist. Section 3
describes the methodology and results for the simulation and
real-life test. Conclusions are drawn in Section 4.

2 METHOD

2.1 Axis definition
An axis system uses a body-fixed system, where the z-

axis is parallel to the gravitational force during hover when
the pitch and roll angles are zero. The x-axis goes through
the belly of the UAV and the y-axis through the right wing
(see Figure 2). In forward flight, the x-axis thereby becomes
perpendicular to the gravitational force.

Figure 2: Body-fixed axis definition. If the pitch and roll
angles are 0 degrees, the z-axis is parallel to the gravitational
force vector.

2.2 Quaternion
The quaternions describe the transition of the attitude

in one single rotation [12], with a rotation η and a three-
dimensional unit vector component r as in

q =

[
cos(η2 )
r sin(η2 )

]
=
[
qi qx qy qz

]>
(1)

The current attitude is defined as

qc =




qci
qcx
qcy
qcz


 (2)

and the desired attitude (input) is

qd =




qdi
qdx
qdy
qdz


 (3)

The attitude error then becomes

qerr = qd ⊗ q−1c (4)

qerr =




qerr1
qerr2
qerr3
qerr4


 =




qd0 qd1 qd2 qd3
−qd1 qd0 qd3 −qd2
−qd2 −qd3 qd0 qd1
−qd3 qd2 qd1 qd0


 qc (5)

The controller then sends the errors in x-, y- and z-axis to
the respective actuators through a PD reference generator. δa,
δe and δr represent the aileron deflection, elevator deflection
and rudder deflection respectively.

δa = −2(kpqerr2 + kdq̇err2) (6)

δe = −2(kpqerr3 + kdq̇err3) (7)

δr = −2(kpqerr4 + kdq̇err4) (8)

If not all axes respond at the same speed, this results in
undesired intermediate thrust vectors which disturb the posi-
tion control in the position control loop.

2.3 Tilt-Twist
In hover, the two rotation angles that influence the posi-

tion control are the pitch and roll. This is referred to as the tilt
angle. The remaining angle is then called twist. For the Ned-
erdrone, the tilt angles are much faster in response time than
the twist since the large wings dampen the turn rate around
the z-axis a lot and the torque difference of the hover motors
is limited. In the presence of turbulence, the twist can even
get saturated.

To address this, the tilt should be treated separately from
the twist such that they can have differences in response
speed. This is described as tilt-twist control [10].

2.3.1 Tilt error

The first part of the tilt-twist method consists in calculating
the tilt error. The error is calculated using the rotation matri-
ces to align the current frame with the desired frame

R(q) =

[
q2i+q

2
x−q2y−q2z 2(qxqy+qzqi) 2(qxqz−qyqi)

2(qxqy−qzqi) q2i−q2x+q2y−q2z 2(qyqz+qxqi)

2(qxqz+qyqi) 2(qyqz−qxqi) q2i−q2x−q2y+q2z

]
(9)

Rotation matrices for both the current (Rc) and the de-
sired (Rd) attitudes are computed as

Rd = R(qd) Rc = R(qc) (10)

The total tilt error can be defined as the shortest rotation
between the actual and desired z-axis as illustrated in Fig-
ure 3. Note that the axis definition [10] differs from the one
used in this work.

Rd = RerrRc (11)

Equation 11 can be rewritten as
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Figure 3: The tilt and twist error definitions. In the tilt plot,
the pitch error is 10◦, the roll error 5◦ and the yaw error is
60◦. In the twist plot, the pitch error is 0◦ and the roll error
0◦.

Rerr = RdR
>
c =



r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3


 (12)

The third row component of matrix Rerr then provides
the tilt error. The x-component of the tilt error is given by

Tilt error1 , εx = −atan2(r3,2, r3,3) (13)

where atan2 is the inverse tangent. The y-component is
given by

Tilt error2 , εy = atan2(r3,1, r3,3) (14)

2.3.2 Twist error

The twist error is calculated as the angle error around the
body fixed z-axis. An intermediate coordinate frame is de-
fined that reflects the current attitude after removing the tilt
error. This is achieved by using the rotation matrices

Rd =



rd1
rd2
rd3


 Rc =



rc1
rc2
rc3


 (15)

where the elements r represent vectors with the body axes
expressed in the vehicle frame. The total tilt error then be-
comes

Tilt error , εtilt = cos−1 (r>d3 · r>c3) (16)

Next, the unit length axis is defined as

k =
r>c3 × r>d3
|r>c3 × r>d3|

(17)

As the rotation needs to happen in the vehicle frame, the
unit vector k is rotated to the vehicle frame

vb = Rck =



vbx
vby
vbz


 (18)

Then, a rotation matrix is defined which rotates a vector
around a vector with a given angle. This is accomplished by
using the Rodrigues rotation formula1, where the angle is εtilt
and the vector is vb. The rotation becomes

Rv =

{
I, εtilt = 0

I − v sin(εtilt) + v2[1− cos(εtilt)], εtilt 6= 0

(19)
where

v =




0 −vbz vby
vbz 0 −vbx
−vby vbx 0


 (20)

The error is then expressed in the body frame by multi-
plying Rv with the rotation matrix of the current attitude of
the UAV Rc

Rp = R>v Rc (21)

where

Rp =



rp1
rp2
rp3


 (22)

The absolute twist error, illustrated in Figure 3, can be
found using the x-components of Rp and Rd with

εtwist = cos−1(r>p1 · r>d1) (23)

To determine the sign of the twist error, the y component of
Rp is used in

εsign = cos−1(r>p2 · r>d1) (24)

Finally, when εtwist is above 90◦, the sign of the twist error
becomes inverted and is corrected with

Twist error , εz =

{
εtwist, εsign ≤ π

2

−εtwist, εsign >
π
2

(25)

Together, the total feedback error is set as

Feedback error , ε =



εx
εy
εz


 (26)

The PD reference generator in the total INDI controller
[11] is then written as

δa = kpεx − kdε̇x (27)

δe = kpεy − kdε̇y (28)

δr = kpεz − kdε̇z (29)

By using gains that result in slower reaction on the twist,
time-separation of tilt and twist is achieved.

1https://mathworld.wolfram.com/RodriguesRotationFormula.html, Oct
2020
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-16 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

2.4 Comparison of quaternion and tilt-twist

Figure 4 illustrates the difference between quaternion
feedback tilt-twist feedback on a purely kinematic model with
rate-limited yaw control. A simulation is performed where
there is a small pitch and roll error and a large yaw error.
The rate-limited yaw takes more time to converge than pitch
and roll, but more importantly, in quaternion control, the pitch
and roll only reach their desired values when the yaw has con-
verged. Since errors in tilt also affect the position control in
the outer loop, this will result in larger position errors for the
simple quaternion control. The tilt-twist method addresses
this problem.

0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 4: Error handling comparison between tilt-twist and
quaternion feedback, in Euler angles. The tilt error is also
shown, which is linked to the thrust vector.

2.5 Dynamic Tilt-Twist

In the tilt-twist method, the twist component is always
measured around the body fixed z-axis. This is ideal in
quadrotors but in hybrid aircraft such as the Nederdrone,
when there is wind, the UAV hovers at pitch angles of up to 50
to 70 degrees nose down from hover. In that case, the body tilt
axis does not correspond to the lift vector anymore. The goal
of tilt-twist—to have the actual lift vector make the shortest
rotation—thereby becomes invalid. Moreover, in these condi-
tions, the additional airflow over the main wing, fortunately,
improves the achievable turn rate around the x-axis.

To address these conditions, a dynamic tilt-twist con-
troller is introduced. The tilt axis is redefined to be paral-
lel with the gravitational vector. To align the twist vector
with the gravitational vector the rotational matrix Ra is used
which includes the pitch (θ) and roll (φ) angle:

Ra(θ, φ) =




cos−θ sin−θ sin−φ sin−θ cos−φ
0 cos−φ − sin−φ

− sin−θ cos−θ sin−φ cos−θ cos−φ




(30)
Thereby, the rotation matrices from Equation 10 are rede-

fined as

Rd = RaR(qd) (31)

Rc = RaR(qc) (32)

Then the same tilt-twist controller is used as in the previ-
ous section, except for the last step where the actuator deflec-
tions need to be compensated again for the dynamic tilt angle
using the inverse rotation R−1a

Feedback error , ε =



εx
εy
εz


R−1a (33)

3 SIMULATION AND FLIGHT TEST

The paparazzi autopilot system [13] and simulator with a
Nederdrone model are used to perform the simulations and
flight tests. The controller is an INDI controller [14] with a
modified linear control input. Three different reference gen-
erators are compared: quaternion feedback, tilt-twist, and dy-
namic tilt-twist. The setup is identical for the simulations and
the flight test. The tests consisted of flying the Nederdrone
back and forth between two waypoints where it needed to
hover for three seconds. To induce errors in yaw and highlight
the differences in the different controllers, a heading offset
ψchange is artificially added each time the Nederdrone leaves
a waypoint. Finally, the trajectory errors are compared since
optimizing trajectory tracking is the overarching goal.

3.1 Results
3.1.1 Simulation

Before the flight tests, the different types of feedback errors
were tested in a simulation. The same controller settings were
used for the flight test. The heading offset (ψchange) during
the simulation was set to 160◦. The simulation results are pre-
sented in Figure 5. During the simulation, no wind was taken
into account. It can be seen that the quaternion feedback re-
sulted in irregular behavior. The tilt-twist and dynamic tilt-
twist methods were much more consistent.

3.1.2 Flight test

Flight tests in windy conditions were performed with the
Nederdrone on a path (orange) at about 50◦ angle with the
wind. The heading offset, ψchange, was set to jumps of 45◦

for the tilt-twist controllers but due to stability issues only to
30◦ for the quaternion controller (See Figure 6). Higher head-
ing offsets could result in an unsafe flight when the quaternion
feedback controller is used.
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Figure 5: Flight paths during simulation (quaternion, tilt-twist, dynamic tilt-twist). The quaternion feedback method had
problems with handling the yaw angle error. Both the tilt-twist and the dynamic tilt-twist method showed more stable behavior.
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Figure 6: Commanded and actual heading angle ψ where the artificially added jump in commanded heading simulates situations
where a large heading error is present.
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Figure 7: Flown path during flight test, the wind conditions were equal for all flights

The flight paths of the Nederdrone can be seen when us-
ing the three controllers in Figure 7. Table 1 shows the nu-
meric comparison of the achieved position accuracy as mea-
sured during the same flight in the same conditions by switch-
ing the controller in flight. The quaternion controller shows
some irregular behavior that depends on the difficulty to reach

the desired yaw angle. The tilt-twist method is shown to yield
more consistent results than the quaternion controller in the
same conditions. Finally, the dynamic tilt-twist method im-
proves the behavior even further.

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 135
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Table 1: Test results, distance from the reference line.
Average distance (m)

Quaternion 3.27
Tilt-twist 2.74
Dynamic tilt-twist 2.08

4 CONCLUSION

This paper presented the combination of INDI control
with tilt-twist control and proposed an improvement for hy-
brid aircraft where the lift vector does not always corre-
spond to the thrust vector, namely the dynamic tilt-twist
method. The simulation and the flight test demonstrated that
the quaternion feedback method had problems following the
required path, whereas the tilt-twist method showed some im-
provements and the dynamic tilt-twist showed the best results.
The dynamic tilt-twist method is suitable for tail-sitters that
vary their pitch and roll angles during hover and experience
yaw/position control problems.
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ABSTRACT

In recent years, aircraft research has focused its
attention on propulsion systems that control ve-
hicle attitude and flight path by Thrust Vector
Control, TVC. The propulsion system with an
integrated TVC mechanism is characterized to
be provided better maneuverability to the aircraft
through moments that allow rotating the flying
vehicle helping to the attitude control. This pa-
per proposes a sliding-mode-based TVC for an
aircraft, focusing our attention on controlling the
angle of attack through the convergence flight-
path angle and the pitch angle. Using a rocket
as a study system, we firstly present its dynamic
model, assuming that the shape of the Earth is
an ellipsoid. Then, a sliding-mode-based TVC is
proposed to guarantee the aircraft attitude con-
trol, regulating the effective angle of attack. Fi-
nally, some result simulations show the perfor-
mance of the proposed controller under different
conditions.

1 INTRODUCTION

The initiative to make space flights more accessible and
cheap has currently experienced rapid development on many
topics as aerodynamics, fluids dynamics, propulsion, con-
trol, structural dynamics, to name but a few. In recent years,
the propulsion systems that include TVC has attracted re-
searchers’ attention due to allowing change the flight path,
correct a deviation from the desired trajectory, or change the
altitude during the powered flight, [1], [2], [3]. In this way,
TVC is used to pitch and yaw aircraft controls based on the
main rocket nozzle. As part of the thrust system, the gimbal
mechanism is in charge to move the nozzle in two or three
degrees of freedom through actuators. Thus, for small air-
craft, TVC based on electromechanical actuators is the most
popular. Structural analysis, gimbal mechanism, control, and
sizing are active areas of research of TVC.

In this paper, a thrust vector controller actuating in a
single-engine rocket is proposed. Although operations of the
rocket flight have many stages, we focus our attention on
rocket landing, in particular, the flight control to compensate
disturbance forces due to the influence of the environment and
the parametric uncertainties of the rocket. Thus, the attitude

*Email address: 192220109@upmh.edu.mx

Figure 1: a) Aircraft with an integrated TVC mechanism, b)
Gimbal mechanism: A gimbal is essentially a universal joint.

rocket control with TVC is proposed using embedded motion
equations of pitch attitude and inertial Z-axis drift position.
Furthermore, from aircraft aerodynamics, it’s known that the
aircraft does not have a straight path to its destination; on the
contrary, regularly, there is a slight deviation concerning the
angle route or trajectory called the track, while its deviation
is known as the angle of drift. Thus, the effects related to the
wind must be added with the lifting and dragging to keep our
vehicle stable. In this way, assuming some aircraft parameters
are unknown and the wind speed is uncertain, a sliding-mode-
based TVC is proposed to guarantee the pitch angle and drift
position convergence. In addition, some stability conditions
are guarantee using the Lyapunov theory. Finally, to vali-
date the proposed approach, some simulations under different
conditions are presented. The Sliding Mode Control (SMC)
is characterized to provide robustness to parametric uncer-
tainty and external perturbations using high-speed switching
feedback control, [4], [5]. Due to its ability to deal with dis-
turbance attenuation and robustness, the SMC is used com-
monly in flight control design or in combination with other
approaches as backstepping or adaptive control. [6], [7], [8],
[9], [10], [11].

This paper is organized as follows. In Section 2, the math-
ematical rocket model is presented with an integrated TVC
system. In Section 3, a sliding mode control to guarantee
the convergence of angle of attack through the convergence
flight-path angle and the pitch angle is proposed. In Section
4, simulation results are presented under different conditions.
Finally, some conclusions are presented in Section 5.

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 137
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2 ROCKET DYNAMICAL MODEL

In this section, we present the rigid body analysis to ob-
tain the rocket non-linear motion equations.

Figure 2: Reference system B (rocket) relative to ECI system.

2.1 Rotational kinematics
From the rotational kinematics, we describe the orienta-

tion of the aircraft by the Euler angles: roll (ψ), pitch (θ),
and yaw (φ), see Figure 2, [12]. We start defining two refer-
ence systems: the Earth-Centered Inertial system (ECI) and
the Body system (B) that refers to the aircraft frame. So, the
rotational kinematics of the rocket to ECI frame is defined as:


φ̇

θ̇

ψ̇


 =

1

cos θ




cos θ sinφ sin θ cosφ sin θ
0 cosφ cos θ − sinφ cos θ
0 sinφ cosφ





p
q
r




(1)
where p, q, r represents the components of angular velocity.

2.2 Translational Dynamics
In this part, we will define the forces that act on the rocket.

Specifically, we refer to the thrust force (~Fthrust), aerody-
namic force (~Faer) defined concerning the reference system B
(Body) while the gravity force (~Fg) respect to ECI reference
system. Applying the Second law’s Newton (for a constant
mass) concerning the ECI reference system, we have that

~a =



ẍ
ÿ
z̈


 =

1

m
~F

=
1

m

[
TBECI(~Faer + ~Fthrust) + ~Fg

]
(2)

where TBECI is the transformation matrix defined by TBECI =
R(x, φ)R(y, θ)R(z, ψ) and R(x, φ), R(y, θ), R(z, ψ) are the
rotation matrices corresponding to each axis.

In the following sub-section, we will show how are
defined the principal force applied to the rocket, that is,
~Fthrust, ~Faer, and ~Fg .

2.2.1 Thrust Force

The thrust delivered by the rocket engine can be calculated
by:

T = ṁve + (Pe − P0)Ae (3)

where ṁve is the propellant burned escaping a constant ve-
locity, (Pe−P0)Ae is the pressure difference, between inside
the nozzle (Pe) and outside the nozzle (P0), on an escape sur-
face (Ae). Assuming that the thrust is constant T, we proceed
to determine the thrust vector components, which allows us
to define the TVC, see Figure 1a. Using the relationship of

Figure 3: a) ~Fthrust Components b) y-component example

right triangles, from Figure 3 we can define the components
of the TVC. Thus, the thrust y-component is defined as

Fthrusty = T sin δψ (4)

while the thrust z-component is given as

Fthrustz = T sin δθ (5)

Finally, using that T ′ = T cos δψ we have that thrust x-
component is given as

Fthrustx = T ′ cos δθ

Fthrustx = T cos δψ cos δθ
(6)

In this way, the ~Fthrust, which include the TVC, is defined
as:

~Fthrust =



Fthrustx
Fthrusty
Fthrustz


 =



T cos δψ cos δθ

T sin δψ
T sin δθ


 (7)

2.2.2 Aerodynamic Forces

When the rocket is in flight, two important aerodynamic
forces are generated: the lift ~L produced by the rocket sur-
faces, and the drag ~D produced by the air resistance of these
same surfaces. Assuming a simple geometry of the rocket,
we have that the lift and drag forces can be defined as a nor-
mal force N , the axial force A, and a lateral slip force S, see
Figure 4.
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Figure 4: Aerodynamic force: a) xz plane, b) yz plane

Let the axial force A defined directly as A =
1

2
CAρV

2
air ·

surface where CA represents the aerodynamic coefficient
given A, ρ the density of the air, Vair the airspeed, and
surface the total surface where the air affects. For the nor-
mal and slip forces, we define them in terms of the real dis-
placement and the wind disturbance (αw), such that normal
force N and the lateral slip force S are defined as:

N = Nα sinα (8)

S = Sβ sinβ (9)

where Nα is the the normal force dependent on the angle of
attack α, Sβ is the lateral slip force dependent on angle of slip
β with α = θ + γθ + αwθ and β = ψ + γψ + αwψ

In Figure 5 can be seen the actual speed and direction
of displacement V , which is defined aerodynamically as the
track of the rocket and the angle formed by it and the x axis,
or y axis, generally known as the drift angle, γ = ż

V . From
here, other terms arise, such as the effective wind velocity
~va.e., the wind disturbance Vp.a., for pitch (θ) and roll (ψ)
angles, respectively. Thus, the normal force and the lateral
slip force affected by the angle of attack are defined as:

Figure 5: Aerodynamic force with wind disturbance: a) xz
plane, b) yz plane

Nα =
1

2
CNρV

2
air · surface (10)

Sβ =
1

2
CSρV

2
air · surface (11)

where CN is the aerodynamic coefficient given the normal
force, N , and CS represents the aerodynamic coefficient
given lateral slip force, S. In this way, the aerodynamic forces
can be defined as:

~Faer =



Faerx
Faery
Faerz


 =



−A
S
−N


 =




−A
Sβ sinβ
−Nα sinα


 (12)

REMARK. The components (N ,A,S) can be used for
ideal aerodynamic performance.

2.2.3 Gravity Force

Unlike other approaches, in this case, we consider the earth’s
geometry as a WGS84 ellipsoid, proposed in 1984 by the
World Geodesic System, currently called Geoid. This as-
sumption is based on the principal rocket mission schedule.
In Figure 6 we can observe a cross-section of the ellipsoid
earth geometry, where the gravitational acceleration is mod-
eled in geocentric inertial coordinates, [13], getting the grav-
ity as g = gr + gλ, where each component is defined as:

gr = − µ
r2

[1− 3J2(
R0

r
)2P2(cos Φc) (13)

− 4J3(
R0

2
)3P3(cos Φc)− 5J4(

R0

r
)4P4(cos Φc)]

gλ = −3
µ

r2
(
R0

r
)2 sin Φc cos Φc[J2 +

1

2
J3(

R0

r
) sec Φc

(5 cos2 Φc − 1) +
5

6
J4(

R0

r
)2(7 cos2 Φc − 1)] (14)

where J2 = 1.0826e−3, J3 − 2.54e−6 and J4 = −1.61e−6

are the oblateness terms (dimensionless) or spherical harmon-
ics of an ellipsoid earth, approximated by empirical data to
better approximate the earth geometry.

Figure 6: Gravity (Ellipsoidal Earth)

Taking the corresponding transformation of gravity in the
geocentric coordinate system to the Cartesian coordinate sys-
tem about the ECI reference system, [14], we have:

gx = − µ
r2

[
1 + 3

2j2(R0

r )2(1− 5( zr )2)
]
x
r (15)

gy = − µ
r2

[
1 + 3

2j2(R0

r )2(1− 5( zr )2)
]
y
r (16)

gz = − µ
r2

[
1 + 3

2j2(R0

r )2(3− 5( zr )2)
]
z
r (17)
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where µ is the universal gravitational parameter, R0 the dis-
tance between the surface location on Earth and the center of
Earth, h the height from Earth’s surface to the rocket, r the
distance between the rocket and the earth center.

Finally, we know that ~Fg = m~g, so the gravity force is
defined as:

~Fg = m



gx
gy
gz


 = m



− µ
r2

[
1 + 3

2j2(R0

r )2(1− 5( zr )2)
]
x
r

− µ
r2

[
1 + 3

2j2(R0

r )2(1− 5( zr )2)
]
y
r

− µ
r2

[
1 + 3

2j2(R0

r )2(3− 5( zr )2)
]
z
r




(18)

2.3 Rotational Dynamics
From Euler’s second law for a rotating rigid solid, which

states that the rate of change of angular momentum ~̇L about a
fixed point (or center of mass of the body), is equal to the sum

of the moments ~M that act on that body, we have that ~M = ~̇L
where the angular momentum ~L is defined as ~L = Ĵ · ~ω with
~ω the angular velocity and ~J the moment of inertia. Thus, the
angular acceleration ~ω is given as, [15]

~̇ω =



ṗ
q̇
ṙ


 = Ĵ−1

[
~M − ~ω ×

(
Ĵ · ~ω

)]
(19)

Due to the sum of the moments ~M acting on the rocket are
produced by the thrust forces and the aerodynamic forces
while the gravity acts uniformly over the entire rocket, it does
not create a moment, we have that

~M = ~Maer + ~Mthrust (20)

where ~Maer = ~rc.p. × ~Faer represents the aerodynamic
forces acting on center of pressure (c.p.) as the Figure 5,
while ~Mthrust = ~rgim × ~Fthrust is the thrust force from
the gimbal of the nozzle as the Figure 1 a) with ~rc.p. =[
−Xc.p. 0 0

]
the distance between the c.p. and the c.g.,

and ~rgim =
[
−Xgim 0 0

]
the distance between the gim-

bal joint of the nozzle and the c.g. The gyro-axis is the center
of gravity (c.g.).

It is correct to mention that the moment of inertia, pro-
duced by the rocket’s opposition to moving, calculated by
rocket geometry, is variable at each instant of time. So for
simpler terms, it will be constant in the rotational dynamics.
Now, if we align the axes of the body with the axes of the ECI
reference frame, we can reduce the tensor as follows

Ĵ =



Jxx 0 0
0 Jyy 0
0 0 Jzz


 (21)

Substituting (21) and (20) in (19), we have that the rotational
dynamics is defined as:



ṗ
q̇
ṙ


 =




−qr(Jzz−Jyy)
Jxx

[−Xc.p.Nα sinα+XgimT sin δθ−pr(Jxx−Jzz)]
Jyy

[−Xc.p.Sβ sin β−XgimT sin δψ−pq(Jyy−Jxx)]
Jzz


 (22)

Finally, we have the complete rocket dynamical model com-
posed of rotational kinematics, translational dynamics, and
rotational dynamics. That is, the equations (1), (2) and (22),
respectively.

2.4 Rocket Model Reduction
In this work, we focus on compensating the wind dis-

turbance by controlling the attack angle by the convergence
flight-path angle and pitch angle. Such that the longitudinal
rocket dynamics will be used.

Given that depth in y-axis does not exist, since it is a
plane, we have that angles φ and ψ, and their derivatives, are
not considered. So we have that the slip S in this direction is
zero. In this way, the control angle of the nozzle δψ which
moving in combination with planes xy and yz is zero. Thus,
the rocket dynamics on the xz plane is given as:

ẍ = [cos θ(T cos δθ −A)− sin θ(T sin δθ −Nα sinα)]
1

m
+ gx

z̈ = [(sin θ)(T cos δθ −A) + (cos θ)(T sinα)]
1

m
+ gz

θ̈ = [−XcpNα sin(α)) +XgimT sin δθ]/Jyy

where α = θ + γθ + αwθ is the effective angle of attack
with γθ = ż/V the flight-path (drift) angle. Due to the study
is centered on the attitude control of the rocket during the
descent phase, in this paper, we use the equations of height
(z) and attitude pitch (θ) only. That is:

z̈ = (T cos(δθ)−A)
sin(θ)

m
(23)

+(T sin δθ −Nα sin(α))
cos(θ)

m

− µ
r2

[1 +
3

2
j2(

R0

r
)2(3− 5(

z

r
)2)]

z

r

θ̈ = [−XcpNα sin(α) +XgimT sin(δθ)]/Jyy (24)

Given that TVC is applied to small angles (≈ 4◦ − 15◦), we
assume sin(x) = x and cos(x) = 1, we have that rewriting
(23)-(24) in state-space, with αwθ = 0, the rocket dynamics
will be defined as

ẋ = f(∗)x+ g(∗)δθ (25)

where x = [x1 = z, x2 = ż, x3 = θ, x4 = θ̇]T ∈ <4, δθ is
the rocket thrust vector control,

f(∗) =




0 1 0 0
gz

Nα
mV

T−A
m − Nα

m 0
0 0 0 1

0 −XcpNαV 0 −XcpNαJyy




g(∗) = [0, Tm ,
XgimT
Jyy

]T with gz = − µ
r2 [1+(9

2j2(R0

r ))2] zr for

− 15
2 j2(R0

r )2( zr )2 ≈ 0. Now, we are in conditions to proceed
to design a controller to regulate the angle of attack using
(25).
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3 CONTROLLER DESIGN

Notice that (25) is not in a lower triangular form such that
approach as backstepping can not be applied. Assuming that
some aircraft parameters are not entirely known and the wind
speed is uncertain, this paper proposes a sliding-mode-based
TVC.

To control the flight-path angle, γθ and the pitch angle θ
simultaneously through the TVC, we propose a control law
as

δθ = 1/g2(−Kdsign(S1)) (26)

where S1 = x1 + x4 represents the sliding surface, g2 =
XgimT
Jyy

, and Kd > 0 as feedback gain. From SMC theory,

to guarantee switching, the condition S1Ṡ1 < 0 should be
satisfied, [4].

Proposition: Consider (26) to control a flight-path, z an-
gle and pitch angle θ in a rocket. Then convergence to the
origin is assured, in finite time tf = |S1(t0)|

σ , if Kd is large
enough for any practical initial conditions.

Proof: Consider the following Lyapunov function V =
1/2S2

1 whose total derivative is given as

V̇ = S1Ṡ1 = S1(ẋ1 + ẋ4)

= S1(x2 −
XcpNα
V

x2 −
XcpNα
Jyy

x4 +
XgimT

Jyy
δθ)

= S1([1− XcpNα
V

]x2 −
XcpNα
Jyy

x4 +
XgimT

Jyy
δθ)

= S1([1− XcpNα
V

]x2 −
XcpNα
Jyy

x4 −Kdsign(S1))

≤ −Kd|S1|+ |S1|(Λ1 + Λ2) = −Kd|S1|+ |S1|Λ
≤ −σ|S1| ∀S1 6= 0 (27)

where σ = Kd−Λ,|[1− XcpNα
V ]||x2| ≤ Λ1, XcpNalphaJyy

||x4 ≤
Λ2, with Λ1 > 0, Λ2 > 0, |x2| ≤ Vx2 and |x4| ≤ Vx4. Hence,
in order to prove that S1 → 0 in finite time, we can always
choose Kd > Λ in such a way that σ > 0 guarantees the
existence of a sliding mode at S1 = 0 at time tf = |S1(t0)|

σ .
Thus, a trivial solution that satisfy S1 = 0 is given as x1 =
x4 = 0, i.e. z = θ̇ = 0.

4 NUMERICAL RESULTS

In this section, we present the numerical results to show
the performance of the proposed controller (26) under differ-
ent conditions. The simulations were conducted on Python
under Windows 10©. The parameters of the rocket used
in the simulations are Nα = 4.46477N , A = 6.09525N ,
m = 570 × 103kg, T = 7.605 × 106N , Xgim = 21m,
Xc.p. = 10m, Jyy = 3.2 × 107kgm2, J2 = 1.0826 × 10−3,
µ = 3.986×1014m

3

s2 ,R0 = 6.371×106m, r = 6.372×106m
and V = 400ms , [16]. The simulation’s goal is to guaran-
tee the control of the angle of attack by assuring the con-
vergence of the flight path and the pitch angle. The initial
conditions used in the simulations are: z = ż = θ̇ = 0 with
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Figure 7: a) Performance under αwθ = 0, b) TVC input con-
trol (δθ), c) Drift angle (γ), d) Angle of attack (α)

θ = 0.17453. Finally, for simulations, was used a feedback
gain of Kd = 10.

In the first simulation, we consider that the wind distur-
bance is zero, that is, αwθ = 0. In Figure 7 a) we observe how
the states z, θ converge to the desired value 0, while in Figure
7 b) we show the performance of the TVC input control (δθ)
within the band of the angle allowed. Figure 7 c) and d) are
shown how the drift angle and angle of attack tend to zero,
respectively. Notice the convergence relations between z, θ
and γ, α, respectively. In the second simulation is proposed
two kind of wind disturbances. In the first case the wind dis-
turbance is defined as αwθ = sin(ηt) + ∆ with η = 2 and
∆ = 3, see Figure 8. As in previous case we can notice
the robustness of the controller to compensate the paramet-
ric uncertainty and the disturbances. In the second case, see
Figure 9, we assume that the wind disturbance is defined as a

Gaussian noise, that is, αwθ = 1
(2πε2)e

−(o−ζ)2
(2ε2) where ε = 1,

ζ = 0.03. As previously, we can notice that the controller can
compensate the disturbance and guarantee the convergence of
the θ and ż to zero.

A comparative performance indices of the proposed con-
troller and LQR controller is presented in Table 1 where ISE
represents the Integral Square Error and IAE the Integral Ab-
solute Error.
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Figure 8: a) Wind disturbanceαwθ as a sinusoidal function, b)
Performance including wind disturbance, c) TVC input con-
trol, d) Angle of attack

Table 1. Performance Indices: ISE,IAE

Proposed ISEθ = 0.0147 ISEz = 0.0756
IAEθ = 0.1962 IAEz = 0.4807

LQR ISEθ = 0.0439 ISEz = 0.0376
IAEθ = 0.3669 IAEz = 0.3242$

5 CONCLUSION

A complete dynamical model of the rocket, using a TVC,
is presented. A reduced dynamical of the rocket is proposed
to control the angle of attack, which allows us to reduce the
drift in flight through TVC. A model-free sliding-mode-based
TVC is presented to guarantee robustness in the presence of
parametric uncertainties and wind disturbances. As a part
of the Master thesis in Aerospace Engineering at Universi-
dad Politecnica Metropolitana de Hidalgo, Mexico, an exper-
imental rocket is being developed to validate the proposed
approaches, see Figure 10.
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Quaternion-based attitude sliding mode control with
disturbance rejection observer for a quadrotor

J. Ayala-Olivares*, R. Enriquez-Caldera†, and J.F. Guerrero-Castellanos‡

Intituto Nacional de Astrofı́sica Óptica y Electrónica, Benemérita Universidad Autónoma de Puebla

ABSTRACT

This work presents a Slide Mode Control (SMC)
for the attitude of a quadrotor under unknown
disturbances and whose main characteristic is the
use of the quaternion mathematics for modeling
the system. An extended state observer (ESO) is
designed to estimate unknown disturbances and
uncertainties. Tests are carried under a previ-
ously defined smooth trajectory and the refer-
ence quaternion is calculated, and the controller
is able to follow the reference to keep the de-
sire orientation. Numerical simulation is shown
in order to demonstrate the effectiveness of the
proposed control law.

1 INTRODUCTION

1.1 Motivation and Background
A quadrotor is a multi-engine helicopter powered by four

engines. These vehicles are easy to build and maintain,
and allow very good maneuverability in three-dimensional
spaces. In their early days, these vehicles were very poor
in terms of computational power, payload capacity and ma-
neuverability. However, given the advances in electronics,
which on the hardware side have allowed the miniaturization
of its components, and on the software side has allowed the
flexibility of the tasks, it has been achieved that today the
quadrotors are much smaller, lighter and with such compu-
tational power that has resulted in vehicles to perform some
tasks autonomously [1].

Two subsystems can be considered when dealing with
mathematical models of quadrotors: rotational and transla-
tion dynamics [2]. These subsystems provide a cascade struc-
ture where translational motion is based on rotational dy-
namics [3]. Therefore, attitude control is the main part to
fulfill trajectory-tracking in the space. This is not a simple
task when considering both structural (parametric) and ex-
ternal disturbances. For these reasons, it is necessary to come
back to the low-level control problem, i.e., the attitude control
problem, and therefore to take into account explicitly in the
control design model uncertainties and external disturbances.

In the literature, there are two predominant mathematical
models for the quadrotor representation. The most used is

*Email address: jrayala@inaoe.mx
†Email address: rogerio@inaoe.mx
‡Email address: fermi.guerrero@correo.buap.mx

obtained by using an Euler’s angles representation, allowing
a more intuitive understanding of the behavior of the vehicle
(see [4, 5]); the second model is based in quaternions offer
a compact representation for vehicle’s orientation in a 3-D
space that is convenient, computationally efficient, and accu-
rate [6, 7, 8].

Both models have disadvantages, for example: the model
with Newton-Euler equations is a system of 12 nonlinear dif-
ferential equations and, in general, to solve them requires a
high computational cost and the consequent loss of informa-
tion in the process due to the numerical methods applied; on
the other hand, the model with quaternions is difficult to in-
terpret due to the abstract nature of its theory [9].

Several linear control approaches, such as PID ([10]),
Linear Quadratic Regulator (LQR) ([11]) and Linear
Quadratic Gaussian (LQG) ([12]), have been proposed in the
literature and applied for attitude stabilization and/or altitude
tracking of quadrotors. However, these methods can impose
limitations on application of quadrotors for extended flight
complex flight trajectories where the system is no longer lin-
ear. In addition, the performances on tracking trajectories of
these control laws are not satisfactory enough [13, 14].

To overcome the linear controllers limitations, there are
nonlinear control alternatives, such as Backstepping [15, 16,
17], Feedback linearization [18, 19], Model predictive control
[20, 21, 22], among others. These control techniques have
shown good performance against sinusoidal wind disturbance
but increasing the cost of computational resources [23].

The Sliding Mode Control has been applied extensively
to control quadrotors. The primary advantages of SMC are:
1. Fast response and good transient performance. 2. Its ro-
bustness against a large class of perturbations or model un-
certainties. 3. The possibility of stabilizing some complex
nonlinear systems which are difficult to stabilize by continu-
ous state feedback laws [24]. The SMC is a high frequency
switching control that causes chattering, an undesired phe-
nomenon which leads towards loss of energy, unmodeled dy-
namics and even actuator destruction [25].

Furthermore, to enhance performance robustness, an Ex-
tended State Observer can be implemented. An ESO can
estimate both, unknown states of system and the “total dis-
turbances” that lump the adverse effects on the output using
limited model information [26].
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1.2 Contributions
The development of a SMC for attitude tracking of a

quadrotor with a ESO applied to the quaternion-based model,
adding disturbances to the inertial matrix and input control
torques.

This paper is organized as follows. The basic concepts of
quaternion theory and dynamic model of a quadrotor are pre-
sented in Sect.2. In Sect.3, the position control is described,
following by the SMC concepts and the attitude controller is
designed, later, an ESO is proposed and designed. The sim-
ulation results of the proposed controller strategies are pre-
sented in Sect.4. Finally, conclusions are included in Sect.5.

2 QUATERNION BACKGROUND AND QUADROTOR
MODELING

A quaternion background is shown next, and the quadro-
tor model based on quaternions as well.

2.1 Quaternions
A quaternion can be thought as a composite of a scalar

q0 ∈ R and an ordinary vector qv = (q1 q2 q3)
T ∈ R3,

that is, q = (q0 qTv )T or as a complex number with three
different imaginary parts, i.e., a hypercomplex number [27].
It is represented as follows

q :=

(
q0
qv

)
= q0 + iq1 + jq2 + kq3 ∈ H (1)

with {1, i, j,k} being a canonical basis of the hypercomplex
space H [7]. The norm of a quaternion is

||q|| =
√
q20 + q21 + q24 + q23 (2)

A unit quaternion, with a norm equal to 1, can be used to
represent a rotation by an angle β about the axis defined by
the unit vector e = (e1 e2 e3)T , that is

q := e
1
2βe = cos

β

2
+ e sin

β

2
(3)

This expression, known as the Euler-Rodrigues formula is
the exponential mapping of the axis-angle representation of
a rotation. Since the n-dimensional unit sphere embedded in
Rn+1 is denoted as Sn = {x ∈ Rn+1 : xTx = 1} then
q ∈ S3. Furthermore, q represents an element of SO(3)
through the map R : S3 → SO(3) defined as:

R(q) := I3 + 2q0[q×v ] + 2[q×v ]2 (4)

R ∈ SO(3) = {R ∈ R3×3 : RTR = I3,det(R) = 1} is
the matrix that rotates the coordinates of a point from frame
Eb to frame Ef with I3 as the 3 × 3 identity matrix. [r×] is
the skew-symmetric matrix associated to vector r.
The sum and subtraction of quaternions is performed by sep-
arate addition of their four parts. A vector can be converted
to quaternion by setting the scalar part to zero and replacing

the vector part of the quaternion by the corresponding values
of the vector. The quaternion product is defined as

q⊗ r = (q0r0 − qv · rv) + (q0rv + r0qv + qv × rv) (5)

The conjugate of a unit quaternion is defined as q∗ = q0−qv .

q∗ = q0 − qv (6)

A quaternion can be used as rotation operator for a vector
between two different frames. Considering pv as a 3D vector
in a given reference frame Ef and p′v as the same vector in
a new different frame, for instance, Eb. Then, the quaternion
p = (0 pTv )T can be transform in p′, and vice-versa through

p′ = q∗ ⊗ p⊗ q, p = q⊗ p⊗ q∗ (7)

The properties of the logarithm in the unit quaternion are use-
ful to obtain the equivalent axis-angle notation. For unitary
quaternions the logarithmic mapping is given by

ln(q) =

{ qv
‖qv‖ arccos q0, ‖qv‖ 6= 0

(0 0 0)T ‖qv‖ = 0
(8)

With this mapping you can change any unitary quaternion to
its axis-angle representation as follows [7]

βv = eβ = 2 ln(q) ∈ R3

β̇v = ωv ∈ R3
(9)

where βv is the vector that represents the axis-angle notation,
e = qv

‖qv‖ describes the unit axis about which the rotation is
applied, ‖β‖ represents the magnitude of the rotation. ωv is
the angular velocity vector of the body coordinate frame Eb

relative to the inertial coordinate frame Ef expressed in Eb.
The attitude error is used to quantify the mismatch between
two attitudes. If q defines the current attitude quaternion and
qd the desired quaternion, i.e., the desired orientation, then
the quaternion that represents the attitude error between the
current orientation and the desired one is given by [28]:

q̃ = q∗d ⊗ q =
(
q̃0 q̃Tv

)T
(10)

When the current quaternion q reaches the desired one qd, the
quaternion error becomes q̃ =

(
±1 0T

)T
, i.e., there exist

two equilibria which have to be considered in the stability
analysis [29].

2.2 Quadrotor Dynamics
A diagram of the quadrotor studied in this paper is shown

in Fig. 1, where the inertial frame and the body frame are rep-
resented by Ef and Eb, respectively. Let define the position
vector p =

[
x y z

]T
. Then, the related quaternion is

given by ξ = [0 pT ]T

According to [7, 30, 31], the equations of motion of a
quadrotor using quaternions are
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Figure 1: Quadrotor diagram.

Ẋ =
d

dt




ξ

ξ̇
q
ω


 =




ξ̇

q⊗ Fth
m ⊗ q∗ + ḡ
1
2q⊗ ω

J−1(τ − ωv × Jωv)


 (11)

where q represents the vehicle attitude, using a unit
quaternion, with respect to the inertial frame, ω = [0 ωv]

T

and Fth =
[

0 0 0
∑4
i=1 fi

]T
describes the total thrust

force applied to the body in the inertial frame, and the angu-
lar velocity. J represents the inertia matrix with respect to the
body-fixed frame, and the total torque τ is given by

τ =



l (f1 + f4 − f2 − f3)
l (f1 + f4 − f2 − f3)∑4

i=1 (−1)
i+1

τi


 , (12)

where l represents the distance between any motor and
the center of mass of the vehicle, fi represents the force gen-
erated in the rotor i, with i ∈ {1, 2, 3, 4}. ḡ = [0 0 0 g]

T is
the gravity vector.

Applying the logarithmic mapping, the system model is
as follows

Ẋ =
d

d t




ξ

ξ̇
βv
β̇v


 =




ξ̇

q⊗ Fth
m ⊗ q∗ + ḡ

β̇v

J−1
(
τ − β̇v × Jβ̇v

)


 (13)

3 QUADROTOR CONTROL

In this section, the control strategy is described, as is
shown in the Fig. 2, position control allows the vehicle to fol-
low a defined trajectory, then the attitude control is designed
to achieve the necessary orientation given by the position con-
trol.

3.1 Position Control
The position dynamics subsystem of the quadrotor can be

written as

ξ̇ =
d

dt

[
ξ

ξ̇

]
=

[
ξ̇

m−1F Ith

]
(14)

where F Ith = q ⊗ Fth ⊗ q∗ + mḡ is a force that can be
designed such that the vehicle reach a desired position. Since
Equation 14 is a linear system, the control law F Ith is pro-
posed as

F Ith = ξ̈d + k1ξ̃ + k2
˙̃
ξ (15)

where ξd is the desired position, ξ̃ = ξd − ξ is the po-
sition error, with k1 and k2 are the control gains. The error
dynamics is given by

d

dt

[
ξ̃
˙̃
ξ

]
=

[
˙̃
ξ

ξ̈d − (ξ̈d − k1ξ̃ + k2
˙̃
ξ)

]
(16)

rewriting equation (16)

d

dt

[
ξ̃
˙̃
ξ

]
=

[
0 1
k1 k2

]

︸ ︷︷ ︸
A

[
ξ̃
˙̃
ξ

]
(17)

if k1, k2 > 0 then A is Hurwitz and the trajectories of the
error dynamics converge asymptotically to the origin of the
vector space error, that is, ξ̃, ˙̃

ξ → 0, when t→∞.

3.2 Basic concepts of Slide mode control
The SMC is a type of Variable Structure Control (VSC).

Its basic idea is to attract the system states towards a surface,
called sliding surface, suitably chosen and design a stabilizing
control law that keeps the system states on such a surface. For
the choice of the sliding surface shape, the general form of
equation (18) was proposed by Stoline and Li in [13]:

S(x) =

(
λx +

d

dt

)q−1
e(x) (18)

where x denotes the variable control (state), e(x) is the
tracking error defined as e(x) = x − xd, λx is a positive
constant that interprets the dynamics of the surface and q is
the relative degree of the sliding mode controller.

Attractiveness is the condition under which the state tra-
jectory will reach the sliding surface. There are two types of
conditions of access to the sliding surface. In this paper, we
will use the Lyapunov based approach. It consists of make
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Figure 2: Control Block Diagram.

a positive scalar function, given by equation (19) and called
Lyapunov candidate function, for the system state variables
and then choose the control law that will decrease this func-
tion:

V̇ (x) < 0, withV (x) > 0 (19)

In this case, the Lyapunov function can be chosen as:

V (x) =
1

2
S(x)2 (20)

The derivative of this above function is negative when the
following expression is checked:

S(x)Ṡ(x) < 0 (21)

The purpose is to force the system state trajectories to reach
the sliding surface and stay on it despite the presence of un-
certainty. The sliding control law contains two terms as fol-
lows:

u(t) = ueq(t) + uD(t) (22)

where ueq(t) denotes the equivalent control, which is a
way to determine the behavior of the system when an ideal
sliding regime is established. it is calculated from the follow-
ing invariance condition of the surface:

{
S(x, t) = 0

Ṡ(x, t) = 0
(23)

and uD(t) is a discontinuous function calculated by
checking the condition of the attractiveness. It is useful to
compensate the uncertainties of the model and often defined
as follows:

uD(t) = −Ksign(S(t)) (24)

where K is a positive control parameter and sign(·) is the
sign operator.

3.3 Attitude Control design
For the attitude control, we use the rotational motion

model given by equation (13), we take the error quaternion
q̃ from Equation 10 and applying the logarithm mapping to q̃
we get

q̃ = q∗d ⊗ q

β̃v = 2 ln(q̃)
(25)

qd is obtained from the shortest rotation between Fth and
F Ith vectors as unitary vectors. According to [7] qd is defined
as

qd = exp
(
ln
(
F Ith ⊗ F ∗th

)
/2
)
⊗ exp (qψd) /2 (26)

where qψd =
[

0 0 0 ψd
]T

is the desired rotation
around the z axis.

The sliding surface is chosen based on the tracking error,
such as:

S =
˙̃
βv + λβ̃v (27)

Deriving S, we get

Ṡ = ω̇e + λωe (28)

where ωe = ω − ωd is the rotation velocity error, and ωd
is the desired rotation velocity which is defined as

ωd = 2
d

dt
(lnqd) (29)

Substituting the model values on equation (28), we get

Ṡ = ω̇ − ω̇d + λ(w − wd)
Ṡ = J−1(τ − ω × Jω)− ω̇d + λ(w − wd)

Finally, the control law is obtained using Equation 22:

τ = J(−(−J−1ω × Jω − ω̇d + λ(ω − ωd)) + uD)

uD = −Ksign(S)
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Figure 3: ESO attitude Control Block Diagram.

3.4 ESO design
The ESO of quadrotor UAV system should be designed

to estimate the model uncertainties and external disturbances
[32]. Fig. 3 shows the ESO implementation in the attitude
control loop.

The attitude subsystem can be written as
[

q
ω

]
=

[
1
2q⊗ ω

J−1(τ − ωv × Jωv)

]
(30)

In order to use the ESO for the estimation of uncertain-
ties in the inertia matrix and unknown disturbances, ESO is
defined as:

˙̂x1 = x̂2 + l2(x1 − x̂1)− J−1τ
˙̂x2 = l1(x1 − x̂1)

(31)

where x̂1 is the estimation of the angular velocity ω, and
x̂2 is the estimated value of an unknown disturbance d. l1 and
l2 are the observer tuning parameters.

4 RESULTS

In this section, the proposed control strategy for the
quadrotor attitude stabilization is implemented in order to
verify his validity and efficiency. For the numerical simu-
lation, the following parameters are using

m = 1.3 kg, J =




0.177 0 0
0 0.177 0
0 0 0.354


 kg m2 (32)

For the position controller, the control gains were empir-
ically selected as: k1 = −24 and k2 = −12. In the same
manner, the attitude control gains λ and K were selected as

λ = 10, K = 50 (33)

4.1 SMC sans ESO
The dynamic model was coded using MATLAB, the cho-

sen trajectory was a spiral as is shown in Fig. 4 with the fol-
lowing initial conditions: ξd = [5 5 0]

Tm, ξ = [0 0 0]
Tm and

[φ θ ψ]
T

= [0 0 0]
T rad. In addition, a uniform noise, ±20%

of nominal value, is added to the inertial matrix and a sine
wave d = 0.1 sin(t) is applied as a disturbance in the control
torques τ1 and τ2 signals @t=50s.

100

-5

Y (m)

5

X (m)

0

3D Trajectory

0

10

5

Z
 (

m
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20
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Figure 4: 3D spiral trajectory.

The position errors are shown in the Fig. 5
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Figure 5: Errors in 3D trajectory.

The desired quaternion and the vehicle’s attitude quater-
nion are shown in the Fig. 6.

0 20 40 60 80 100
-1

0

1

q
0 q

d

q

0 20 40 60 80 100
-1

0

1

q
1 q

d

q

0 20 40 60 80 100
-1

0

1

q
2 q

d

q

0 20 40 60 80 100

Time (s)

-1

0

1

q
3 q

d

q

Atittude Quaternion, q
d
 vs q

Figure 6: Desired quaternion (qd) vs Attitude quaternion (q).

The β̃v angle is shown in Fig. 7, where the SMC is able
to compensate the effect of the disturbance and keep the error
low.

The torques for the attitude stabilization of the vehicle are
shown in the Fig. 8, these were limited to ±1 N·m
4.2 SMC with ESO

For this case, the same initial conditions were applied,
and using the following control gain: l1 = 250, l2 = 400, we
get the trajectory shown in Fig. 9
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Figure 7: Error angle β̃.
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Figure 8: Control torques.

The trajectory errors are shown in Fig. 10.
The desired quaternion and the vehicle’s attitude quater-

nion are shown in the Fig. 11.
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Figure 9: 3D spiral trajectory.
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Figure 10: Errors in 3D trajectory.

The β̃ angle is shown in Fig. 12, as in the previous case,
the error doesn’t increase significantly when the disturbance
in the input torques appears. The ESO keeps the error an
order of magnitude lower than the previous case.

The torques for the attitude stabilization of the vehicle are
shown in the Fig. 13, these also were limited to ±1 N·m

Finally, the Integral Square Error (ISE) is shown in the
Fig. 14, where an error of two orders of magnitude smaller
error is observed when the ESO is added to the system

5 CONCLUSION

In this paper, we worked with the problem of the attitude
stabilization and tracking of a quadrotor vehicle using a non-
linear sliding mode control approach. In addition, an ESO
were proposed to estimate the inertia matrix uncertainties and
unknown disturbances. Several simulations results are carried
out in order to show the effectiveness of the proposed nonlin-
ear control strategies and proving that an ESO is useful when
there are uncertainties in the vehicle parameters.
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Figure 11: Desired quaternion (qd) vs Attitude quaternion
(q).
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Figure 12: Error angle β̃.
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-18 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

[15] Xing Huo, Mingyi Huo, and Hamid Reza Karimi. At-
titude stabilization control of a quadrotor uav by using
backstepping approach. Mathematical Problems in En-
gineering, 2014, 2014.

[16] Paul De Monte and Boris Lohmann. Trajectory tracking
control for a quadrotor helicopter based on backstepping
using a decoupling quaternion parametrization. In 21st
Mediterranean Conference on Control and Automation,
pages 507–512. IEEE, 2013.

[17] An Honglei, Li Jie, Wang Jian, Wang Jianwen, and
Ma Hongxu. Backstepping-based inverse optimal atti-
tude control of quadrotor. International Journal of Ad-
vanced Robotic Systems, 10(5):223, 2013.

[18] Jihad Ghandour, Samir Aberkane, and Jean-Christophe
Ponsart. Feedback linearization approach for standard
and fault tolerant control: Application to a quadrotor
uav testbed. Journal of Physics: Conference Series,
570(8):082003, 2014.

[19] Young-Cheol Choi and Hyo-Sung Ahn. Nonlinear con-
trol of quadrotor for point tracking: Actual implemen-
tation and experimental tests. IEEE/ASME transactions
on mechatronics, 20(3):1179–1192, 2014.

[20] Kostas Alexis, Christos Papachristos, Roland Siegwart,
and Anthony Tzes. Robust model predictive flight con-
trol of unmanned rotorcrafts. Journal of Intelligent &
Robotic Systems, 81(3-4):443–469, 2016.

[21] Gaetano Tartaglione, Egidio D’Amato, Marco Ariola,
Pierluigi Salvo Rossi, and Tor Arne Johansen. Model
predictive control for a multi-body slung-load system.
Robotics and Autonomous Systems, 92:1–11, 2017.

[22] Ahmed T Hafez, Anthony J Marasco, Sidney N
Givigi, Mohamad Iskandarani, Shahram Yousefi, and
Camille Alain Rabbath. Solving multi-uav dynamic en-
circlement via model predictive control. IEEE Transac-
tions on control systems technology, 23(6):2251–2265,
2015.

[23] Hongwei Mo and Ghulam Farid. Nonlinear and adap-
tive intelligent control techniques for quadrotor uav–
a survey. Asian Journal of Control, 21(2):989–1008,
2019.

[24] Yuanqing Xia and Mengyin Fu. Compound control
methodology for flight vehicles, volume 438. Springer,
2013.

[25] Zeghlache SAMIR. Sliding mode control strategy for a
6 dof quadrotor helicopter. Journal of Electrical Engi-
neering, 10(3):7–7, 2010.

[26] Xingling Shao, Jun Liu, Huiliang Cao, Chong Shen,
and Honglun Wang. Robust dynamic surface trajectory
tracking control for a quadrotor uav via extended state
observer. International Journal of Robust and Nonlin-
ear Control, 28(7):2700–2719, 2018.

[27] John Dixon. Suspension Analysis and Computational
Geometry. Wiley, 2009.

[28] Malcolm D Shuster. A survey of attitude representa-
tions. Navigation, 8(9):439–517, 1993.

[29] Rune Schlanbusch, Antonio Loria, and Per Johan Nick-
lasson. On the stability and stabilization of quaternion
equilibria of rigid bodies. Automatica, 48(12):3135–
3141, 2012.
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ABSTRACT

The more restrictive airspace regulations force
drone manufacturers to take into account the
noise emitted during the design phase, along
with the aerodynamic performance to increase
the flight time. Here, a Non-Linear Vortex Lat-
tice Method (NVLM), coupled with the Farassat
Formulation-1A of the Ffowcs-Williams and
Hawkings acoustic analogy is used to evaluate
the aerodynamic and aeroacoustic performance
of MAV rotors. Pymoo, a Python-based opti-
mization framework, is employed to modify the
geometry, evaluate its performance and extract
the set of Pareto optimal solutions. The two
objectives are the aerodynamic Figure-of-Merit
and the Sound Pressure Level of the 1st Blade
Passing Frequency peak for a microphone
located in the rotor wake at a far-field distance
of 1.62m and 30◦ from the rotor plane. The
approach proposed in this paper takes into
account up to ten different parameters, ranging
from the twist and chord distributions, to the
rake and skew angles.

1 INTRODUCTION

MAV drones are revolutionizing the world with their ver-
satility and controllability. They are employed in the civilian
sector by film producers, photographers and, in the near fu-
ture, by enterprises for delivering goods in urban areas. They
share the airspace with helicopters and airplanes but the op-
erability costs and the dimensions of the latter make MAVs a
real asset in difficult environments and urban areas (Figure 1
shows two drones used in civil and military sectors). For this

Figure 1: The Parrot ANAFI AI (on the left), the civil version
of the Parrot ANAFI USA (on the right). Courtesy of Parrot
Drones.

∗Email address: pietro.livolsi@parrot.com

reason, MAV usage is steadily increasing every year and they
need to comply with new and more restrictive international
regulations that include noise emissions and safety. Since in
the future they will fly above people, the noise emitted should
respect different criteria. Because of the high rotation speed
of MAV propellers, their noise is unpleasant for the human
hear and this is mainly caused by the highly coupled aerody-
namic and aeroacoustic interactions between the rotors[1, 2],
and with the drone body[3].
Another concern, this time for mission capabilities, comes
from their low endurance. The viscous drag induced by the
low Reynolds number, at which MAV rotors operate, reduces
the aerodynamic efficiency of the rotors, hence reduces the
endurance for a given energy storage.
The objective of this paper is to tackle both problems by pro-
viding an optimization framework that complies with indus-
trial time and cost constraints. A Non-Linear Vortex Lattice
Method, firstly introduced in sections 2.1 and 2.2, then val-
idated in sections 2.3, is used in an optimization loop that
exploits the multi-objectives properties of the python frame-
work Pymoo (see section 3.1) to design acoustically and aero-
dynamically optimized rotors. The optimization results are
presented and analyzed in section 4.

2 NUMERICAL METHOD

2.1 Non-Linear Vortex Lattice Method

The Non-Linear Vortex Lattice Method used in this work
has been previously presented by Jo et al.[4, 5]. It is based on
the incompressible (∇ ·V = 0), inviscid (ν = 0) and irrota-
tional (∇∧V = 0) flow assumptions. The velocity vector
is consequently expressed by the gradient of a potential flow
(V = ∇ (φ)) that satisfies Laplace’s equation: ∆(φ) = 0.
These hypothesis allow to simulate complex flows by means
of simpler potential flows. The blade is considered thin and
its mean camber line is divided into Ni × Nj lattices whose
vortex strengths are noted Γi,j .
The rotor wake is also modeled using vortex rings follow-
ing a prescribed wake geometry. The sectional linear lift is
obtained by applying the Kutta-Joukovsky theorem (Lj =
ρ∞V∞Γj). A look-up table procedure is used to take into
account the low Reynolds number induced non-linearity and
is obtained by means of XFOIL[6] polar calculations. The
approach is here used in a steady framework to reduce com-
putational costs and comply with industrial constraints. How-
ever, it can be extended to unsteady simulations and free
wake models, using free vortex particles to model the wake
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as shown in Jo et al.[4, 5] (Figure 2 shows the two different
simulations).

Figure 2: On the left, an unsteady simulation snapshot with
Blade lattices, Wake Lattices (the red panels) and Vortex Par-
ticles (the green dots). On the right, a steady simulation snap-
shot with Blade lattices with the Prescribed Wake Lattices
(the blue panels).

2.2 Tonal noise - Farassat Formulation-1A
The Formulation-1A presented by Farassat [7] has been

implemented to the aforementioned Non-Linear Vortex Lat-
tice Method code to capture the tonal noise spectrum emitted
by the rotor. The tonal noise, for low-Reynolds and low-Mach
number rotors, is generated by two sources:

p′(x, t) = p′T (x, t) + p′L(x, t) (1)

• The thickness noise generated by the displacement of
the fluid due to the blade passage, which depends
purely on the blade geometry (through the n normal
vector of equation 2) and the rotation speed (through
the terms v and M, that are respectively the absolute
speed and the Mach speed of the elementary surface
considered);

4πp′T (x, t) =

∫

f=0

[
ρ0(v̇n + vṅ)

r |1−Mr|2

]

ret

dS

+

∫

f=0

[
ρ0vn(rṀr + cMr − cM2)

r2 |1−Mr|3

]

ret

dS

(2)

• The loading noise that is dependent on the unsteady
and steady pressure distributions on the blade (l and l̇
in equation 3) and the rotation speed:

4πp′L(x, t) =
1

c

∫

f=0

[
l̇r

r (1−Mr)
2

]

ret

dS

+

∫

f=0

[
lr − lM

r2 (1−Mr)
2

]

ret

dS

+
1

c

∫

f=0

[
lr(rṀr + c(Mr −M2))

r2 (1−Mr)
3

]

ret

dS

(3)

τ = t− r

c
= t− |x− y|

c
(4)

With:

lr = lir̂i l̇r = l̇ir̂i lM = liM̂i

The observer position plays an important role through the r
observer vector and the projection of the other vectors onto
this one. Therefore, the inputs needed for the tonal noise
calculations are: the observer position, the rotation speed,
the pressure distribution on the mean camber line (calculated
through the NVLM code and exclusively needed for the load-
ing noise), and the 3D geometry (for the thickness noise).

2.3 Validation
To validate the code, unsteady simulations were com-

pared with experiments from Gojon et al.[8] obtained on a
two-bladed, NACA12-profiled, 10◦ constant pitch, constant
chord rotor operating at 6000 RPM. Differences of +7.4%
and +4.4% on thrust and torque coefficients have been ob-
tained, respectively, which is within the uncertainty typically
obtained between experiments with different test benches and
different specimen of a given rotor geometry (Deters et al.[9],
Gojon et al.[8]). Steady simulations provide comparable re-
sults with differences of 11% and 0.9% on thrust and torque
coefficients respectively.
In addition, the acoustic simulations were compared to the
experimental results of Gojon et al.[8]. As shown in Fig.3,
differences lower than 3dB for microphones located in the ro-
tor wake and between 3dB and 6dB for microphones located
upstream of the rotor plane were observed. Since MAVs are
usually flown above people, acoustic simulation for a micro-
phone at 30◦ below the rotor is used for the optimizations of
section 3. It was here verified that steady simulations pro-
vide similar sound pressure levels than unsteady simulations.
Hence, because steady simulations are faster than unsteady
ones by an order of magnitude, they are used in the optimiza-
tion procedure to calculate the aerodynamic and acoustic per-
formance of MAV rotors.

Figure 3: On the left, the microphone locations are displayed;
On the right, the comparison between the experimental data
and the simulations is shown.
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3 OPTIMIZATION

The objective of this paper is to optimize the geometry
of an MAV rotor in hovering conditions. The two optimiza-
tion objectives are: The aerodynamic Figure-Of-Merit [10]
FM =

(
T 3/2

)
/
(
ωQ
√

2ρπR2
)

and the Sound Pressure
Level at the 1st BPF peak for a microphone located at a far-
field distance of 1.62m and 30◦ below the rotor plane, in the
direction of the flow. The ideal rotor has a higher Figure-of-
Merit for an extended flight endurance and a lower SPL value
to be acoustically stealthier.

Previous rotor aeroacoustic, multi-objectives optimiza-
tions [11, 12, 13, 14, 15, 16] have shown that, since these
two objectives are in conflict, a single solution for this opti-
mization that simultaneously improves both objectives does
not exist. Instead, a series of optimal solutions that form a
Pareto-front can be calculated. In this section, the optimiza-
tion framework is presented (subsection 3.1), as long as the
optimization algorithm in subsection 3.2, its parameters in
subsection 3.3 and the design variables and constraints in sub-
section 3.4.

3.1 Pymoo package
The Python-native optimization framework Pymoo[17] is

used in this work. This framework allows to make both
single- and multi-objectives optimizations, based on differ-
ent algorithms, like GA, CMAES, NSGA-II, etc. The reader
is referred to reference [17] for further details.

3.2 Optimization algorithm
Genetic Algorithms (GA) are inspired by Charles Dar-

win’s theory of natural evolution and based on the survival
of the fittest, but also on the appearance of crossover combi-
nations and mutations that can lead to fitter successive gen-
erations. Since they work with a population of solutions,
different set of solutions can be maintained throughout the
optimization and lead more easily to global minima, while
gradient-based optimizations can get stuck to local ones.
They can also identify the set of Pareto optimal solutions. The
main difference between GAs lies in the survival and selec-
tion methods.
The NSGA-II (Non-dominated Sorting Genetic Algorithm)
[18] was chosen for this study. This algorithm is one of the
first genetic algorithm and was opportunely modified from
the first version of the code to improve the convergence speed
and use the elitism as a way to increase the performance and
prevent the loss of good solutions.

3.3 Optimization setup
As highlighted in the previous subsection, genetic algo-

rithms like the NSGA-II used in this study require the number
of candidates that will be part of the initial population. In
this case, a population of 100 candidates has been chosen.
The candidates are randomly chosen in order to increase the
diversity and the possibility of finding good candidates. The
selection is made through the tournament selection method

that selects a number of individuals, compares their fitness
and selects the parents that will then be modified through the
crossover operations and mutations to give birth to the new
generation.
The crossover operation used is the ”Simulated Binary
Crossover” (more details on [19]). This operation, also called
recombination, combines the genetic data of different parents
to create a newborn.
The mutation operation, instead, randomly modifies the
parameters by taking into account a given probability. The
mutation probability is here set to zero.

3.4 Design variables, geometrical reconstruction and con-
straints

The rotor geometry on which the optimizations are based
is described in table 1:

Rotor parameters
# of blades 2
Airfoil Section NACA0012
Diameter [m] 0.25
Root cut-out 15% of the Radius

Table 1: Non-optimized rotor parameters.

The design variables taken into account in the optimiza-
tion are listed in table 2 along with the minimum and maxi-
mum bounds.

Design variables Min Value Max Value

Twist CPtwist
Angle 5◦ 30◦

Position 20% 80%
TIPtwist Angle 0◦ 10◦

Chord CPchord
Length 0.025m 0.075m
Position 20% 80%

TIPchord Length 0.005m 0.05m

Skew CPskew Position 20% 80%
TIPskew Angle -10◦ 10◦

Rake CPrake Position 20% 80%
TIPrake Angle -10◦ 10◦

Table 2: Design variables used in this work and their mini-
mum and maximum bounds.

A continuous function allows the optimization algorithm
to choose the values of each parameter within the minimum
and maximum bounds (the number of possible combinations
is set by machine precision). Once the ten variables are calcu-
lated by the optimization algorithm, the NVLM code builds
the new geometry. The chord and twist distributions are de-
fined as follow:

• The root chord and pitch are respectively fixed at
0.025m and 10◦;
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• The CPchord,pos defines the spanwise position at which
the CPchord,len is applied. The derivative at this point
is fixed to zero (same strategy for the twist distribution
with CPtwist,pos and CPtwist,ang variables);

• The chord length at the tip of the blade is defined by
TIPchord,len (the pitch at the tip by TIPtwist,ang).

Once the interpolation function is defined by the previous
points, the geometry is interpolated and 10 spanwise values
of the twist angles and the chord lengths are calculated to gen-
erate the geometry.
A similar approach for the skew and rake (commonly known
as winglet) distributions has been used:

• Both skew and rake angles and their derivatives are
equal to zero at the root of the blade;

• The TIPskew,ang and TIPrake,ang variables define the
angles at the tip;

• The CPskew,pos is the last point (going from the root to
the tip of the blade) to have both skew/rake angles and
their derivatives equal to zero.

Figure 4: Twist (on top) and skew (on the bottom) distribution
definition from the Control point (the black upward pointing
triangles) and the tip value (the black downward pointing tri-
angles).

Figure 4 shows, on top, an example of twist distribution in-
terpolation. The upward pointing triangles represent the four
control points with two different positions and two differ-
ent values of the pitch angle, while the downward pointing
triangles represent the tip value (for the sake of visibility it
was kept constant in the plot). On the bottom an example of
skew/rake distribution is presented: in this case both control
points (represented by the upward pointing triangles) and an-
gles at the tip (the downward pointing triangles) are changed
and 4 different distributions are created.
The NACA0012 airfoil has been kept constant to limit the
size of the parameter space.

To optimize both endurance and noise of a ∼800 grams
MAV drone, the MAV single-rotor optimization is conducted

at 2N iso-thrust. To obtain this thrust value the following
procedure has been put in place:

• The algorithm chooses the values of the design param-
eters and the ith geometry is generated;

• An aerodynamic calculation at 4000RPM is run and the
mean thrust calculated;

• By making the assumption that the thrust follows an
ideal quadratic function (Thrust = a · Ω2), the ”a” co-
efficient is calculated and the rotation speed Ω2N de-
duced1.

• A new aerodynamic calculation is run and, with it, an
acoustic one in order to get the two objective values
FM and 1st BPF SPL.

• The two objective values are evaluated by the NSGA-II
algorithm.

In the following section, the results of four different opti-
mizations are presented: one optimization does not take into
account the rake/skew angles, one takes into account the rake
distribution (but not the skew), while another one the skew
(but not the rake), and one takes both into account. This helps
assess the role of rake and skew on optimal solutions.

4 RESULTS

In this section the results from the aerodynamic and
aeroacoustic optimizations of MAV rotors using the genetic
algorithm NSGA-II and the non-linear vortex lattice method
coupled with the Farassat Formulation-1A solution of the
Ffowcs-Williams and Hawkings analogy are presented. As
explained in the previous section, two calculations per iter-
ation are needed, which means that for a total of 40 genera-
tions (with 100 candidates each), 8000 simulations need to be
computed. For this reason, having a low computational cost
per simulation is crucial and, therefore, the steady-simulation
feature has been preferred over the unsteady counterpart. The
NVLM main parameters are summed-up in table 3.

Blade discretization
# of Chordwise Lattices (Ni) 5
# of Spanwise Lattices (Nj) 10

Simulation parameters
Revolutions [-] 5
Step angle [◦] 5

Table 3: Simulation parameters used for the validation of the
NVLM code.

Figure 5 shows the Pareto-fronts obtained with four dif-
ferent optimization setups, including or not rake and skew
distributions in the design variables.

1within 6% of the target thrust.
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Figure 5: Scatter plot with four different Pareto-fronts and the
two Pareto lines.

The orange-colored Pareto-front represents an optimiza-
tion with only 6 design variables, since it does not include
skew and rake variables into the optimization loop. Red
and green Pareto-fronts are 8-variables optimizations: they
include the skew and rake distributions in the rotor design
respectively. This allows to slightly improve the performance
of the Pareto set of optimal rotors. It is shown that including
the skew variables helps to move the Pareto-front towards
better aerodynamic efficiencies but does not yield significant
changes in acoustic performance. When the rake variables
are introduced in the loop, instead, the optimization seems
more appropriate to find aerodynamically ideal rotors and
acoustically stealthier ones with 5dB difference with respect
to the orange curve. The last optimization, depicted with the
grey dots, includes both rake and skew distributions into the
design parameters and has the widest Pareto-front, with both
aerodynamic and acoustic performance overtaking the ones
given by the green-colored rake-included Pareto-front. It
also shows two linear trends: the red one (referred to as ”1st
Pareto line”) and the magenta one (”2nd Pareto line”). For
this reason, only this last optimization run will be presented
and analyzed in more details.

The dots of figure 6 scatter plot represent all the candi-
dates of the 10-variables optimization. The green ones, that
represent the last generation candidates, are all very close to
the Pareto-front and show that the optimization algorithm has
converged to the Pareto set of optimal solutions.

As described in subsection 2.2, the total tonal noise
depends on two sources (the loading noise and the thick-
ness noise). For this reason it is important to analyze
the interaction between them to understand the previous
graph. Figure 7 shows four differently coloured Pareto-fronts.

The main results are:

• The rotation speed (figure 7 - top-right scatter plot)
changes along the Pareto-front. By following the 1st
Pareto line from right to left, the rotation speed in-
creases until the junction between the two Pareto lines.
Here, the rotation speed drops suddenly, to increase
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Figure 6: Scatter plot representing all candidates simulated:
the last generation candidates in green and the best aerody-
namic efficient and the acoustically stealthier candidates in
red (whose geometries are shown in figure 12).
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Figure 7: Four scatter plots showing the candidates coloured
by different variables.

again along the 2nd Pareto line. While the influence
of a reduced rotation speed on the reduction of tonal
noise is explicit from equations 3 and 2, these results
indicate that it may be counterbalanced by other terms
such as rotor solidity (shown in figure 10 and defined
as follow: σ =

(
Nblades · chord

)
/ (πR));

• The thickness noise (figure 7 - bottom-right scatter
plot) follows the same trend of the rotation speed. A
steady increase from right to left of the first Pareto line
is followed by a sudden decrease in the thickness noise
level and, again, an increase along the second Pareto
line;

• At a far-field microphone location, the loading noise
(figure 7 - bottom-left scatter plot) depends mainly on
the magnitude of thrust force. However, even for ge-
ometries having the same thrust, differences in the or-
der of 3dB are depicted in the graph and depend on the
loading distribution, but also on the rotation speed of
the rotor (see equation 3);

• The geometries colored by the 2nd BPF SPL (figure 7
- top-left scatter plot) show that optimizing the 1st BPF
does not affect, in the same way, the 2nd BPF.
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Overall, it can be understood from these results that while
loading noise dominates the acoustic footprint on the first
Pareto line, it is competed by thickness noise on the sec-
ond Pareto line. An increase in the rotation speed can be
compensated for by an increase in rotor solidity to achieve a
given target thrust. Furthermore, an increase in rotor solidity
increases thickness noise through its explicit contribution in
equation 2. Because the thickness noise is weak compared
to the loading noise on the first Pareto line, an increase
in rotor solidity that significantly impacts the SPL and a
reduction in SPL can be directly correlated with a decrease
in RPM. Conversely, because the thickness noise is of the
same order of magnitude than loading noise on the second
Pareto line, an increase in rotor solidity contributes to an
increase in SPL (see figure 10). Hence SPL is not solely
correlated with RPM, which explains why rotor geometries
with lower acoustic footprint may not be obtained at min-
imum rotation speeds. However, a closer look at the 2nd
BPF peaks shows how improving the 1st BPF peak does
not mean a consequently improvement of the 2nd one as well.

Figures 8 and 9 show the chord lengths, as well as the
pitch, rake and skew angles of the different Control Points
(CP) and the Tip (TIP). Here are additional insights on the
Pareto optimal solutions:

• The chord at the control point reaches the maximum
value allowed to the algorithm. This maximum value is
located near the root (see top-left scatter plot of figure
11);

• The chord at the tip (figure 8 - top-right scatter plot) is
the key parameter to understand the two Pareto lines:
the geometries with higher Figure-Of-Merit have a
smaller chord at the tip, which contributes to reduce tip
vortex strength. The right Pareto line, instead, presents
larger chord lengths at the tip to increase rotor solidity,
which may affect thickness/loading noise cancellation
mechanisms;

• Rotors with larger aerodynamic efficiency have a
higher pitch angle at the control point (see figure 8 -
bottom-left scatter plot) because they need to recover
the thrust force that is lost by the smaller chord at the
tip. The control points are located near the root (see
figure 11);

• The pitch at the tip (figure 8 - bottom-right scatter plot)
is almost constant everywhere, except on the left side
of the first Pareto line. Here, in fact, a higher rotation
speed compensates for the lower twist at the tip;

• The rake value is almost constant for all the geometries
of the Pareto-front. It points downward, reaches the
maximum value and is located very close to the tip.
This probably has a double effect: it helps to reduce the
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Figure 8: Four scatter plots showing the candidates coloured
by design variable values.

torque induced by the tip vortex, and add an outward
component to the force vector that changes the phase
of both loading and thickness noise, thus reducing the
total noise levels;

• The Pareto-front shows two different and opposite
skew angles, but the sudden change does not happen
on the junction between the two Pareto lines, it hap-
pens on the first Pareto line.
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Figure 9: Two scatter plots showing the candidates coloured
by rake angle (on the left) and skew angle (on the right) at the
tip.

This optimization run shows how three design parameters
are important to the improvement of the performance of MAV
rotors. The chord length at the tip is the key parameter to un-
derstand the two Pareto lines. A smaller chord at the tip can
lead to aerodynamically more efficient rotors. Larger ones to
acoustically stealthier rotors. The rake and skew distributions
play important roles in both aerodynamic and acoustic per-
formance. The former, inducing a downward-pointing blade
tip, reaches the maximum values allowed to the algorithm.
The skew, instead, deforming the blade in the forward direc-
tion for acoustically stealthier rotors and backward for aero-
dynamically more efficient rotors. The two best geometries
are shown in figure 12.

5 CONCLUSION

The approach here presented makes use of a non-linear
vortex lattice method, coupled with Farassat’s aeroacoustic
tonal noise model and the genetic algorithm NSGA-II of
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Pymoo package to optimize the rotor geometries and find
aerodynamically more efficient and aeroacoustically stealth-
ier MAV rotors. The two optimization objectives chosen for
this study are the Figure-Of-Merit describing the rotor aero-
dynamic efficiency and the 1st BPF SPL peak for a micro-
phone located at a far-field distance of 1.62m, at an angle be-
low the rotor plane of 30◦. Since drones are generally flown
over populated areas and kept at a safety horizontal distance
from people, this value of the angle is reasonable. However,
the optimization does not take into consideration other angles
and, therefore, the influence of the microphone angle will be
assessed on future works.
All the optimization runs take into account the twist and chord
distributions in the generation of new geometries (the airfoil
chosen is the NACA0012), for a total of six design variables.
Two optimizations with two additional variables, namely the
rake and skew, are independently added. A last optimization
run, including all ten design variables, has been performed
and has further improved the set of optimal solutions.
The combined effects of both rake and skew on aerodynamic
and aeroacoustic performance allowed reaching more effi-
cient and stealthier rotors. The Pareto-front presents two lin-
ear trends with different slopes, referred to as Pareto lines.
The parameter that splits the two lines is the chord length at
the tip. A smaller chord, in fact, is preferable for aerodynami-
cally more efficient rotors while a larger chord gives stealthier
rotors.
The negative rake concentrated at the tip pushes the whole
Pareto-front to aerodynamically more efficient rotors. Cou-
pling the skew modifications to the rake ones, creates rotors
with even higher Figure-Of-Merit and allows to go further on
the acoustic counterpart too.
The 1st BPF SPL is only a part of the acoustic spectrum. The
acoustic improvements here obtained do not imply improve-
ments over the entire frequency spectrum. In fact, the 2nd
BPF peak of the best acoustic configuration is not the lowest
value obtained. In addition, if the sensitivity of the human ear
is to be considered, the A-ponderation should be applied.
These results are obtained by using the steady simulation ca-
pabilities of the NVLM code. However, to validate all the
presented results, experimental tests are being prepared at
ISAE-SUPAERO. It is also worth noting that this optimiza-
tion does not take into account the inertia of the blades, the
rotation speed at which the motor is more efficient, and the
rotor mass. These parameters must be taken into account into
future optimizations of commercial MAV rotors.
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APPENDIX A: RESULTS AND GEOMETRIES

In this appendix three images are presented:

• A scatter plot showing the candidates colored by rotor
solidity (figure 10);

• Four scatter plots in figure 11 coloured by the follow-
ing variables: relative spanwise position of the chord
control point (CPchord,pos at top-left), relative span-
wise position of the twist control point (CPtwist,pos at
top-right), relative spanwise position of the rake con-
trol point (CPrake,pos at bottom-left) and relative span-
wise position of the skew control point (CPskew,pos at
bottom-right);

• Three different views (From top to bottom: Z, Y and
3D view) of figure 12 showing two rotors correspond-
ing to the red dots of figure 6.
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Figure 10: Scatter plot showing the candidates colored by
rotor solidity.
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Figure 11: Scatter plot showing the candidates coloured by
the control point variables.

Figure 12: On the left: the rotor with highest Figure-Of-
Merit, on the right: with the lowest acoustic footprint.
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-20 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

__________________________ 

*Email address(es): wushanglin.c@nycu.edu.tw, 

  tslcyw@nus.edu.sg, mgklau@nctu.edu.tw  

A click mechanism moderates drone’s flapping wing 

kinematics for enhanced thrust generation 
 

Shang-Lin Wu ¹, Yao-Wei Chin², and Gih-Keong Lau1 

National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 

National University of Singapore, 21 Lower Kent Ridge Road, Singapore 
 

ABSTRACT 

 

In the motorized drive of a flapping-wing drone, the 

transmission loss well exceeds the inertial and 

aerodynamics power.  Such transmission loss is however 

minor in the natural flight apparatus of Dipteran insects by 

using thoracic compliant mechanisms. In particular, 

Dipteran insects such as fruit flies make good use of a bi-

stable click mechanism to enhance thrust generation and 

efficiency. It is not clear if an enlarged click mechanism 

remains beneficial to a larger flapping-wing drone. Here, 

we designed a bioinspired drone prototype, with a 40 times 

larger wingspan and a 300 times heavier mass than a fruit 

fly of 7.3mm span and 0.1gram mass.  Interestingly, given 

the same wing pairs, the enlarged click mechanism 

enhanced the thrust generation (up to 30 grams) by 50% 

than the non-click mechanism.  This click mechanism 

modulated the wing stroke speed profile to have a high 

plateau at which the wing rotation peaks. This insight on 

the click effect on wing kinematics and aerodynamics will 

help better future bioinspired drones. 

 

1 INTRODUCTION 

Natural flyers like birds and insects have been the 

source of inspiration for the development of bioinspired 

micro air vehicles (MAV), or flapping-wing drones in 

other words. Bird-inspired drones were named ornithopters, 

while insect-inspired drones were named entomopter. Artificial 

flapping-wing drones had exploited the bio-inspired 

aerodynamics, such as clap-and-fling wing-wing interaction 

employed by wasps and even pigeons during the laters' vertical 

takeoff. However, the drive mechanism for flapping-wing 

drone is still motorized transmission, for example, a crank-

rocker mechanism, which converts the motor rotation into wing 

reciprocation. A recent study shows the transmission loss can 

overweigh the inertial and aerodynamics power expenditure 

during flapping-wing drive.  This challenge motivates us to 

relook into the insect drive mechanism for a simpler and better 

design of the flapping wing mechanism [1]. 

Click mechanism are first found on Diptera flies while 

anesthetized [2][3]. The flight thorax on dipterans is more than 

just a box-like structure; it can store elastic energy when 

deformed and release when elastically recoiled. Such means of 

elastic energy storage were reported to help decelerate and 

accelerate wings at reduced inertial power expenditure. It was 

thought to be beneficial to increase the power output more than 

what flight muscles alone can be delivered. In addition, the 

click mechanism found at the wing base of Dipteran insects was 

thought as useful as deformable flight thorax for elastic storage.  

Brennan (2003) simplified the click mechanism as several 

link-spring models as shown in figure 1 [4][5]. When the tip-

point is pushed upward, the spring is compressed and generates 

a vertical force against the moving direction. After the tip-point 

Figure 1: Click mechanism and link-spring model [4]. 
Figure 2: Vertical force versus 

position of click mechanism [5]. 
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passes the mid-line, the vertical force from the spring turns 

to the same direction as motion, triggers the "click," and 

accelerates the tip-point to jump to the other side. 

Chin (2013) designed a 3.78g weighted ornithopter 

prototype of a click mechanism for flapping a pair of 

130mm-span wings, as shown in figure 4. Chin’s works 

show that the click mechanism effectively produces higher 

thrust than a non-click prototype at both the same flapping 

frequency and power consumed [6][7]. However, the wing 

kinematics delivered by the motorized click transmission 

(a combination of click mechanism at the wing base and 

the driving crank-slider mechanism) appeared as a 

distorted sine wave rather than the bi-stable snaps 

demonstrated by the click mechanism alone. Further, it is 

noted the elastic storage in the click mechanism is 

maximum at the mid-stroke of flapping wings; it is in 

contrary to the maximum elastic energy storage expected 

at the end of wing stroke. His later research showed partial 

elastic energy storage in the elastic hinged wings is better 

than full elastic energy storage for not impeding motorized 

flapping-wing transmission. 

It was not clear if the click mechanism found in 

Dipteran insect is applicable to a larger flapping-wing 

drone in the same manner as to how the clap-and-flying 

wing-wing interaction scales from small wasp to larger 

pigeons. In this paper, we first enlarged a click mechanism 

for a 27.6-gram flapping-wing drone of 300 mm wingspan. 

In addition, we find the effect of click mechanism 

moderating the wing kinematics distinctly at relatively low 

frequency (4Hz) and high frequency (10Hz).   

 

 

Figure 3: Size of Dipteran, Chin’s prototype and 

ornithopter in this paper. 

2 MECHANISM MODEL 

2.1 Mechanism model design 

We designed a large click ornithopter with two 14.3mm-

long wings at a stroke of 106 ˚. This click mechanism is similar 

to that presented by Tang and Brennan but differs from the 

latter by the drive mechanism. Here, a crank-rocker mechanism 

was to pull down and push up the vertex of the click mechanism. 

A powerful small brushless motor AP05 and a set of speed-

reduction gear sets were used to drive the crank-rocker 

mechanism. As in figure 4, the driving force is transmitted 

through reduction gear sets, a crank-rocker system (red linkages) 

and a double rocker system (black linkages) from the motor to 

wings. While in the "click" case, a cantilever spring replaces 

one of the rockers in the double rocker system. 

As such, the wing kinematics follow the reciprocation 

primarily by the crank-rocker mechanism. Meanwhile, the click 

mechanism moderated the harmonic wing stroke profile by 

providing extra elastic resistance towards the mid-stroke 

position and extra elastic recoil away from the mid-stroke 

position.  

 

2.2 Pull test 

The spring of the click structure is a POM cantilever beam, 

as shown in figure 5. While the black links moved toward the 

mid-point, the cantilever spring was pressed toward the left and 

exerted force (red arrow) to the wing base. Thus we do the pull 

test to plot the vertical reaction force.  

 

 

 
Figure 4: Transmission mechanisms.  

Crank (yellow): 4mm, link (blue): 15.1mm,  

rocker (red): 5mm, wing base (green): 5mm,  

rocker of non-click (gray): 6mm. 
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Figure 5: Click mechanism in this paper. The left green beam 

is the cantilever spring.  

 

 
Figure 6: Vertical force tested with tensile test machine. 

 

As shown in Figure 6, the bi-stable elastic behavior of 

a prototype of click mechanism was measured from a pull 

test using a tensile tester (Cometech QC-508M1F). Prior to 

the pull-test, the vertex of the click mechanism was set to 

the bottom stable position. During the test, the vertex was 

pulled upwards from the bottom stable position -4mm to 

the top stable position +4m while the pulling force was 

measured continuously.  The pulling force required at the 

bottom stable position was zero; it increased towards a 

peak pull force of 8.7N at -2.6mm. When pulled up beyond 

the peak force position, the force requirement diminishes 

towards and becomes zero at the mid-stroke position. 

 

Snap happens beyond the mid-stroke position with the pull 

force turning negative until the 2.5mm position.  There was 

increasing positive pull force required to reach the top 

stable position because of misalignment in the pulling rod. 

Backlashes and skewed jigs are the reason for the 

asymmetry of the curve. 

 

 

 

 

 
 

Figure 7: Stroke angle, Stroke speed, and pitch angle versus time. 

 

 

 

3 WING KINEMATICS 

Next, we investigated the dynamics effect of the click 

mechanism on flapping-wing kinematics at low and high 

frequencies. First, the brushless motor was run at 40% throttle 

to beat a pair of wings hinged on a clicking mechanism at a low 

frequency of 4.29Hz. Second, the motor was driven to full 

throttle and flap the wing pair faster at a wingbeat frequency of 

10.91Hz. During the test, a high-speed camera was used to 

record the wing motions. Subsequently, Tracker software was 

used to extract the stroke angle and pitch angle over cycles of 

wingbeat.   

Figure 7 shows that the wing kinematics over two wingbeat 

cycles. It noted that the time profile of wing stroke angle 

appeared like a sinusoidal function, following the drive of the 

crank-rocker mechanism. However, the stroke amplitude varies 
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with the wingbeat frequency. For example, the stroke 

amplitude was 57.1 ˚ at 10.91Hz wingbeat frequency; it is 

higher than 52.8˚ at 4.29Hz. The stroke amplitude at full 

throttle was amplified more than static stroke because of 

the elasticity provided by the click mechanism to the wing 

base.    

Stroke speed can be calculated as the time derivates of 

stroke position. As shown in Figure 7, the time profile of 

stroke speed measured deviates from a simple harmonic 

function. Noted was a speed moderation, i.e., a mild dip, at 

the mid-stroke position, where a peak stroke speed was 

expected. The speed dip and the maximum spring 

resistance happened in the same phase. In other words, the 

resistive spring force of click slowed down the wingbeat 

and depressed the stroke speed curve at the mid-stroke 

position. After the wings pass the middle stroke, the 

recoiled spring force helped accelerate the wingbeat and 

keep the ‘plateaus’ of relatively high speed for a longer 

duration. The matching of high stroke speed with a high 

pitch angle enhances the thrust generation.  As such, the 

stroke speed moderation is believed helpful to enhance 

thrust generation at this moderate wingbeat frequency of 

10Hz.  

 

 

 

 

4 FLIGHT TEST 

Next, we conducted a fixed flapping test to measure the 

maximum thrust of this click-ornithopter prototype with a 

pair of wings each of 143mm wing length and 52mm chord 

width. As shown in Figure 8, a 6-axis force/torque sensor 

was used to measure the thrust generated by the flapping-

wing prototype mounted below it. It is shown that 

ornithopter with click generates 30.83g thrust while non-

click ornithopter only generates 22.20g. The click 

mechanism increased the maximum throttle by 35.7% and 

remained the same power consumption.  

 

Last but not least, this click-ornithopter was tested for a 

free vertical takeoff.  During the launch test, the click-

ornithopter's fuselage, i.e., a carbon fiber rod body, was 

guided in a PVC tube.  A tail stabilizer was stripped off the 

prototype but replaced with an extra weight of 3gram to 

enable free takeoff from the guiding tube.  Figure 10 shows 

the initial state and the launched state of the click-

ornithopter. The tethered flight test showed that this 

prototype was capable of 30.06-gram average thrust 

generation when driven at full throttle. 

 

5 CONCLUSION 

In conclusion, the click mechanism, which alone was bi-stable 

at the end stroke position, did not snap the wings pass mid-

stroke position when it was under the drive by a motorized 

crank-rocker mechanism. However, it presented extra resistive 

elastic load to alter the stroke speed of flapping wings.  Its 

elastic resistance and recoil help widen and smoothen the 

plateau of relatively high speed nearly the mid-stroke position 

where the pitch angle was high. As such, the click mechanism 

enabled a relatively large ornithopter of 27.64-gram self-weight 

with extra 3-gram load to launch a vertical takeoff. 

 

 

 
 

Figure 8: Equipment in force sensor thrust test. 

 

 
Figure 9: Thrust generated by click/non-click prototype with 

the corresponding size. 

 

 
Figure 10: Vertical takeoff in constraint of a PVC tube. 
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         ABSTRACT 

This paper presents a summary of experimental results 

regarding the propulsive efficiencies of small multirotor 

propellers, in simulated forward flight conditions. An 

automated test rig was used in a wind tunnel to measure 

propeller performance data across a range of flight speeds 

and angles. Propellers of various pitch were also tested and 

compared in these conditions. Flight angle was 

demonstrated to have minimal impact on efficiency within 

the tested range. Maximal efficiencies were demonstrated 

at the highest advance ratios and lowest geometric pitches 

tested.  

 

1 INTRODUCTION 

The extremely fast developing small ‘sport’ UAS 

industry often produces products with little to no published 

testing and data. Especially in the bleeding edge 

developments in small scale sport drones, where efficiency 

is key, development appears primarily guided by ‘feel’. 

While comprehensive analyses exist for aircraft propellers 

and even some larger multirotor rotors, very little data is 

available on the extremely common 5-inch diameter 

propeller configurations. These configurations typically 

operate within a low Reynolds number, in highly oblique 

flow and at a considerably faster velocity than most 

commercial multirotors. A large volume of propeller 

variants exists in this regime, with varying blade 

geometries, blade numbers, pitch and materials. 

Manufacturers provide little to no information about the 

performance of these propellers in their target flight 

regimes, therefore analytic testing can allow for a more 

educated propeller selection for a given design. 

 

 

 

__________________________ 

¹ liam.bullard@rmit.edu.au 
2 simon.watkins@rmit.edu.au 
3 abdulghani.mohamed@rmit.edu.au 

 

While multirotors operating within the specified 

configuration utilizing 5-inch or similar diameter propellers are 

used primarily by hobbyists, there is a growing demand for 

smaller scale commercial UAS operations. However, little 

research has been performed regarding the performance 

characteristics of small UAS propellers, or even larger 

propellers in forward flight. Deters, Ananda Krishnan & Selig 

tested several 5-inch UAS propellers in axial flow, 

demonstrating a peak efficiency at an advance ratio of 

approximately 0.6, consistent over the range of tested Reynolds 

numbers [1], however no consideration was given to propeller 

performance in oblique flow. Experiments covering oblique 

flow include those by Theys et al, however testing was 

performed with larger, 9-inch propeller at low flow velocities 

[2, 3]. Theys concluded that Blade Element Momentum Theory 

was impractical, due to the lack of detailed geometry and 

specifications provided by manufacturers. Amir, Devin & Götz 

demonstrated varying trends in propeller thrust coefficient with 

an increase in freestream advance ratio at different flow angles. 

While these tests were carried out at considerably higher flow 

velocities, they utilized much larger 18-inch propellers [4]. A 

variable pitch propeller was utilized by Riccardi in order to 

minimize variables in propeller geometry, although the rotors 

used are not representative of the style of propeller 

commercially available [5]. 

 

 

2 EXPERIMENTAL SETUP 

Testing was conducted within the RMIT industrial wind tunnel, 

using a semi-custom rig to measure propeller parameters in 

oblique flow. 

 

The test rig selected is based on the commercially available 

RCbenchmark Series 1580 thrust stand. The thrust stand will 

produce a log of applied thrust, torque, motor rpm and input 

power, therefore allowing the efficiency of the motor to be 

determined. It also allows for custom input functions to be 

programmed.  

 

The RCbenchmark unit was mounted to the shaft of a large 

stepper motor, allowing for precise and automated control of the 

propellers angle of incidence. Propellers chosen are from the 

HQProp V1S product line, due to their nominally constant blade 

geometry, over the range of varying pitches available. All 

chosen propellers have a 5-inch diameter, and 3 blades. 4 

propellers were chosen from this series, featuring advertised 

pitch values of 4, 4.3, 4.8 and 5 inches. This propeller features 

a product code of the format HQ (diameter)x(pitch), in inches – 

i.e., HQ 5x4 represents the model featuring a 5-inch diameter 

and 4 inch advertised geometric pitch. The motor to drive these 
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propellers chosen is the T-Motor F80 2500kv model, as it 

operates in a relevant RPM range to the chosen propellers, 

while also offering a larger thermal capacity than motors 

typically used with this class of propeller. The motor was 

operated at the nominal voltage of its recommended battery 

configuration, 14.8V. A T-Motor Flame 80A electronic 

speed controller (ESC) was used to drive the motor, while 

the stepper motor was driven with a Geckodrive 6203V 

driver. Testing was coordinated through the built-in 

scripting function of the RCBenchmark, allowing for 

control of both the test motor and stepper motor. This 

arrangement is depicted in figure 1, with components 

summarized in table 1. 

 

Force/Torque 

Measurement [1] 

RCBenchmark 1580  

ESC [2] T-Motor Flame 80A 

Test Motor [3] T-Motor F80 2500kv 

Power Supply Chargery Power 1500W 

(14.8V, 60A) 

RPM Sensor RCBenchmark Back-emf 

Sensor 

Stepper Driver [4] 

(Stepper motor mounted 

under thrust stand) 

Geckodrive 6203V 

Propellers HQProp 3 Blade V1S 

Series 

Table 1: Testing Equipment 

 

 

 

 

Figure 1: Test rig mounted in wind tunnel. 

 

3 EXPERIMENTAL PROCEDURE 

 

Testing for each propeller occurred at 3 flow speeds, and 6 flow 

angles, assessed as representative of typical ‘sport’ multirotor 

flight regimes, as in Table 2. Hover represents a flow angle of 

0°, while traditional fixed wing flight (axial flow) represents a 

flow angle of 90°, depicted in figure 2. 

  

Wind Speed U 10, 15, 20 [m/s] 

Flow Angle 30, 35, 40, 45, 

50, 90 

[°] 

Propeller Pitch 4, 4.3, 4.8, 5 [″] 

Rotational 

Speed 

10,000-Max 

(approx. 30,000) 

[rpm] 

Table 2: Testing Matrix 

 

Each test was conducted by ramping the propeller through its 

rpm range, from 10,000rpm to the maximum rpm available, 

which varied between configurations (approx.. 30,000rpm). 

This ramp occurred over 45 seconds, and was repeated 3 

times. This represented the maximum testing duration due to 

the thermal constraints of the motor, requiring a cooldown 

period at the end of each test. 

 
Figure 2: Angle and Force Convention. 

 

 

4 ANALYSIS 

 Logged data available from testing is summarized in table 3: 

Output Data Unit 

Thrust (FT) [N] 

Mechanical Torque (M) [Nm] 

Electrical Power (Pelec) [W] 

Angular Velocity (n) [Hz] 

Temperature (T) [°K] 

Atmospheric Pressure 

(Patm) 

[Pa] 

Propeller Diameter (D) [m]  

Table 2: Logged Data 

 

𝜌 =
𝑃𝑎𝑡𝑚

𝑅𝑇
  (1) 

Density was first derived using the local atmospheric 

conditions, for each session of testing. While data was also 
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collected to characterize efficiency of the motor and 

electronic speed controller, these results were not within 

the scope of this test. Mechanical power was calculated 

from the mechanical torque measured by the thrust stand, 

thus eliminating motor efficiency from further 

calculations: 

𝑃𝑖𝑛 = 𝑀𝑛 (2) 
 

 Non dimensional propeller performance coefficients 

were calculated using the above logged data, derived 

from those presented by [2, 6].  Thrust and power 

coefficients are calculated as follows: 

 

𝐶𝑇 =  
𝐹𝑇

𝜌𝑛2𝐷4
, 𝐶𝑃 =  

𝑃𝑖𝑛

𝜌𝑛3𝐷5
  (3) 

 

A final dimensionless coefficient is required, advance 

ratio: 

 

𝐽 =  
𝑈

𝑛𝐷
 (4) 

 

Therefore, propulsive efficiency of the propeller can be 

calculated as: 

 

𝑛𝑝𝑟𝑜𝑝 = 𝐽
𝐶𝑇

𝐶𝑃
 (5) 

These calculations provide a propulsive efficiency value 

through the full range of RPM values. 

 

4.1 Error 

In order to determine data quality, a mean and standard 

deviation was taken for the three tests conducted at each 

rpm. A sample of this error measurement, for one flow 

speed and angle is presented in figure 3. 

 

Figure 3: Sample result with standard deviation and mean 

 

As demonstrated, where for each case the solid line represents 

the mean measurement and the shaded area represents the 

standard deviation, the highest quality data is present in the 

region between 18000 and the maximum of 30000 rpm. This is 

also evident when watching the ramp occur, as the motor 

reached approximately 20000 rpm with minimal throttle input, 

resulting in much lower data density in this range. The data 

was therefore ‘cropped’ to begin at 15000 rpm to better 

visualize the high quality data at the higher end of the rpm 

spectrum, shown in Figure 4 

 
Figure 4: Sample cropped result 

 

 

 

5 RESULTS 

In all tests carried out, the greatest propulsive efficiency was 

achieved at the lowest measured RPM. In general, the lowest 

pitch propellers featured the highest propulsive efficiencies, 

surpassed in only a handful of tests. These results demonstrate 

the incompatibility of these propeller designs with efficient 

flight within their desired operating conditions. While no 

conclusions can be drawn regarding a clear trend in 

performance at different angles, this analysis provides evidence 

that flow angle does not provide a strong advantage to a high or 

low pitch propeller. Propulsive efficiency, however, is 

insufficient to fully characterize the performance these 

propellers. Doing so would require further definitions of flight 

conditions and requirements, and outside the scope of this work. 

Data is summarized in Figures 5 through 8. 

 

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 168
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Figure 5: Results at 10 m/s 

 

 

Figure 6: Results at 15 m/s 
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Figure 7: Results at 20 m/s 

 

 

__________________________ 

45x4.3 Propeller is absent from 20 m/s, 45 degree flow due to 

erroneous data acquisition  

 

 
Figure 8: Results in axial flow 
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6 CONCLUSION 

This paper presents measurements of propeller propulsive 

efficiency across a range of selected forward flight 

regimes, such as those experienced by small ‘sport’ 

multirotors. In the conditions tested, all propellers 

experienced their maximum efficiency at their highest 

advance ratios. In a majority of operating modes tested, 

propellers with lower geometric pitch provided higher 

propulsive efficiencies. This indicates a greater efficiency 

could be achieved for this propeller class through a higher 

forward flight speed, lower pitch, or reduced rpm. This 

however would require further characterization of 

propeller performance across thrust values. Additionally, 

while flight angle within the chosen operating ranges did 

not have a significant impact on efficiency, the highest 

efficiencies were achieved in pure axial flow.  

Further work in this field including rotor interactions can 

be viewed in the thesis of Samuel Prudden, available via 

the RMIT research repository: Rotor aerodynamic 

interaction effects for multirotor unmanned aircraft 

systems in forward flight. 
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powered UAS
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ISAE-SUPAERO, University of Toulouse, 31400 Toulouse, France

ABSTRACT

Performance analysis and possible improve-
ments of a long-range unmanned aircraft sys-
tem powered by fuel cell are investigated using
CFD, with the study focusing on the feasibility
of crossing the Atlantic Ocean. The motivation
behind this aircraft is to demonstrate the capabil-
ity of the hydrogen fuel cell as an alternative fuel
source and to create a case for future commer-
cial and civilian aircraft. The existing hydrogen-
powered UAS design is benchmarked and an in-
depth analysis of several aerodynamic structures
for performance improvement in cruise. The
requirements of a 3000 km range, a maximum
mass of 25 kg, and hydrogen as a primary en-
ergy source, are used as inputs for the conceptual
design phase and performance evaluation. The
propulsion set, including the propeller geome-
try and the electric motor, has been optimized
for cruise conditions. A detailed study of inte-
grated propeller emplacement has been investi-
gated, showing significant benefits in efficiency.

1 INTRODUCTION

The project Drone Mermoz aims to analyze the feasibil-
ity of an unmanned aircraft system powered by hydrogen fuel
cells that have the capability of crossing the Atlantic Ocean.
This route has been selected as it has historical significance;
it was used by the French aviation company, Aeropostale in
the 1930s and to date has only been crossed by UAS pow-
ered with internal combustion engines. The objectives of
this project are to design a long-range UAS featuring hydro-
gen fuel cell-based propulsion, capable of flying from Dakar
to Natal (3000 km) and being sufficiently lightweight to be
within the certification category allowing beyond the line of
visual sight.

Unmanned aircraft systems (UAS) have become instru-
mental tools for missions in various military, civil and com-
mercial fields. Current generation electrical powered un-
manned aircraft systems are limited in terms of range and en-
durance due to the low energy density of their lithium-based
batteries. However, many UAS applications require high
range and endurance capabilities for intelligence, surveillance

∗Email address(es): nikola.gavrilovic@isae-supaero.fr

and reconnaissance. This demand for flights which last for
considerable periods of time without the need to frequently
land coupled with efforts to minimize environmental impact
and the benefits of a low thermal and noise signature, make
long range electrical aircraft desirable. An emerging source
of electrical energy with the potential to solve the limitations
of batteries is hydrogen fuel cells. They offer compelling
value for unmanned aircraft systems due to the ability to pro-
vide approximately five times more power per flight hour for
the same weight as lithium based batteries, as well as of-
fering improved reliability and reduced maintenance when
compared to small internal combustion engines. Some re-
cent example of hydrogen powered aircraft can be found in
[1, 2, 3, 4, 5, 6, 7].

2 CONTEXT

2.1 Performance improvement of a clean aircraft
A preliminary design study of an ultra-long-range drone

capable to cross the Atlantic ocean by using fuel cells and
hydrogen as a primary energy source has been investigated
previously by Gavrilovic et. al. [8] and is shown in Figure 1.

Figure 1: Drone Mermoz v1 - 12 kg and 3.6 m span demon-
strator of technology.

Further development of a design procedure led to a com-
bination of analytic approach and optimization cycle. The
structural mass estimation was performed using the Gund-
lach [1] equations, with the iteration of the propulsive system
in the function of available energy required for the journey.
Once the estimated mass was determined, a parametric study
was conducted to find adequate ranges of aircraft size which
have been used in the optimization cycle. The last part of
the preliminary design procedure was an optimization cycle
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working with a modified version of AVL which takes into ac-
count viscous effects integrated into an OpenMDAO genetic
algorithm environment.

A final result of the optimization cycle was a 12 kg air-
craft with wing-span of 3.6 m, having maximum lift-to-drag
ratio of around 25. The clean aircraft named Drone Mermoz
v1 and shown in Figure 2 is designed for following mission
requirements:

• Must be able to cross the distance of 3000 km with
liquid hydrogen as a primary energy source.

• To have a total mass of less than 25 kg.

• Must use hydrogen fuel cell as primary energy source

The performance improvement of this given clean aircraft is
related to design, development and integration of certain aero-
dynamic structures. The main objective is to improve the air-
craft endurance and range. Therefore, the CFD analysis of
this clean aircraft will be performed in order to be compared
with improved design such as:

• Fuselage-wing junction optimization (design of ”Kar-
mans”)

• Implementation of winglets (comparison between
bioinspired wing-tip feathers and blended winglet).

Figure 2: Drone Mermoz v1 - clean aircraft.

The main geometrical, aerodynamic and propulsive pa-
rameters of Drone Mermoz v1 are presented in table 1.

2.2 Propulsive optimization
The main objectives of the propulsive optimization study

are a choice of the propeller, motor, and a more interesting
part of fuselage integration that will be presented here. This
study aims to investigate the the effect of fuselage body on
the performance of the propeller according to different em-
placements. A potential benefit in increased propulsive effi-
ciency and thrust can come from two different points. The
first is related to a covering of around 25 % of propeller root
as this part mainly generates drag, while the second is related
to the investigation of flow deviation to overall propeller per-
formance. Therefore, the study will focus on propeller inte-
gration in already existing fuselage design (without fuselage
shape modification), thus avoiding standardized spinners.

Parameter Value Unit
Vc 23 [m/s]

Wingspan 3.6 [m]
Fuselage length 1.7 [m]
Wing surface 0.65 [m2]

AR 20 —
Total mass 12 [kg]

Structural mass 4.5 [kg]
CLcruise 0.57 —

CL/CDmax 25 —
ρ 1.2 [kg/m3]

Fuel cell HES AEROSTAK 500 —
LH2 reservoir 7 [l]

Range 3200 [km]

Table 1: Drone Mermoz V1.

3 GEOMETRY AND MESH PREPARATION

3.1 Boundary conditions and domain
The dimensions of the domain are chosen to be suffi-

ciently large to allow enough space around the geometry of
interest so that the perturbations in the flow field do not in-
terfere with the boundaries. The domain shown in Figure 3
was selected so that the domain should allow a minimum of 2
times the geometry’s length in the upstream direction, 5 times
in the downstream direction, and 2 times in width.

Figure 3: Flow domain.

After the definition of the physics continua to be used for
the computation, the boundary conditions of the mesh domain
are specified. Using the surface parts that were named dur-
ing the mesh construction process in the ICEM-CFD soft-
ware, the definition of types, physics conditions, and val-
ues of the boundary condition is straightforwardly inputted
into the solver software. A diagram describing the different
boundary conditions used for simulations with a positive an-
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gle of attacks is shown in Figure 4 below.

Figure 4: Boundary conditions.

3.2 Computational setup
For the simulations without an angle of attack, the Top,

Bottom, Symmetry, and Farfield boundary condition type is
set to a symmetry plane. In STAR-CCM+, the tangential
shear stress at a symmetry boundary is fixed to zero. The
velocity face value at the boundary is extrapolated from the
parallel component of the flow of the adjacent cells using re-
construction gradients. This ensures that there will be no flow
passing through a symmetry boundary. The methodology of
the pressure outlet boundary condition is similar as it also
extrapolates the velocity of the interior cells to the bound-
ary face using reconstruction gradients. Since the reference
pressure of the simulation is already fixed at 101,325 Pa, the
Outlet pressure specification is set to 0 Pa gauge.

The criterion that used to ensure the solution’s conver-
gence is the residuals shown in Figure 5 of the transport equa-
tions. In CFD analysis, residuals quantify the local imbal-
ances of variables at each control volume. The velocity inlet
flow direction was specified using normalized x and y compo-
nents. For the simulations with a negative angle of attack on
the airplane, the Bottom boundary condition is switched to a
pressure outlet and the Top boundary condition is set to a ve-
locity inlet. For an airplane model, the angle of attack range
is from −4◦ to +12◦, giving a total of 12 simulations. More-
over, an extra simulation will be conducted at the drone’s op-
erating point.

3.3 Mesh study
This chapter will provide an extra effort in finding out the

balance between the solution accuracy and the computational
time. It must also be pointed out that the time required to
mesh geometry is not insignificant either. For the mesh size
used in this project shown in Figure 6, a full mesh genera-
tion time on a personal computer takes approximately 1.5 to 2
hours, including the volume and prism generation. This value
can extend up to 2.5 hours when generating the finer mesh for
the convergence study. The geometry used for this project’s
mesh independence study is the aircraft shown in Figure 2.
The mesh is varied by re-sizing the parts mesh setup, as well

Figure 5: Residuals.

as the volumetric refinement on all density regions. There
is a total of 5 mesh variations, gradually increasing from 8.5
million cells to 15.9 million cells. Since the prism layers are

Figure 6: Surface mesh on the first baseline (v1) version of
the airplane.

sized according to the flat-plate boundary layer theory, it is
crucial that the wall y+ is verified after the simulation is com-
puted to see if further refinements are necessary. To ensure
that there is at least one cell to resolve the flow within the vis-
cous sub-layer of the boundary layer, the wall y+ should not
exceed 5. Figure 7 shows the distribution of the wall y+ of
all cells adjacent to the airplane’s surface. It can be observed
that a very large quantity of the cells on the airplane’s surface
has a y+ value of around 1. As a matter of fact, 77.0 % of all
adjacent cells has a y+ value less than 1.2 and 99.0 % has a y+
value less than 1.6. There are only 2 from the total 198,827
adjacent cells that has a y+ value greater than 5 which can be
safely considered negligible.

Additionally, a closer inspection of the wall y+ value of
the cells on the fuselage at the symmetry plane in Figure 8
shows that most of the cells are less than or equal to 1. The
dimensionless velocity profile of the flow above the fuselage
at X-position equal to 0.637 meters shown as a magenta line
in Figure 8 is examined.
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Figure 7: The wall y+ distribution of airplane-adjacent cells.

Figure 8: The wall y+ value of the fuselage top and bottom
surface at the symmetry plane.

4 RESULTS

4.1 General performance

An initial study has been performed to analyze and com-
pare the general performance of the aircraft using both vor-
tex lattice program AVL and previously explained CFD setup.
The lift slope curve shown in Figure 9 shows a slight differ-
ence in zero angle of attack lift coefficient while having the
same lift slope.

The main difference between two methods is shown in
Figures 10 and 11 and is coming from difference in drag pre-
diction. A vortex lattice program used in this work is a modi-
fied version of AVL, which includes the prediction of viscous
drag, where the viscous drag coefficient cvd = cvd(Re, αt)
depended on a chord-based Reynolds number and the total
angle of attack αt. The fact that the total drag prediction of
modified AVL depends on the airfoil viscous database pre-
viously built, and a choice of default profile drag coefficient
added to geometry brings a certain doubt in total coefficient
values. On the other hand, with a calculation time of less
than a second, the potential for comparative studies and ease
of integration in the optimization loop keep modified AVL as
a highly desirable tool, especially in the preliminary design

Figure 9: Lift curve.

phase.

Figure 10: Polar.

The Figure 12 shows a span-wise lift distribution for a
trapezoidal wing shown in 2 which is almost elliptical for a
chosen tapper ration of 0.36.

Further analysis of fuselage pressure coefficient distribu-
tion shown in Figure 13 revealed a small contribution in a lift
in the area ahead of the wing. The plot also reveals a peak of a
pressure coefficient at the place after wing-fuselage junction
where the transition to a rear part of the fuselage-cone is be-
ginning. The conclusion is that this kind of sharp geometrical
transition should be avoided in the definitive version which
will be fabricated.

Moreover, a total drag decomposition shown in Figure 14
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Figure 11: Lift-to-drag ratio.

shows that a 60 % of a total drag is coming from a viscous
part, while the other 40 % belongs to a pressure drag. Further
analysis of viscous drag decomposition shown in Figure 15
revealed that the majority of viscous drag is coming from a
wing due to the biggest part of its wetted surface when com-
pared to other parts of the aircraft.

Finally, a pitching moment coefficient has been shown
in Figure 16 for various reference locations. The objective
of this study was to determine where is the position of the
neutral point and to compare it with prediction coming from
AVL. As it can be seen, a point for which the pitching mo-
ment coefficient does not vary with angle of attack is located
at x = 0.510m from an aircraft nose. This value is less than
a 3 % difference than the one coming from an AVL, which
moreover confirms the benefits of using AVL in the prelimi-
nary design phase.

4.2 Improvement using winglets and karmans

This chapter has been devoted to the exploration of po-
tential aerodynamic structures that could enhance the overall
performance of the aircraft, therefore, endurance and range.
The previous study shown by Gavrilovic [9] has quanti-
fied considerable improvements that can be achieved using
winglets on commercial aircraft. However, due to a huge dis-
crepancy in flight conditions, a new study has been conducted
adapted to flight conditions of a small drone. It should be
noted here that even a benefit of a couple of percent is highly
valuable as the aircraft is supposed to fulfill the mission re-
quirement of having more than 3000 km of range. Two differ-
ent winglet designs have been studied and compared to clean
aircraft performance. The first one is a bio-inspired winglet
shown in Figure 17 that resembles the eagle wing tip feath-
ers. The second design is a classical blended winglet shown in

Figure 12: Span-wise lift distribution.

Figure 13: Fuselage pressure distribution.

Figure 18, found on various aircraft types, from small UAVs
for lateral stability purposes up to big commercial aircraft for
induced drag reduction. Moreover, a smooth karman design
have been presented in Figure 19. On top and below the wing
it consists of small rounded edge to reduce the surface and
such friction drag. At the leading and trailing edge it consists
of much larger taper and smooths out the pressure differences:
High pressure at the leading and trailing edge, low pressure
on top of the wing and around the fuselage. The main objec-
tive of the karman is to suppress potential formation of vortex
in the rear part of the fuselage-wing junction, and therefore,
prevent possible drag sources.

The final comparison between different structures and
clean aircraft for cruise operating conditions is presented in
Figure 20. It can be seen that the karman design provided
around 1 % reduction in total drag. On the other side, winglet
structures provide more significant benefits with up to 5 % in
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Figure 14: Total drag of the aircraft in cruise.

Figure 15: Viscous drag of the aircraft in cruise.

total drag reduction. Moreover, the addition of winglets usu-
ally brings around 4-6 % higher lift coefficient for the same
angle of attack. That means that the drag can be even more re-
duced by decreasing the required angle of attack in cruise for
a configuration with winglets. Finally, it should be pointed
out that a 5 % drag reduction represents a significant achieve-
ment, being 150 km out total required 3000 it can be consid-
ered as a fuel reserve.

4.3 Propulsive optimization

Early design stages focused on finding the optimal
propulsive system (propeller + motor combination) for the de-
sired task. Indeed, given the very long-range to achieve, even
the slightest improvements of performances can dramatically
affect the final output of the mission. To this end, all the pro-
pellers listed on the APC Propeller website were tested, alone
and in combination with the electric T-Motors and Aximotors,
to find the best possible propulsive system.

Figure 16: Pitching Moment Coefficient CM vs. angle of
attack measured at various points along fuselage axis.

Figure 17: Bio-winglet.

Optimal propellers were found to be around the 20-inch
diameter range when rotating at around 3000 rpm. Smaller
blades require greater rotational speeds for similar perfor-
mances, while greater ones can lead to mass increments detri-
mental to the desired range. While our interest remains still to
design an optimal propeller for the desired task, this analysis
allows us to identify a promising range of propeller dimen-
sions to analyze, thus making the final design process easier.

Finally, we found that the availability of commercial elec-
tric motors is sufficient to find a propeller/motor combination
with sufficient performances for the desired task. Further-
more, in case of need, the construction of a dedicated motor
is feasible, so we decided to proceed with the design of the
optimal propeller, as well as an analysis of the influence of its
position in the fuselage in its aerodynamic performances.

We now proceed to study the aerodynamic performance

Figure 18: Blended-winglet.
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Figure 19: Wing-fuselage junction.

Figure 20: Total drag for different aircraft configurations.

of the optimum propeller, obtained for Drone Mermoz v1,
when embedded 50 mm away from the tip of the fuselage.
Having verified the viability of using XRotor with a cho-

Figure 21: Fuselage pressure distribution.

sen propeller, we proceed to analyze the aerodynamic perfor-
mance of chosen propeller when embedded in a spinner 50
mm away from the aircraft’s nose. XRotor can compute the
behavior of a propeller when under a non-uniform stream by
being given the flight speed and the additional speed for each
radial station. To obtain this speed distribution at the station
x=50 mm, an Ansys-Fluent software package has been used.
After analyzing the propeller for the non-uniform stream, we
obtain the following outcome:

Having seen the beneficial effects of embedding the pro-
peller in a spinner, we seek now to determine the optimal

Parameter Isolated Embedded increment %
Thrust [N] 4.67 4.85 +3.85 %
ηp [%] 87.49 91.62 +4.13 %

Table 2: Performance variation of a chosen propeller.

position to place the propeller to fully optimize the perfor-
mance. To this end, an Ansys-Fluent analysis have been car-
ried out. When moving the propeller backwards, we see that
the propeller performances fast degrade. Only in the rear-
rest part of the ellipsoidal section of the fuselage do we see a
slight upgrade of performances when compared with the im-
mediate preceding ones, even if these performances are still
worse than those obtained for a propeller embedded 50mm
away from the nose, or even an isolated propeller under a
uniform stream. The opposite situation is seen when moving
the propeller towards the nose, since we obtain an upgrade on
the performances. However, there has to be an optimum for
these performances, after which they will decay to the values
obtained for the uniform stream performances. The evolution
of the performances can be seen in Figure 22 and 22.

Figure 22: Propeller efficiency and thrust variation with posi-
tion.

Some conclusions can be extracted from these results:

• While moving the propeller close to the nose yields
higher thrusts and efficiency, the increase of thrust also
means an increase in the necessary power to fly at the
desired speed and omega.

• The most interesting region to place the propeller is the
interval 46 < x < 60 mm, since in this region, the
thrust obtained is higher than the one provided by the
isolated propeller, while the necessary power to pro-
duce this thrust is lower.

Figure 23 show that the propulsive efficiency decreases as
we embed a higher section of the propeller into the spinner.
This tendency is actually counter-intuitive, since suppressing
the inner sections of the blade (which mainly generate drag)
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should actually lead to increased propulsive efficiency. We,
therefore, conclude that the performance variations over the
isolated solution are due to the non-uniform velocity profile
rather than to suppressing the blade’s inner part.

Figure 23: Propulsive efficiency vs. percentage of covered
blade for the embedded propeller.

5 CONCLUSION

A performance study of an ultra-long-range drone pow-
ered by a fuel cell and hydrogen has been performed us-
ing both CFD and vortex lattice methods. The main find-
ings of this study are that significant achievements in drag re-
duction can be achieved using both blended and bio-inspired
winglets. A drag reduction of around 5 % represents a sig-
nificant gain in overall performance as it can be taken as a
fuel reserve in the mission. On the other hand, fuselage-wing
junction design brought benefit in a drag reduction of only 1
% which is still significant and to be confirmed in the wind
tunnel campaign. A reasonable match was found in neutral
point estimation between the two methods with the conclu-
sion that AVL can be further used for such estimations with
confidence. Moreover, a study of integrated propeller design
showed that the elliptical fuselage tip can contribute to around
4 % gain in propulsive efficiency of a propeller. The benefit of
the increased efficiency and thrust of the propeller was found
to be due to coverage of around 25 % of the propeller root
and deviated flow due to fuselage presence. The next phase of
performance investigation will be a wind tunnel campaign of
full-scale aircraft, with objective to confirm and verify gains
due to application of new aerodynamic structures and propul-
sion integration.
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Implementation of copter propeller model to the problem
of energy consumption minimization during lift phase
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ABSTRACT

The problem of minimum energy consumption
for the lift phase of copter or VTOL airplane
flight is investigated. Two models of propeller
for the analytical investigation are proposed.
Problem was solved analytically, the results anal-
ysis was made and propeller models accuracy
was investigated.

1 INTRODUCTION

One of the tasks for copters and VTOL airplanes is to lift
some payload to the defined altitude. This task can be a part
of the flight mission or the main purpose of the flight. The
best way of such a lift process is the flight with minimal en-
ergy consumption as it enables to use the accumulators with
less mass and/or save energy for other parts of flight mission.

2 PROPELLER MODEL

Propellers used in copters are designed for long-time hov-
ering. They have rather low Pitch/Diameter ratio (about 1:2
or less) that leads to the absence of flow separation on the
blades at least during the hovering phase.

To describe the behavior of propellers, dimensionless
characteristics are used [1]:
thrust coefficient

CT =
T

ρn2D4
, (1)

power coefficient

CP =
P

ρn3D5
, (2)

advanced ratio
J =

V

nD
, (3)

propeller efficiency

ηprop =
CTJ

CP
, (4)

where T — propeller thrust, P — propeller power, ρ — air
dencity, n — propeller frequency of rotation, D — propeller
diameter, V — air velocity at infinity.

∗Email address: serokhvostov@phystech.edu

The analysis of dimensionless characteristics of such a
propellers shows that the thrust coefficient CT decreases
practically linearly with advanced ratio J up to zero value
(it was shown in [2]) and power coefficient remains practi-
cally constant for zero and small values of J . To illustrate
this, the plots for some propellers are presented in Figures 2–
8 (see Appendix A). Figures 2– 6 show the caracteristics of
different propellers with the same pitch and diameter. Fig-
ures 6 – 8 show the caracteristics of propellers of the same
type, the same diameter and the same manufacturer with dif-
ferent pitch. More examples one can find in [1].

So, the following model is proposed: thrust coefficient
decreases linearly with J , power coefficient is constant. In
this case only three values are required for the propeller de-
scription:

• CP0 — power coefficient,

• CT0 — thrust coefficient at zero J ,

• J0 — value of J for zero thrust coefficient.

In this notation formulas for CT and CP can be expressed as

CP = CP0 = const, (5)

CT = CT0

(
1− J

J0

)
. (6)

According to (5), (6), if the copter is hovering or moving
vertically with constant velocity V , power P and thrust of
propeller T can be expressed as

P = kn3, (7)

T = an(n− bV ), (8)

where
k = CP0ρD

5, (9)

a = CT0ρD
4, (10)

b = (J0D)−1. (11)

From (8) one can find the rotational frequency of copter
propeller as a function of T and V as

n =
bV +

√
(bV )2 + 4T

a

2
. (12)
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During the hovering or vertical lift with constant velocity
the thrust must be equal to

T =
mg

N
, (13)

where N is the number of propellers in copter, m is a copter
mass, g — gravity acceleration.

3 ENERGY MINIMIZATION

Assume that copter must lift to the altitude h with con-
stant velocity (excluding the beginning and the end of the lift),
so lift time t is

t =
h

V
. (14)

Total energy consumption is

E =
NPt

η
, (15)

where η is the efficiency of electrical part of powerplant. As-
sume that η is constant. Substituting (12), (14) into (15),

E =
kt

8η


bh

t
+

√(
bh

t

)2

+
4T

a




3

. (16)

The condition of minimum of energy in this process is

dE

dt
= 0. (17)

Substituting of (13), (16) into (17) gives

tm = bh

√
2a

T
= bh

√
2aN

mg
. (18)

Condition (18) together with (12) gives the frequency of op-
timal lift nm as

nm =

√
2T

a
=

√
2mg

aN
. (19)

It should be noted that this value of frequency is
√
2 times

higher than the frequency for hovering.
Propeller power for optimal lift is

Pm = k

(
2T

a

)3/2

·N =
k(2mg)3/2√

N
. (20)

It is
√
8 times higher than the propeller power required for

hovering.
Formulas (19), (20) give the method of defining the rota-

tion frequency and power in climb. One can measure these
values at hovering and simply multiply on the corresponding
coefficients.

Also (19), (20) show that for the fixed diameter and ge-
ometry of propeller, the more propellers are used (in other

words, the more the total area of all the propellers) the lower
is the total power and the higher is the time of climb.

One more thing should be mentioned. Condition (18) cor-
respondes to the maximal thrust at fixed V in expression (8).

The value of minimal energy Em required for lift is

Em =
4kbThN

aη
=

4kbmgh

aη
. (21)

Asmgh is usefull work in our case, aη/(4kb) can be assumed
as total effitiency of this process. Using (9)–(11) one can
express (21) in the form of

Em =
4ThN

η

CP0

CT0J0
=

4mgh

η

CP0

CT0J0
. (22)

So the other definition of the process total eficiency ηtotal is

ηtotal = η
CT0J0
4CP0

. (23)

Analysis of (4)–(6) shows that

CT0J0
4CP0

(24)

corresponds to the maximum of propeller efficiency within
the model investigated, and corresponding value of J for this
case is equal to J0/2. From this one can make a conclusion
that for minimum energy consumption during the lift the pro-
peller must work at the regime of maximum efficiency.

It should be noted that the experimental data (see Fig-
ures 2–8) show that maximal propeller effitiency corresponds
to J = 0.63 ÷ 0.65J0. This is due to the fact that CP be-
gins to decrease at J > 0.3J0. On the other hand, the rate of
decrease is slow enough so the difference between our model
and experimental data is not high, and one can use this model
at least for the prelimenary analysys.

Another thing that must be discussed is that the minimal
energy consumption at hovering fase is proportional to the so
called figure of merit FOM , and [3]

FOM ∼ CP0

(CT )3/2
. (25)

For the fixed diameter the maximal efficiency increases with
the pitch increase while FOM decreases with pitch in-
crease. Figure 1 shows this dependence for the propellers
APC SP 11×3, 11×4, 11×5 [1] (see also Figures 6–8 from
Appendix A).

It is interesting to compare the climb velocity with the
mean velocity of the air VA moving through the propeller area
during the hovering. From (10), (11), (14), (18)

V =
1

b

√
T

2a
=

√
T

2CT0ρD2
J0.
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Figure 1: Efficiency (blue) and FOM (red) as functions of
Pitch/Diameter.

As
T = ρV 2

AS,

S = πD2/4,

so

V = VA

√
π

8CT0
J0 ' 0.63 · VA

J0√
CT0

.

For the propellers from Appendix A

V ' VA.

This gives a simple method of optimal vertical velocity
determination: measuring the air velocity past the propeller
during the hovering gives the required result.

4 MORE PRECISE PROPELLER MODEL

In Chapter 3 it was noted that the propeller model with (5)
gives not very precise results. So, the idea of this chapter is
to propose and test more complicated but more precise model
of CP . From Figures 2–8 in Appendix A one can see that
the value of CP decreases with the increase of J and is equal
to zero at some value of J1. On the other hand, near the zero
values of J the magnitude ofCP is practically constant. From
this, the idea is to approximate the dependence CP (J) by the
parabola. The preliminary investigations show that the most
useful form of this dependence looks like

CP = CP0

(
1−

(
J

J0

)2

(1− δ)
)
, (26)

where

δ = 1−
(
J0
J1

)2

.

For the analysis of previous chapter δ = 1.

Using the formula (26) in finding the minimum of (15)
one can obtain the following:

nm =

√
T (
√
δ + 1)

a
√
δ

,

Pm = 2k

(
T

a

)3/2
√
1 +

1

δ
,

tm = bh

√
a

T
(δ +

√
δ),

Em = 2
Th

η

CP0

J0CT0
(1 +

√
δ),

ηtotal = η
J0CT0

2CP0(1 +
√
δ)
.

The value of advanced ratio for maximal efficiency is

Jm =
J0

1 +
√
δ

For δ = 1 these formulas become as in Chapter 3.
The value of

J0CT0

2CP0(1 +
√
δ)

corresponds to the maximum of propeller efficiency in the
model investigated. Substituting values of δ from data of
Appendix A gives the corresponding value of J as J =
(0.63÷0.65)J0. These values of J and corresponding values
of maximal propeller efficiencies coincide with those from
graphs.

As an example let’s consider the APC 11X4 propeller.
According to data from [1], the coefficients for this propeller
forRPM = 6000 are: CT0 = 0.95, CP0 = 0.34, J0 = 0.57,
J1 = 0.68. For this data δ = 0.297, δ0.5 = 0.545, Jm =
0.368 (0.64J0), maximal propeller efficiency is 0.515. Data
from [1] give maximal efficiency of 0.517 at Jm = 0.369.
The dependencies of CT , CP and efficiency are given by red
in Figure 6 with the experimental data. One can see the good
coincidence between the analytical formulas and experimen-
tal data. The accuracy and deviations of analytical formu-
las results are mainly due to the accuracy and deviations of
experimental data that are used for the determination of the
coefficients.

It is also useful to analyze the case when J1 tends to J0.
For this case δ tends to zero, and, from this, tm tends to zero
while Pm tends to infinity but their product Em tends to its
minimal value (as a function of δ), rotational frequency nm
and climb velocity tend to infinity while the total efficiency
tends to its maximal value with respect to δ, Jm tends to J0.
The condition J1 = J2 physically means that there is no drag
on the blades of propeller at zero lift. In other words, this
condition corresponds to the ”best”, ”ideal” propeller, and
the best lift scenario for this propeller is the instantaneous lift
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with infinite power with infinite vertical velocity. Of cause,
the drag of copter’s construction is not taken into account
here.

Now compare the formulas with those from Chapter 3.
The optimal frequency of rotation is higher than in Chapter 3
while power and time of lift are lower. More important is
that the efficiency is higher than in Chapter 3. This means
that the formula (23) underestimate the real value of propeller
efficiency. On the other hand, for the real values of δ that
are only slightly less than unity the difference in formulas is
rather small.

5 MAXIMAL CLIMB ALTITUDE

For the simplification of further investigation let’s rewrite
the formula for the minimal energy (21) as

Em =
mgh

ηtotal
. (27)

The mass of accumulator mac is practically proportional to
its maximal energy stored E, and proportionality coefficient
is α, so

mac = αE.

Assume that we can change the mass of accumulator to max-
imize the maximal climb altitude of the copter. If the mass
of copter without accumulator mass required for climb is m0

(m0 can include the mass of other accumulators, required for
other parts of the mission), then

m = m0 + Em. (28)

From (27) and (28)

Em =
m0gh

ηtotal

(
1− αgh

ηtotal

)−1

.

The maximal climb altitude corresponds to the condition of

h =
ηtotal
αg

.

For typical LiPol accumulator the stored energy is about
200 Watt·hour/kg. For the total efficiency ηtotal = 0.5 it
gives the maximal altitude of 36 km. Up to now there is no
aircraft flying at such altitude. Of cause, this altitude cor-
responds to very heavy copter and can’t be realized and we
haven’t take into account the aerodynamical drag of construc-
tion, the air density and temperature change with altitude, the
change of construction mass with the change of total mass
and many other peculiarities (that can be analyzed in the fu-
ture work), but this result shows that now copters with the
moderate amount of accumulators onboard can reach rather
high altitudes.

6 CONCLUSION

1. On the basis of experimental data two models of pro-
peller for the analytical investigation of minimum en-
ergy lift mode for the copters and VTOL airplanes are
proposed and investigated.

2. The task of minimum energy consumption lift mode for
copters and VTOL airplanes is solved. Optimal pro-
peller parameters and regimes are obtained. It is shown
that for the energy consumption minimization the pro-
peller must work at the regime of maximal efficiency
and the form of propeller must be optimized for the
maximization of efficiency.

3. It is emphasized that for the minimal energy consump-
tion during the hovering phase the propeller must work
and its forms must be optimized for the maximization
of Figure Of Merit value and increasing the propeller
efficiency decreases its FOM.

4. The maximal available climb altitude is evaluated. It
is shown that it is higher than the typical altitudes of
aircraft cruise flight, so practically all the required alti-
tudes can be reached by copter.

REFERENCES

[1] https://m-selig.ae.illinois.edu/props/propDB.html

[2] Serokhvostov S.V. and Churkina T. One useful propeller
mathematical model for MAV. Proc. of International
Micro Air Vehicle conference and competitions 2011
(IMAV 2011), ’t Harde, The Netherlands, September 12-
15, 2011. Delft University of Technology and Thales,
2011

[3] Robert W. Deters and Michael S. Selig Static Testing of
Micro Propellers. Materials of 26th AIAA Applied Aero-
dynamics Conference 18–21 August 2008, Honolulu,
Hawaii. AIAA 2008–6246.

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 183
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Figure 2: APC Slow Flyer 11x3.8 propeller characteris-
tics. [1]

Figure 3: Graupner CAM 11x4 propeller characteristics. [1]
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Figure 4: Master Airscrew 11x4 propeller characteristics. [1] Figure 5: Master Airscrew G/F 11x4 propeller characteris-
tics. [1]
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Figure 6: APC Sport 11x4 propeller characteristics [1]. Red
lines are analytical formulas

Figure 7: APC Sport 11x3 propeller characteristics. [1]
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Figure 8: APC Sport 11x5 propeller characteristics. [1]

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 187
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3D Reconstruction based on NIR single-pixel for drone
navigation under rainy condition

Carlos A. Osorio Quero*, Daniel Durini, Jose Rangel-Magdaleno, Jose Martinez-Carranza and Ruben Ramos-Garcia
Instituto Nacional de Astrofı́sica, Óptica y Electrónica (INAOE), 72840, Mexico

ABSTRACT

In recent years, 3D reconstruction has become a
challenging task for navigation systems. There-
fore, different technologies such as RGB cam-
eras, LIDARs, or RADAR can capture informa-
tion from the environment and perform 3D re-
construction. In an environment of high disper-
sion and low illumination, it is necessary to have
a robust solution that operates in the infrared
spectrum. One solution is to integrate Single-
Pixel Near Infra-Red Imaging (SPI-NIR) tech-
nology, which allows image reconstruction us-
ing few samples and operates in high dispersion
conditions. In this work, an evaluation of the
performance of an SPI-NIR vision system with
active illumination for 3D image reconstruction
in rainy environments is performed. The recon-
struction of 3D objects is performed from the
reconstruction of a low-resolution SPI-NIR 2D
image, using a robust unified reflectance model
that combines the Lambertian, Oren-Nayar, and
Blinn-Phong models to improve the 3D im-
age of objects with surface roughness or with
low reflectance. For 3D reconstruction, single-
view Shape-From-Shading (SFS) based on fast
Eikonal solvers was used. This makes it possi-
ble to improve the shape of the 3D object, re-
duce computation time for future applications
and generate real-time 3D images in harsh en-
vironments.

1 INTRODUCTION

3D reconstruction is itself a challenging task. There are
different type of techniques for the reconstruction as me-
chanical based on ultrasound [1], and the radiometric clas-
sified active through the use of Lidar [2], Time of Flight
[2], interferometry [3], structured light projection [4], and
passives subdivided into the single-view approaches [5],
such as Shape-from-Focus(SFF), shape-from-shading(SFS)
and shape-from-texture(SFT), and multi-view approaches
[5], such as structure from motion and stereo-vision. The goal
of a 3D surface reconstruction is to obtain depth information
of an object or its surface topology. In conditions of scat-
tering, this can be a complex task with high computational

*Email address(es): caoq@inaoep.mx

load. In the case of using RGB sensors, there are some limi-
tations due to susceptibility to weather conditions, including
rain, snow, and fog or low-visibility scenario [6]. A solution
uses InGaAs sensors that operate in the near-infrared spec-
trum (NIR) at the wavelength 1550nm, through a system with
active illumination to illuminate the surface object and make
the 3D reconstruction. The NIR has a better performance in
outdoor sceneries with high scattering over Long-wave in-
frared (LWIR) and the visible (VIS), and it can be adapted by
active illumination while LWIR is not possible. However, due
to the increasing droplet diameters of water particles, there is
an increase in the extinction coefficient β [7] factor related
to the loss of path light received for the photodetectors. This
effect causes a decrease in the level contrast in the scene that
can be reconstructed. In LWIR under the rainy condition, the
value β is higher than the NIR spectrum. Therefore, the dis-
tance of detection is low, and there is more loss, with that the
performance image reconstructed is low quite[8].

This work proposes a vision system 3D image single
view based on single-pixel imaging technology that allows
the 2D reconstruction using a few samples and the SFS
method.The SFS 3D reconstruction method uses a single 2D
image for surface reconstruction, from a specific perspec-
tive, using the changes of illumination shading to infer the
3D shape of the object,different from SFF and SFT [5] that
need to have an image stack the estimate the depth. Cur-
rently, there are no reported works about the effects to apply
SPI-NIR 3D reconstruction in scattering rain, for which, in
this work we focus on single-view method evaluation apply-
ing shape-from-shading technique in combination with fast
Eikonal solvers method [9]. Starting from a 2D single-pixel
NIR low-resolution image, we performed the 3D reconstruc-
tion in a controlled scenario that simulates the rainy condition
for future object detection applications on in-flight and navi-
gation for unmanned vehicles (UMV).

2 SINGLE-PIXEL OBJECT RECONSTRUCTION

The generation of single-pixel imaging is based on the
principle of spatial information modulation from the projec-
tion of a sequence of structured patterns of light through light
modulation devices such as SLM, DMD, or others (see Fig
1). The object is imaged through a lens system, the intensity
of the light reflected and transmitted is collected by a photo-
diode. The relationship between the structured and reflected
light signal measurement can be depicted (1)[4].
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(a) (b)

Figure 1: The two different approaches applied to SPI: a)
Front modulation: the object illuminated by a light source and
the light reflected by him gets directed through a lens onto an
SLM, the light reflected is detected by a photo-detector (or
single-pixel detector, SPD). b) Back modulation: the SLM
device projects a sequence of patterns and the reflected light
is capture by the SPD[4].

Si = α

M∑

x=1

N∑

y=1

O (x, y) Φi (x, y) (1)

Where (x, y) is the spatial coordinate, O denotes object
reflectivity, Φi is ith structured pattern, Si is the ith single-
pixel measurement corresponding to Φi, α is a constant factor
depending on the opto-electronic response of the used single-
pixel detector, and denotes a point-wise multiplication. The
size of both the object and the pattern is M × N pixels, and
through the knowledge of the structured patterns and reflected
light signal measurement is possible to apply an algorithm
to recover the object image. The reconstructed image I is
proportional to object reflectivity O. The reconstructed object
image can be depicted (2)[4].

Si = α

M∑

x=1

N∑

y=1

I (x, y) Φi (x, y) (2)

Where the reconstructed image is expressed as the inner
product of the measurements and the structured pattern, the
spatial light modulation in single-pixel imaging can be imple-
mented in two different schemes [4], a structured illumination
scheme termed front modulation (Fig.1a) and a structured de-
tection scheme termed back modulation (Fig.1b).

2.1 SPI-NIR Vision system test architecture
In this work, We propose a vision system SPI-NIR of the

type back modulation (see figure 1b) with an active illumi-
nation through a NIR LEDs 8x4 matrix, in the range of the
1550 nm wavelength.The back modulation configuration of-
fers the advantage that light is captured directly by the SPD,
and it doesn’t need to adapt a light divider and lens internally
to concentrate the light over the SPD as front modulation(see
figure 1a) with reducing the weight and the complexity of the
system.The active illumination offers the capacity to project
patterns in low-vision conditions (scenarios with dust, fog,

(a) (b)

Figure 2: The proposed vision system dimension is 11x12x13
cm, focal length 20 cm, weight 1.3kg, power consump-
tion 25W, a) first stage module photodiode, active illumina-
tion source, photodetector diode InGaAs FGA015, b) second
stage GPU unit and ADC[14].

rain, or smoke), increasing the capacity of outdoor operation.
Another advantage is the fact that the atmosphere being able
to absorb the wavelength between 1500-1600 nm [10], for
which our vision system SPI is less sensitive to background
noise [11], increasing the range of the detection in outdoor
conditions, which gives an operating advantage for future ap-
plications as a vision sensor for applications of navigation in
unmanned Aerial Vehicle (UAV) (see Fig.3). The SPI-NIR
architecture proposed in this work is divided into two stages:
the first will control the elements used to generate images
through the single-pixel principle: a photo-detector (diode
FGA015 @ 1550nm), source light, and ADC (see Fig.2a),
and a second stage is the responsible of processing the sig-
nal captured by the photo-diode module through the use of an
ADC, which is controlled by the GPU unit (see Fig.2b). The
GPU unit (Jetson Nano) is also responsible for generating the
Hadamard patterns and processing the converted data by the
ADC, used by the Batch-OMP[12] algorithm running in the
GPU unit to generate the 2D/3D image.To design the vision
system, we define some parameters performance for integra-
tion as sensor vision for UAVs. In image capture under rainy
conditions, we define exposure time as taking one SPI image
in 1/50 s, for an aperture to f/2.38 with an exposure value
EV=-4 and an ISO of 5000 sensitivity[13], with we can take
the image outdoor with low-visibility. Others effect consider
in our design is the motion blur <20% , for which we define
flight speed maximum between 7.5 m/s to 30m/s for different
flight height (see Table.1).

Table 1: Effects of fight height on ground sampling distance
(GSD) and fight speed for a motion blur 20% and a shutter
speed of 1/50s.

Flight height(m) 10 20 30 40
Flight speed(m/s) 7.5 15 22.5 30
GSD(mm) 0.75 1.5 2.25 3
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-24 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

(a) (b) (c)

Figure 3: Vision sensor SPI-NIR for applications in
UMV, a) autonomous Navigation in adverse environments,
b)obstacle detection, c)3D reconstruction of scenes with low-
illumination [14].

3 SCATTERING EFFECT

When light interacts with water particles in the air, var-
ious physical phenomena occur as reflection, refraction, ab-
sorption, and scattering. This interaction produces dissipation
of the photon’s energy, the phenomenon is called scattering.
The scattering is related to the size particles sp = 2πr/λ
of the particle [15], r being the radius. According to the
Rayleigh scattering model, the light scattering strongly de-
pendent on the wavelength and to be inversely proportional
to the fourth power of the wavelength [6]. However, the par-
ticles in the atmosphere exhibit some different sizes. A more
realistic relationship between extinction efficiency and size
particle size approximates the probability of scattering to oc-
cur when the wavelength of the incident radiation is approxi-
mately equal to the particle’s radius. Thereby, small particles
with a radius less than 1mm scatter mainly in the visible por-
tion of the spectrum, and particles of more significant size
scatter stronger in the spectrum IR [6].

3.1 Modeling rain environment
We proposed a rain model adapted to single-pixel to de-

termine the attenuation factor of the source light α (λ,D)
for different drop sizes and determinate the maximum dis-
tance for possible measurements (seen figure 7 Appendix
A). The proposed model consisted of three parts, first we
define the weather parameters in rain environments as the
reflectivity (Reflectivity factor) Z =

∑
N iD

6 [16], Z is
related with level concentration rain No[17], and the dif-
ferential reflectivity Zdr depend on the rain rate defined as
dBZdr = 10log(Zh/Zv) [18], where Zh horizontal polar-
ized reflectivity [18] and Zv vertical polarized reflectivity
[18]. These parameters depend on drop diameter D, which
is given by the Marshall Palmer distribution[19]. In the sec-
ond part, we considered the Mie scattering effect for which
we calculate the scattering efficiency Qsca[20], absorption
efficiency Qabs [20], and extinction efficiency Qext [20] for
a particle with diameter D and refractive index m, Qabs[20]
is related to an absorption coefficient µa (λ,D)[20] and ,the
third part of the model we considered the rain speed effect
[21]. In the rainy condition, the effective measurement range
is reduced due to the number of photonsE(N)[14] impinging
the photo-detector photo-active is less, varying the range of

(a) (b) (c) (d)

Figure 4: Generation 3D image through of rectance model, a)
2D image, b)3D image lamberting model, c)3D image Oren-
Nayar model,d) 3D image Unified model.

measurement from 18 cm to 10 cm for materials with a reflec-
tion index of 0.2 and the 28.5 cm to 12.6 cm and, for materi-
als with a reflection index of 0.8 for droplet size 0.5mm (seen
table 2). This variation in the measurement range caused by
scattering should be considered for the 3D reconstruction test.

Table 2: Single-pixel maximum measured distance.

Reflection index 0.2 0.5 0.8
Dry maximum distance (cm) 18.4 22.4 24.4
Rain dropping size @3 mm (cm) 16 18 19.6
Rain dropping size @2 mm (cm) 15.6 17.2 18.8
Rain dropping size @1 mm (cm) 14 16 17.2
Rain dropping size @0.5 mm (cm) 10 11.2 12.6

4 REFLECTANCE MODEL

In previous works have been reported different reflectance
models, for reconstruction of the 3D image using the
method of SFS, as Lambertian [22], Oren–Nayar [23] and
Blinn–Phong [24]. Each model has an own feature to be ap-
plied for different types of surfaces from smooth to rough or
diffuse, for which in this work, we unified a reflectance model
through the linear combination of the models previously men-
tioned.

4.1 Lamberting reflectance model
A Lambertian surface has the property of invariant lumi-

nance according to the viewing angle (see Fig.4b). Lambert’s
law determines how much of the incident light is reflected,
which is constant in any direction, which means that the re-
flected intensity is not dependent on the viewing angle but the
light source’s orientation relative to the surface is. Therefore,
the Lambertian surface is modeled as the light source inten-
sity Io product, the surface albedo ρ, and the cosine of the
angle θ, between source directions S and surface normal N
(3)[22]. The Lambertian model is very straightforward and
computationally efficient, widely applied in the reconstruc-
tion of 3D images.

I =
Io
π
ρcos (θ) (3)

4.2 Oren–Nayar and Blinn–Phong Reflectance Model
Due to the Lambert model is based on smooth surface

reflectance, in diffuse surface conditions, the Oren-Nayar
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model improves 3D reconstruction, considered the roughness
of the surface as the standard deviation of the Normal Gaus-
sian distribution (see Fig.4c)(4) [23]

Lr (θi, φi, θr, φr) = Io
ρd
π
cosφi (A+B

max [0, cos (θr − θi)] sinαtanβ (4)

where A = 1 − 0.5σ2/
(
σ2 + 0.33

)
, B =

0.45σ2/
(
σ2 + 0.09

)
, α = max [θi, θr], β = min [θi, θr]

An improvement of the Oren-Nayar model is the Blinn-
Phong model which includes an ambient term and it is based
on that shiny surfaces have small intense specular highlights,
while dull surfaces have significant highlights that fall off
more gradually (5) [24].

Lr = ωdIo
ρd
π
cosθi + ωsIo

ρs
π

(
R

‖R‖ ·
V

‖V ‖

)n
(5)

4.3 Unified Reflectance Model
Due to the Lambertian model is inaccurate in rough

diffuse surfaces, we proposed to combine through a linear
combination of Oren–Nayar model and the specular part of
Blinn–Phong model (see Fig.4d)(6)[9].

Lr = ωdIo
ρd
π
cosφi (A+B

max [0, cos (θr − θi)] sinαtanβ + ωsIo
ρs
π

(n · h)
n (6)

5 3D IMAGE RECONSTRUCTION

The success of 3D image reconstruction based on the
method of SFS depends greatly on the physical brightness
surface and reflectance properties as well as the illumination
conditions, and other extrinsic factors as camera properties
(see Appendix B) and the reference coordinate system of the
viewer/camera-centered. This method seeks to solve the im-
age irradiance equation Er = R(n(x))[25] where the nor-
malized brightness I(x) of gray-value image is related with
the reflectance map R(n(x)). For 3D image reconstruction,
we create a photo-metric image from a 2D low-resolution re-
constructed image using a single-pixel with active illumina-
tion based on a Leds NIR array of 8x4 in the wavelength of
1550 nm in a rainy scenario (seen figure 5). The fact that
our visual system has illumination active allows keeping a
level of brightness not depend on the condition of the back-
ground light and rainy condition or scattering medium in the
near-infrared present less attenuation than vision systems that
work in the visible spectrum [6]. Using the 2D SPI-NIR im-
age, the irradiance level is estimated Er. Calculating the pa-
rameters albedoρd, θr and θi must be considering that a single
light source of one direction L(sequence projection light us-
ing Hadamard pattern) with the image plane that coincides

with the optical z-axis of the camera (detector single pixel),
was used. Due to the relationship between the surface re-
flected radiance model Lr and the irradiance image Er (2D
image SPI-NIR), we can define Er = ηLr[25] with that we
can define irradiance image with information of depth (7).

I(x, y) = cosφi (A+B

max [0, cos (θr − θi)] sinαtanβ + (n · h)
n (7)

For solving (7), we can consider that the direction of the
light source is the same as the camera, with that θi = θr, φi =
φr, α = θi = β and, n · h = cos (θi) , we can express
irradiance image (9) [26] (see appendix B).

I (x, y)

√
1 + ‖5z(x, y)‖2 + ω̃ · 5z(x, y)

− ωs = 0, inΩ (8)

if we consider that source has one direction ω = (0, 0, 1)
and (8) , it can be define as Eikonal equation [26](9).

|5z(x, y)| = f(x), wheref(x) =

√
1

I(x, y)2
− 1 (9)

6 EXPERIMENT AND RESULTS

To evaluate the 3D reconstruction vision system’s capa-
bilities with active illumination through the method of SFS
with Eikonal solver (9) in rain condition, we develop a test-
ing bench that has a controlled system of illumination to sim-
ulate background outdoor light and a system that can simu-
late the conditions of rain with a size drop of 0.5 mm,1 mm,
and 2 mm (see Fig. 5.). For the 3D image reconstruction ini-
tially, we take a 2D image single-pixel NIR of low-resolution,
which is obtained from 80% of the Hadamard patterns pro-
jected, and it is reconstructed through the technique of CS
using the Batch algorithm in combination with the method of
FSRCNN with upscaling factors of 4 [27] (see Fig.6 a,d). Due
to the scattering effect caused by rain, a pre-process of the 2D
SPI-NIR image was needed through Gaussian filter and mor-
phologic methods before making the 3D image reconstruction
using SFS. In this work, we focus on reconstructing objects
with few details on their shape with rough surfaces in rainy
conditions. For the first test, we reconstructed a homoge-
neous surface, for which we chose a bright spherical ( a shape
sphere object can be an ideal approximate of the Lambert sur-
face and can be considered as a calibration object in the 3D
reconstruction[25]) object of 50mm of diameter at a distance
of between 10 to 17 cm from the focal lens (see Fig.6a) in
which we applied scanning of the type basic and spiral. In
the second test we reconstructed a rectangular area formed
by a cube, its area is 40x40x40mm at a distance between 10
to 17 cm from the focal lens (see Fig.6d), and we applied a
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Figure 5: Experimental setup to vision system 3D SPI-NIR,
the testing bench has a rain (size drop rain 0.5,1,2 mm) and
background light-controlled system. Range of measuring be-
tween 10-25 cm (seen table I), the testing object must be po-
sitioned into the glass box to evaluate the performance of the
3D image reconstruction in rain conditions.

scanning basic and ZigZag. for the test, we used different
scanning methods to determine which method can adapt bet-
ter to rainy conditions depended on the type of surface that
want to reconstruction.

6.1 Discussion: Testing 3D SPI-NIR reconstruction in rainy
condition and without rain

In the tests carried out to 3D image reconstruction in rainy
conditions, we define the measured distance between 10 to 17
cm, from the analysis of the modeling the SPI-NIR in con-
dition rain (see table 2), the distance that is in the range of
measure of an object with a high reflection index. In rainy
conditions, for critical droplet sizes < 1mm where the scat-
tering effects are more, we can see a high level degradation of
the quality of both objects’ reconstructed 2D/3D image, the
spherical object representing a more significant degradation.
For the object, the square can see a degradation in the surface
reconstructed due to attenuation and loss of information (see
Fig.6f). If we applied a scanning method of the type Zig-Zag,
it can improve the quality of 2D/3D image with a better level,
SSIM > 0.7, compared to the basic scanning method. In
the case of the reconstruction of the object with sphere shape
in the test, we can see that the scanning method spiral have
a better level SSIM in the rainy condition, and the 3D image
has a high-level degradation for droplet sizes 0.5mm with a
more significant loss of information (see Fig.6b,c) in com-
parison with a square object.About the processing time for
reconstruction of sphere objects, the time is between 28 to 32
ms with the Hilbert scan as the lower, and Spiral as the faster,
for case square object the time is between 27 to 30 ms, with
the Basic scan being lower, and Zig-Zag is faster.

7 CONCLUSION

This paper presented a vision system SPI-NIR with active
illumination of low resolution to 3D image reconstruction in
rainy conditions for future application on in-vehicle UAVs.
The 3D image reconstruction is based on the single-view
methods shape-from-shading(SFS) with an Eikonal solver. In
this work, first, we defined the measurement ranges by mod-
eling the number of photons detected in the rainy condition

(seen Appendix A Fig.7), and we can determine the effective
measurement range between 10-28 cm (see table 2). Due to
the scattering effect caused by the rain, the level of light re-
flected off the object will be attenuate, for which we proposed
using a unified reflection model (6) to estimate 2D SPI-NIR
image irradiance used to make the reconstruction 3D. In the
test, we can see as the droplet size affect the quality of the
2D/3D image reconstructed. In the condition of fine driz-
zle with size droplet < 1mm, the scattering effect is more
significant, so the 3D reconstruction has limitations. We im-
plement different scanning methods for this as a solution de-
pending on the type of element to detect. For example, in an
urban ambient with many buildings, the 3D reconstruction is
focused on detecting walls that can be approximate the recon-
struction of an object with a shaped square. So the scanning
ZigZag is a method more the most appropriate to make a 3D
reconstruction. In contrast, in a scenario with more vegeta-
tion or mountains, we can approximate some scenario objects
as shape spherical or curves, being a scanning Spiral method
the most appropriate. This capacity to improve the quality
of the 3D image increases the vision system’s capabilities to
applications to vehicles UMV in scenarios with rain.
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APPENDIX A: MODELING RAIN

A.1 Modeling SPI-NIR rain condition
The vision system proposed in this work is SPI-based

[4], with illumination active for which we define as source
light array LEDs of 8x4 that work in the wavelength of 1550
nm with a power level of 3.2W (IEC Eye Safety regulation
IEC62471 [28]). The SPI-NIR system’s critical factor is the
minimum integration time Tint required by the photo-diode
to capture the photons emitted by the array of LEDs to con-
vert them into an electrical signal and above the background
noise. This factor T

int
determines the measuring maximum to

reach outdoor by using (9)[14] that define the number of pho-
tons E(N) impinging the photo-detector photo-active in dry
condition, and it depends on the spectral content 1544nm <
λ < 1556nm, the detector quantum efficiency QE (λ) in this
bandwidth, the length of the integration time of the detector
Tint, and pixel’s effective photo-sensitive area Apix, defined
as AwxlFF , where Awxl is the semiconductor window and
FF the photodiode’s fill-factor, Φ

eλ
defined as the irradiation

level of the active source, E
eλ sum(λ)

irradiation level of the
sun illumination considered to be of 100 Klux, the f

#
number

define as f
#

= f
foc
/d

aperture
, f

foc
is the length focal , and

daperture opening distance is the focal distance/opening dis-
tance, h is Planck’s constant= 6.62607004x10−34m2kg/s, z
is the measured distance, c is the speed of light constant,τ the
lens transmittance,ρ the material reflection index, and α

FOV

the focal aperture angle [14] of the emitting LED array.

E(N) =

∫ λ
2

λ
1

ρτ
lends

QE (λ)TintApixFFλ

hcf2
#[

E
eλ sum(λ)

+
Φ
eλ

πz2tan (α
FOV

)

]
dλ (10)

In rain condition, the irradiation level of the active
source illumination is attenuate due to the scattering co-
efficient µ

s
(λ,D) (11)[20] and absorption coefficient

µ
a

(λ,D)(12)[20] relation of scattering Mie and weather
parameters of rain environment model(seen figure 6)
α (λ,D)[20]. For which the distance of measure of the
SPI system in scattering environment is less than to dry
conditions (seen table I).To evaluate the effective measured
range theoretical the (10) must consider the variables of the
rain environment model proposed as α (λ,D)[20], speed
rain (13)[29] , the brightnesses of the dropping rain L

r
i

and
light of the background. Factors that affected the number of
photons E(N) impinging the photodetector photoactive. The
irradiation level of the active source (array LEDs) Φ

e lambda

is attenuate a factor Φ
eλ
e−α(λ,D)z and the E

eλ sum(λ)
of

level background illumination is defined as E
eλ sum(λ)

=⌊
τ
rain

AL
r

+ τ
rain

(1−A)L
b

+
(
T
patterns

− τ
rain

L
b

)⌋

[30] ,where L
r
i

= L
r
i−1

e−βz + L
b

(
1− e−βz

)
[30] and

the brightness level of the background light received by the
detector is affected by the speed of the raindrops and the
projection time of the projected Hadamard light patterns,
as a gain factor of the received light we have the variable

A =
πf2

foc
D2

z which corresponds to focal parameters of our
system, the β variable is defined as a geometric factor of the
raindrop 0 < β <

√
D

50Tpatterns
[29].

µs (λ,D) =

∫
σs (λ,D)N(D)dD (11)

µ
a

(λ,D) =
πD2

4
Qabs (λ,D) (12)
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Figure 7: Overall block diagram single-pixel rain environment model proposed, we considered weather parameters, Mie Scattering,absorption
efficiency Qabs[20], speed dropping rain,raindrop distribution N(D)[20], concentration rain No[17], slope concentration distribution
Λ[17],shape parameter µ[17], and SPI-NIR model to evaluate the range detection practical theoretical of the detector InGaAs (1550 nm).

v = −0.1021 + 4.932D − 0.9551D2 + 0.07934D3

− 0.002362D4 (13)

No = Zh10(0.00285ZΛ3−0.0926Λ2+1.409Λ−3.764) (14)

Λ = 0.0125Zdr
−3 − 0.3068Zdr

−2

+ 3.3830Zdr
−1 + 0.179 (15)

µ = −0.0201Λ2 + 0.902Λ− 1.718 (16)

N(D) = N0D
µe−ΛD (17)

APPENDIX B: INTRINSIC MATRIX AND EIKONAL
SOLVERS

B.1 Intrinsic Matrix
The intrinsic matrix of the vision system SPI is defined

using the model Pinhole with a focal length 25 cm,and axis
skew, s=0 (18)[31].

K =



fx s x0

0 fy y0

0 0 1


 =




114 0 90
0 114 100
0 0 1


 (18)

B.2 Unified Eikonal-Type PDE Equation
For method, SFS we define a 3D surface as a projection of

the first partial derivatives of the surface z(x, y) with respect
to x(19)[25] and y(20)[25] with a vector n(21)[25] normal of
the surface point.

p(x, y) =
∂z(x, y))

∂x
(19)

q(x, y) =
∂z(x, y))

∂y
(20)

n(x, y) =
(p, q,−1)√

1 + ‖5z(x, y))‖2
(21)

if we considered that the direction of light source L is the
same as the camera direction V, the irradiance image equa-
tion (7) defined as (22), for ωs = 0 (22) can be define as
(8) and solver using (9), for the unified reflectance ωs 6= 0,
needs to apply the Newton–Raphson method (23) [9] using
the definition (26), as strategy to accelerate the calculations
we applied the fast eikonal solvers based on the numerical
method of Godunov-Based [9].

I(X, y) = ωd


 A√

1 + ‖5z(x, y))‖2
+

B 5 z(x, y)2

1 + ‖5z(x, y)‖2




+ ωs


 1√

1 + ‖5z(x, y)‖2



n

(22)

|5z(x, y)| =
√

1

(T k)
2 − 1,∀(x, y)εΩ, where

T =
1√

1 + ‖5z(x, y))‖2
(23)

For solving (23), we must be defined (22) as (24) and its
first derivate(25)[9].

F (T ) = ωsT
n −BωdT 2 +AωdT +Bωd − I (24)

F
′
(T ) = nωsT

n−1 + ωd (A− 2BT ) (25)

T k = T k−1 − F (T k−1)

F ′(T k−1)
(26)
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Indoor Visual Semantic SLAM improves VIO and
RGBD for narrow space navigation

Andrés Solares Jurado†, Germán Andrés Di Fonzo,† Rafael Pérez†, Hriday Bavle ‡, Miguel Fernandez-Cortizas†, Javier
Rodrı́guez-Vázquez †*, Guillermo Robledo†, Pascual Campoy†

Computer Vision and Aerial Robotics group (CVAR), Universidad Politécnica de Madrid †
University of Luxembourg ‡

ABSTRACT

Self localization in GNSS denied environments
is a key requirement for Micro Aerial Vehicle
(MAV) applications. Indoor environments have
an abundant presence of high-level semantic in-
formation that can be exploited to improve the
environment understanding, as well as their pose
estimation. Given that MAVs cannot carry much
weight, they can only be equipped with light
sensors, such as RGB-D cameras, and process-
ing units with limited computational resources.
In this paper, we tackle the problem of real-
time visual semantic SLAM running on-board
lightweight aerial robotic platforms by using the
OAK-D RGB-D sensor. The proposed algo-
rithm is divided into two parts. In the first part,
the robot state is propagated using VO/VIO es-
timation by using low-level features of the en-
vironment. Then, to counterpart the accumu-
lated drift of such low level algorithms, we as-
sociate high-level sensed objects with previously
mapped landmarks. Thus, the second part of the
algorithm corrects the estimation and builds a
sparse semantic map of the landmarks extracted
from the detections.

1 INTRODUCTION

Our aim is to provide MAV the ability to navigate around
narrow constrained spaces during disasters . This kind of
vehicles cannot carry a lot of payload, so they can only be
equipped with light-weight sensors, such as RGB or RGB-D
cameras (OAK-D), and processing units with limited compu-
tational resources. To operate in a truly autonomous way,
accurate localization and meaningful mapping results are
needed, which is indeed a challenging problem, especially
regarding robustness.

Simultaneous Localization and Mapping (SLAM) using
visual sensors may be feature-based (sparse, semi-dense or
dense) or intensity-based. Most semi-dense SLAM tech-
niques, like [1, 2, 3], rely on low-level characteristic features
of the environment such as points, lines, and planes. This

*Email address: javier.rodriguezvazquez@upm.es

kind of approaches typically deteriorate in performance in the
presence of illumination changes and repetitive patterns. On
the other hand, other state of the art SLAM based techniques,
such as [4, 5], focus on dense 3D mapping of the environ-
ment, hence requiring high-end CPU and GPU hardware to
achieve real-time operation, which is a clear limitation on
board an aerial robot with low computational capabilities.

Recent improvements in computer vision algorithms have
made it possible to achieve object-based detectors running
real-time on lower end CPUs or GPUs. Combining such de-
tectors with Visual Odometry (VO)/ Visual Inertial Odometry
(VIO) systems depending on low-level features can improve
the accuracy of the data associations and provide more ro-
bust loop closure without high computational requirements,
as shown in [6, 7]. Although adding semantic information to
SLAM systems undoubtedly provides additional knowledge,
extracting the accurate 3D position of semantic objects is a
challenging problem with important implications, since er-
rors in the position estimation can induce errors in the data
association and mapping of such semantic objects.

The inaccuracies in estimating the 3D positions of seman-
tic objects are mainly due to two factors: Uneven and com-
plex 3D structures of different instances of semantic object
classes. Errors in the semantic object detections, i.e, bound-
ing boxes provided by the object, detectors do not fit accu-
rately around the detected object.

Most indoor scenarios include some static key objects
(screens, tables, windows, etc.) that can be used as reference
landmarks. Hence, to overcome the above-mentioned limi-
tations and to achieve a robust and lightweight SLAM algo-
rithm, we use a semantic SLAM approach using key objects
within the semantic detections.

In this paper, we present a Semantic SLAM algorithm that
can be divided into two parts. In the first part, the robot state
is propagated using a VO/VIO estimate. Low-level features
from the environment are used at this stage for the propa-
gation of the robot state. Due to the inaccuracies in low-level
feature detection and matching, as well as to errors and biases
in the IMU measurements (for VIO systems), the VO/VIO es-
timations of the robot state often accumulate errors over time.
We address this by associating the high-level detected objects
with the previously mapped key objects.

To estimate the position of the key detections, we inte-
grate state of the art detectors on the OAK-D, using its neural
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inference feature. Being able to perform the detection of both
cameras allows us to fuse the output information and gather
3D information. Hence, the second part of the algorithm cor-
rects the estimation and builds a sparse semantic map of the
key objects extracted from the detections. The created se-
mantic map consists of centroids along with their class labels
and type, which may be augmented by new detections of the
semantic objects.

2 RELATED WORK

The research community has already given a great interest
in visual SLAM based algorithms applied to robotics. In this
section, we are going to review some of the latest and most
significant visual SLAM related literature.

Salas-Moreno et al. [8] presented a pioneer work in this
direction. A real-time semantic SLAM called SLAM++. This
type of SLAM was developed for a RGB-D sensor and it ex-
tracts estimates of poses from a 3D camera pose track using
the ICP algorithm. It then integrates the relative 3D poses es-
timated from semantic objects in order to jointly optimize all
the poses.

Parkhiya et al [9] Gives the semantic SLAM a monocular
approach. With the use of a deep network to learn features of
2D objects to later, match it with a 3D CAD model to estimate
the relative pose of the semantic object.

McCormac et al. [10] develops an object-level SLAM
system using RGB-D cameras, segmenting Truncated Signed
Distance Function (TSDF) representations of the object with
help of the Mask-RCNN object detector. This detected ob-
jects are used to complete the SLAM algorithm: tracking,
re-location and loop closure.

Murali et al. [11] presents an approach which integrates
semantic information into a visual SLAM system. The se-
mantic information is used for detecting the inliers/outliers of
the system in order to achieve robust performance in the pres-
ence of dynamic obstacles. A pre-trained deep learning based
object detector provides the semantic information of the ob-
jects.

Grinvald et al. [12] propose a semantic mapping sys-
tem based on a pose acquired from a geometric VIO sensor.
This method utilizes geometric planar segmentation of a point
cloud data and then uses semantic detections for the data as-
sociation step and to further refine the segmentation.

One of the most recent publications comes from Yang et
al. [13]. He proposed a unified SLAM framework includ-
ing high-level object detection and planes based on monoc-
ular information. Other innovative approaches have focused
on point-wise semantic labeling for 3D Lidar data within the
SLAM framework [14].

3 SYSTEM APPROACH

3.1 Sensor integration
The OAK-D camera has been used as the main sensor

for this approach. It integrates a color camera, which allows

a maximum resolution of 12MP and a maximum frame rate
of 60. In addition, it incorporates stereo camera pair, with a
maximum resolution of 1MP each, at a maximum frequency
of 120 frames per second. It also integrates an inertial mea-
surement unit (IMU). It is capable of providing spatial infor-
mation using the three cameras in different ways. The first
one, making use of Monocular Neural Inference fused with
Stereo Depth, the neural network is run on a single camera
(left, right or color camera) and fused with disparity depth
information. The second one, using stereo neural inference,
the neural network is run in parallel on both the left and right
stereo cameras to produce 3D position data.

One of the main characteristics of the camera is that it
performs neural network inference. Using Intel’s OpenVino
compiler, pre-trained models can be loaded into it. As men-
tioned before, the camera obtains three-dimensional informa-
tion from objects, which allows the fusion of an object detec-
tor neural network with it, providing three-dimensional data
of the detected objects. The device not only can run neural
networks, but also allows its post-processing, which makes it
more flexible and interesting for integration with small robots
such as drones, which typically lack high computing power.

Regarding calibration, the OAK-D offers information on
the intrinsic and extrinsic parameters of each camera. How-
ever, the IMU intrinsic parameters calibration has been cal-
culated using the C++ version of Allan Variance Tool pack-
age [15], with which the gyroscope and accelerometer white
noise and bias instability are calculated. Thanks to this, we
can obtain the IMU covariance matrices needed for the VIO
algorithm.

3.2 Object detection

Object detection algorithms locate the presence of spe-
cific objects in an image with a bounding box. This will al-
low us later to extract the semantic information along with
the spatial coordinates of the detected item. Even though the
semantic object detection can be performed using any object
detector, it is preferred to be lightweight and fast in this case,
since the computing will be run directly on the camera. This
is why it makes sense to use OpenVINO [16] in combination
with OAK-D, which allows to load deep learning models into
a format that can run with high efficiency on Intel hardware.

A pre-trained MobileNetv2SSD [17] neural network has
been used, it has been chosen due to its good ratio between ef-
fectiveness and speed. After being compiled in OpenVINO,
it allows the camera to carry out both its inference and its
post-processing, thus obtaining the bounding box of the de-
tected object, together with its probability. This network has
been trained in COCO [18] , allowing the detection of 21
different labels corresponding to common objects (vehicles,
people, animals and domestic items). When the inference is
made on the color camera, the OAK-D provide the depth of
the object using the stereo pair. Furthermore, as will be ex-
plained later, inference has also been implemented directly
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on the stereo pair, achieving after post-processing the three-
dimensional position of the object.

3.3 Object position estimation

In order to improve the estimated pose of the robot com-
puted through odometry, information from the environment
needs to be extracted. We seek to detect common static ob-
jects in the robot’s surroundings, obtaining not only what type
of object it is, but also its position. Then, these data can be
used in semantic SLAM algorithms in order to achieve our
purpose.

In this paper, two different approaches are implemented
to address this issue. In the first one, OAK-D high resolution
color camera is used. As explained before, this method uses
the MobileNet object detector to identify different objects in
the RGB images. Once the item is localized, the depth map
provided by the device can be used to obtain the center spa-
tial coordinates of the bounding box, which ideally matches
with the center of the object. This solution has two major
problems. On the one hand, it is not capable of calculating
distances less than 0.7 m and, on the other hand, in objects
with holes, even if the detection works properly, the center
of the bounding box may coincide with one of these holes,
causing the depth estimation to fail, obtaining the depth of
the background and not of the detected object. In figure 1 an
example of a detected object using this configuration can be
seen.

Figure 1: RGB object position estimation approach.

The second approach takes advantage of the stereo pair
of the device. First, the images are rectified and, as ex-
posed before, objects are detected in both mono cameras at
the same time running two MobileNet neural networks in par-
allel. Once the bounding boxes of each object have been ob-
tained in each one of the images, the position of the object
is computed assuming that both detections are the same, i.e.,
the detector obtains the same result in both images, and do-

ing a triangulation implementing the stereo pair 3D model.
This assumption can be made because the distance between
both cameras (baseline) is very small (75 mm), which implies
that one image is slightly displaced with respect to the other,
so they capture almost completely the same information and,
above all, since the cameras are contained within the same
plane, from the same perspective.

When same objects have been detected in both images,
their bounding boxes have to be matched in order to triangu-
late the top left and bottom right corners and compute their
spatial position, otherwise the process would fail. To avoid
false matches, the same objects must appear in both images,
so, in a first filter stage, all objects of one class are discarded
if they do not appear in equal quantity in the left and right
images. Since the images are rectified, determining which
bounding box in the left image corresponds to which bound-
ing box in the right image is not a simple task, since it is not
possible to directly compare their absolute coordinates with
respect to the principal point of the cameras. Depending on
the position of the detected object, the bounding boxes may
appear in very different coordinates in each image. In order
to resolve this problem at a low computational cost, all de-
tections are stored in two vectors (one for each image) and
sorted by their relative center’s X-coordinate. Thus, when we
start comparing all bounding boxes, although several of them
could be really similar, if the comparison starts in this order,
the chances of matching wrong bounding boxes are hugely
decreased.

In a last filter stage, bounding boxes in the first image are
compared to the bounding boxes in the second image by the
order specified above. To get a match between them, they are
filtered by class of object, area, aspect ratio and the center Y-
coordinate of the bounding box. Again, even though images
are rectified, since the stereo pair is at the same height, the
center of the bounding boxes in each image should be very
similar (ideally equal), which let us also use this as a reliable
filter. By having this amount of variables which can be com-
pared to make a trustworthy match, we can reduce the rigidity
of the filters, and so, make the system more robust to incon-
sistencies in the similarity of the bounding boxes extracted.

Once all bounding boxes are matched correctly, each one
of them is processed to obtain the disparity of two diagonal
corners by applying the aligned axis pair stereo 3D recon-
struction model, which we can be visualized in figure 2.

Disparity (xR− xL) is then used to calculate the depth of
the corners as shown in equation 1, where f is the focal length
and T is the baseline. Once again, in order to make the sys-
tem more robust, several reductions of the bounding box are
carried out to improve depth extraction consistency. Since the
final goal is to obtain the position of the object, its centroid
is calculated. The bounding box acts as a plane which cuts
the object vertically through its center so the Z-coordinate of
the centroid is calculated as the average of all corners’ depths
previously obtained. Once the spatial Z-coordinate of the ob-
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Figure 2: Stereo model triangulation.

ject’s centroid is estimated, X and Y spatial coordinates are
calculated as shown in equations 2 and 3. These are spatial
coordinates which are referred to one of the mono cameras
frame. Therefore, the coordinates are transformed to the de-
vice frame, making it easier to transform them to the world
frame later.

Z =
fT

xR − xL
(1)

X =
ZxL
f

(2)

Y =
ZyL
f

(3)

In figure 3 an example of detection using this configura-
tion can be observed.

Figure 3: Stereo object position estimation approach.

Algorithms 1 and 2 show the complete process of the both
proposed algorithms for object position estimation.

Algorithm 1: Object position estimation using neu-
ral inference with RGB images from OAK-D.

Result: Spatial coordinates of the centers of the
detected bounding boxes.

1 Extract RBG image from color camera;
2 Reduce resolution to 300x300 px;
3 Apply MobileNet object detector to RGB image;
4 Compute bounding boxes in depth map;
5 Compute depth of the bounding boxes’ centers in

depth map;
6 Compute X and Y coordinates of the objects from

their depth;

Algorithm 2: Object position estimation using
stereo neural inference in OAK-D.

Result: Spatial coordinates of the centroid of the
detected objects.

Extract rectified images of the stereo pair;
Reduce resolution to 300x300 px;
Apply MobileNet object detector to both images;
Scale bounging box to original resolution;
Sort the detections by relative X-coordinate;
for i = 0 to num right detections do

aR = area(detectionsright[i]);
rR = aspect ratio(detectionsright[i]);
for j = 0 to num left detections do

aL = area(detectionsleft[j]);
rL = aspect ratio(detectionsleft[j]);
if aR ≈ aL & rR ≈ rL & yR ≈ yL then

Compute Zcentroid;
Compute Xcentroid;
Compute Ycentroid;
detectionsleft[j].erase;
break;

end
end

end

The second algorithm solves the problem of hollow items,
if the object is accurately detected in both cameras, since the
extracted bounding box represents a plane cutting the cen-
ter of the object, the estimation will always be consistent, no
matter the shape or holes of the object. Also, this approach
allows to detect objects with very high resolution at very short
distances (below 0.7 m), which is a key factor when navigat-
ing in indoor environments and narrow spaces.

3.4 Robot pose estimation

Semantic SLAM algorithms focus on simustaneously lo-
cate the robot position in the environment and create a map
which represents its surroundings by using semantic informa-
tion of them. By analyzing and processing information about
the environment navigation tasks can be carried out more ef-
ficiently. This type of approaches have gained popularity not
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only because of its great performance but also for the low cost
of the sensors used.

Both object position estimation approaches allow seman-
tic SLAM algorithms to correct the estimated pose of the
robot given by odometry. Our goal is to use Visual Planar
Semantic SLAM algorithm proposed by Hriday Bavle [19],
which takes advantage of environments that have abundant
presence of high-level semantic information. This algorithm
uses RGB-D sensors which provide depth information of the
pixels of the image, with this data planar surfaces are ex-
tracted from the detected objects. From this calculated pla-
nar surfaces the centroid of the object and its normal vector
are calculated. Our focus is to simplify the system by remov-
ing the planar surface extraction since, as we described be-
fore, our object pose estimation algorithms running on OAK-
D camera can directly provide the centroid of the selected
object along with the semantic information. By erasing the
need of detecting objects with planar surfaces the algorithm
gains versatility and the ability to detect hollow objects.

3.5 Graph slam

As in most navigation algorithms, the pose estimates from
the odometry (in this case VO/VIO) which accumulates er-
ror, especially in absence of external references or features.
We find other source of error in the semantic detections, due
to insufficient lighting, occlusions or object detection failure.
With these uncertainties the traditional use of filtering tech-
niques such as the Extended Kalman Filter (EFK) SLAM can
lead to false results in the estimate of the robot as well as the
landmark poses. By using a graph slam approach we ensure
all previous robot states are considered. In order to fuse mea-
surements from VO/VIO and semantic extracted information,
graph slam based optimization is used.

As mentioned before, our goal is to implement into our
detections approaches semantic slam algorithm proposed by
Hriday Bavle [19]. The whole algorithm can be divided in 4
main steps.

The first one being the acquisition of odometry using
VO/VIO methods, in our case provided by the RealSense
T265 camera. The next stages of the algorithm which will
be explained in more detail are graph construction, data asso-
ciation and graph optimization.

In regards to graph construction; the robot state vector is
defined as x = [xr, Rr] which is propagated over keyframes
k.Xr being the position estimates xr = [x, y, z] with respect
to the world reference W and Rr being the rotation matrix
with respect to the world frame W . The starting state of the
robot x is assumed to be known.

Odometry provides the 3D pose estimate in the world
frame reference W . This estimate of the robot state xr at
time t is added to the graph as a keyframe node Kt. The con-
straint between adjacent keyframes Kt−1 and Kt is added in
the form of an edge using the pose increment between them
ur(k). The pose increment obtained from the odometry poses

at time t− 1 and time t can be derived as:

urt = 	xr(k − 1)⊕ xr(k) (4)

Each keyframe Ki is added to the factor graph depend-
ing on time as well as motion constrains of the robot. Each
detected semantic object Di can be either added as a new
landmark node or associated with the currently mapped se-
mantic landmark. Depending on the data association process,
a choice is made as to whether the landmark is new or must
be mapped to a previously detected landmark.

In the data association step the semantic and spatial infor-
mation of the detected objects is received as follows: Di =
{dzi , dci , dpi}. Being Di the detected semantic object i, dzi
the centroid position, dci the class label of the object and dpi
the probability of successful detection.

There is no need for the first semantic object to go through
the data association step so it is directly added to the graph as
a new landmark. It is stored and represented in the following
manner:

Li = {lzi , lci , lσi} (5)

where lzi is the landmark centroid, lci the class of the
landmark and lσi the uncertainty of the estimated position and
reliability of the landmark, which is initialized at a high value
related to the successful detection probability.

After this process, the next detected objects have to go
through the data association phase, where first of all it is
checked if their class coincides with any of the already
mapped landmarks. If so, the relative spatial position of the
centroid is transformed from the camera frame to the world
frame using equation 6 to calculate the Mahalonobis distance
between the new detected object and the possible already
mapped landmarks. If this Mahalanobis distance is greater
than a certain threshold it means that the object does not
match any landmark and is mapped as a new one. In case
this distance is smaller than the threshold the current seman-
tic object is matched with the corresponding landmark.

lzi = xr ⊕ wRc · dzi (6)

In the last stage, which is the graph optimization, the land-
marks positions lzi and their covariances lσi of all the mapped
semantic landmarks are optimized and updated. When a pre-
viously observed semantic object is seen again and correctly
associated to the corresponding landmark, a loop closure is
obtained after optimization, which allows the system to cor-
rect the robot pose. This graph optimization step can be
consulted for more detail in the original algorithm proposal
[19].

4 RESULTS

To validate our approach and test the feasibility of the
OAK-D camera for SLAM applications the same experiment
is carried out with each of the detection approaches. The main
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objective is to determine whether the camera could be feasi-
ble for use in improving odometry estimation in aerial vehi-
cles with low payload capacity. The second objective is to
determine which of the two approaches is the most suitable
for this task.

The experiment consists of navigating an indoor environ-
ment filled with common office objects such as chairs, ta-
bles, monitors and bottles in random positions, a picture of
the setup can be seen in figure 4. In this setup, an Intel Re-
alSense T265 (with loop-closure disabled) is used in conjunc-
tion with the OAK-D as a source of odometry. To compare
the odometry data with the semantic slam estimation, we use
a motion capture system as ground truth data.

Figure 4: Experiments setup.

To test and compare the results of both approaches, we
perform a similar trajectory in the prepared environment us-
ing in each case one type of detections, 3 loops are carried
out in a repetitive manner. The method proposed in [20] is
then used to compare the odometry and estimation trajecto-
ries with the ground truth trajectory. Figures 6a and 5a show
the performed trajectories and the ground truth data.

In table 1 Average Trajectory Error (ATE) with respect to
the ground truth data is presented for each approach and the
odometry obtained in the test. Note that the showed values
not only refer to the translation estimation but also to the rota-
tion. The measurements included are the Root Mean Square
Error (RMSE), the standard deviation and the median. Al-
though the median value is not the most used metric, in this
case has been included because of the high RMSE obtained in
the rotation estimations due to outliers which can be observed
in 5b and 6b.

As shown in table 1, the object position estimation us-
ing the RGB image approach is not capable of improving the
robot pose estimation, on the contrary, it makes the trajectory
differ from the ground truth even more than the VIO path. On
the other hand, the second object position detection approach

Table 1: Absolute Trajectory Error (ATE) m comparisson
between detections approaches and the obtained odometry.

Trans [m] Rot [deg]
RMSE Std Median RMSE Std Median

RGB approach 0.536 0.406 0.244 31.595 28.349 9.011
Odometry 0.504 0.408 0.222 31.262 28.301 8.660

Stereo approach 0.378 0.263 0.200 30.237 27.492 7.769
Odometry 0.540 0.371 0.304 9.860 1.739 9.491

is able to correct the trajectory, reducing the ATE by approx-
imately 0.16m. It demonstrates that this approach outper-
forms the former approach for semantic SLAM applications
in small environments and that it can effectively improve the
position estimation of a robot navigating autonomously.

5 CONCLUSIONS

In this paper, we present a semantic SLAM algorithm
with the aim of improving low payload aerial vehicles pose
estimation. For this purpose, we presented two pose estima-
tion methods for the new OpenCV RGB-D camera, the OAK-
D, that extract the centroid of the objects. The first method
has shown to be insufficient to accomplish such a task, how-
ever, OAK-D is still under development and software updates
can make the detections faster and more robust. The second
approach, which runs two object detection neural networks in
parallel in each of the cameras of the stereo pair, has proven
to be a better option for SLAM algorithms, especially when
navigating in narrow spaces.

As explained before the first method offers a better preci-
sion when detected objects are ”far” (around 1.5-2.5 m), how-
ever, the second method works best when objects are close
(around 0.2-1.5 m). Another important factor is the process
speed of each method, in the first case, since the whole dis-
parity map is calculated, fps drop significantly, reducing it’s
effectiveness when on board of an aerial vehicle (which can
move quite fast). On the other hand, although the second
method runs two neural networks in parallel, it has to pro-
cess the depth for a much smaller number of points, which
translates into a higher computational efficiency, allowing to
obtain a larger number of fps.
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(a)

(b)

Figure 5: (a) Ground truth, odometry, and SLAM top view
trajectories with stereo detections approach. (b) SLAM

rotation error.

(a)

(b)

Figure 6: (a) Ground truth, odometry, and SLAM top view
trajectories with RGB detections approach. (b) SLAM

rotation error.
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Decentralized Trajectory Generation Technique for
Multiple Unmanned Multicopter Systems in Cluttered

Environments
Xinyi Wang*, Lele Xi, Yizhou Chen, Shupeng Lai, Feng Lin, and Ben M. Chen

ABSTRACT

Challenges in motion planning for multiple
quadrotors in complex environments lie in over-
all flight efficiency and the avoidance of ob-
stacles, deadlock, and collisions among them-
selves. In this paper, we present a model predic-
tive control (MPC) based gradient-free approach
for multiple quadrotors to achieve distributed
and asynchronous cooperative motion planning
in cluttered environments with the consideration
of time consumption. First, the motion prim-
itives of each quadrotor are formulated as the
boundary state constrained primitives (BSCPs)
which are constructed with jerk limited trajec-
tory (JLT) generation method, a boundary value
problem (BVP) solver, to obtain time-optimal
trajectories. They are then approximated with
a neural network (NN), pre-trained using this
solver to reduce the computational burden. Fi-
nally, the reference trajectories are generated us-
ing the same BVP solver. Our simulation and ex-
perimental results demonstrate the superior per-
formance of the proposed method.

1 INTRODUCTION

Trajectory planning for multiple quadrotors is key to
execute missions in cluttered environments. In particular,
multi-quadrotor tasks are especially challenging due to many
decision-making agents sharing the same space. In such
settings, the planning algorithms must compute collision-
free and goal-oriented trajectories taking into account of the
neighboring agents and environment. Furthermore, the re-
quirements of excellent flexibility, flight efficiency and speed
for multiple quadrotors system make high demands on plan-
ning methods, which should have good computational effi-
ciency and high flight performance, as well as minimizing
execution time of trajectory for actual implementations.

A wide variety of techniques exist to tackle the multi-
quadrotor trajectory generation problem. MPC-based meth-
ods have been proven effective for the motion planning of au-
tonomous vehicles in complex environments. The distributed

*Email address(es): xywangmae@link.cuhk.edu.hk
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

model predictive control (DMPC) approach [1] is developed
due to its abilities to handle constraints and achieve good per-
formance for task coordination (see e.g., [2, 3]). The result
in Parys and Pipeleers [4] shows that parallel computing can
also be combined with this method to reduce the run time
when quadrotors are updating their predicted states. In terms
of tracking and formation problems, Wang and Ding [5] pre-
sented a synchronous DMPC scheme using the estimated in-
formation of other quadrotors to avoid collisions. However,
with the increasing of environments and task complexity, it
is hard to handle state and input constraints well and guar-
antee trajectory feasibility. Real-time trajectory generation is
required for quick adaptation in complex environments, but
it remains challenging to implement for robot swarms. Most
obstacle avoidance techniques for trajectory generation are
either centralized or sub-optimal (see e.g., [6,7]) usually with
high trajectory execution time.

Moreover, there are many methods formulating trajectory
generation as a non-linear optimization problem that takes
smoothness and safety into account. Motion primitives (MPs)
based local planning methods for mobile robots are also fre-
quently applied to abstract the continuous state space [8].
The MPs along the whole trajectory are sampled on the ve-
hicle’s boundary state constraints (i.e. jerk), and then gener-
ate the actual motion by solving a boundary value problem
(BVP) [9]. In addition, considering the time efficiency, the
jerk limited trajectory (JLT) has been proven well suited for
quadrotors since it could satisfy the dynamic limits well [10].
It can handle arbitrary initial states for the position, velocity,
and acceleration, and resulting in a smooth and time-optimal
trajectory from the current state to the next target state.

Inspired by the existing researches, in this paper, we
develop a novel trajectory generation method by solving a
non-convex optimization problem to achieve distributed co-
operative motion planning with considering deadlock and
flight efficiency for multiple quadrotors. The main contri-
bution of our work is to propose a decentralized and meta-
heuristic, a gradient-free motion planning framework based
on MPC which allows for fast trajectory generation for mul-
tiple quadrotors in cluttered environments. Unlike gradient-
based method, the replanning time is more uniform and thus
can improve the success rate. More specifically, we use
JLT approximated with NN to reduce the time consumption
of trajectories and rapidly generate trajectories with a less
computational burden. Simulation and experimental results
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show that for different environments and boundary states,
our method can generate dynamically feasible trajectories for
multiple quadrotors and guide them to achieve their goals in
an obstacle-dense environment without deadlocks. The pro-
posed framework is tested using actual quadrotors, and the
flight experiments are carried out in cluttered environments
with static and dynamic obstacles to verify the planning per-
formance.

The rest of the paper is organized as follows. We present
in Section 2 some preliminary knowledge and the problem
formulation, and in Section 3 we propose our MPC-based
trajectory generation framework and analyze the detailed
techniques of the trajectory generation problem for multiple
quadrotors. The experimental results and analysis are then
given in Section 4 to validate the proposed technique. Finally,
we draw some concluding remarks in Section 5.

2 PROBLEM FORMULATION

We separate the flight control problem into an outer loop
and an inner loop. For the quadrotor, the outer loop stabilizes
transnational variables and generates a reference signal fed to
the inner loop. In our paper, we use the nominal model in [11]
to generate the outer loop trajectory, which acts as the refer-
ence to the inner loop. We consider the trajectory planning
problem for a multi-agent quadrotor system with K quadro-
tors in the 3D space X ⊂ R3. Every quadrotor k with k ∈ K
is assumed to obey the same dynamic limits and its dynamics
is differentially flat as adopted in Mellinger and Kumar [12].
The quadrotor dynamics has inputs σk = [pk, ψk]T, where
pk ∈ R3 is the position of the mass center of quadrotor in
the world frame, and ψk is the yaw angle. This allows us
to plan the trajectory of quadrotor k independently using a
triple integrator with its position pk, velocity vk, acceleration
ak, and jerk jk, respectively. Let xk = [pk, vk, ak]T be the
state variable with invariant constraints vk ∈ [vmin, vmax],
ak ∈ [amin, amax] and jk ∈ [jmin, jmax] which might be dif-
ferent for the horizontal and vertical axes. uk = jk is defined
as the control input and ∆t is the sampling interval. Thus, the
discrete-time linear model can be defined as follows:

xk[n+ 1] = Akxk[n] + bkuk[n], (1)

where

Ak =




1 ∆t ∆t2/2
0 1 ∆t
0 0 1


 , bk =




∆t3/6
∆t2/2

∆t


 . (2)

We aim to generate a continuous, smooth, collision free
and kinodynamical feasible trajectory Fk of each quadrotor
k. The state vector of each quadrotor is denoted as xk(t) ∈ X
at runtime t. The static obstacles are represented using an oc-
cupancy grid map and the dynamic obstacles are defined as
a set of convex moving obstacles. It is assumed that we can
predict the trajectory of each quadrotor and penalize the rela-
tive distance of them to avoid crashes. The free configuration

space for a single quadrotor is defined as Xfree. All trajecto-
ries are considered collision-free if, for each quadrotor, there
are no collisions between the quadrotor and environment:

Considering the control objective, we adopt in the follow-
ing an optimization cost function for generating control input
sequence uk, which has three main components: input vari-
ation penalty, desired set position penalty and collision-free
penalty:

min Jk =

∫ t0+T

t0

{w1u
2
k(t) + w2||xk(t)− gk||2+

w3e
−||dko(t)|| + w4||dks ||2}dt

s.t. ẋk(t) = f(xk(t), uk)

g(xk(t), uk) < 0

h(xk(t), uk) = 0

(3)

where w1, w2, w3, w4 are used to trade off these four penalty.
For the constraints of trajectory generation problem, f (·) is
the nominal model of the quadrotor, which is a continuous
version defined by Eqs. 1 and 2. Inequality constraint g(·)
indicates the limit interval of velocity, acceleration and jerk,
respectively, for three axes. The boundary state constraint
h(·) regulates the triple integrator from an initial state con-
figuration sk to an assigned goal state gk. Here we note that
the first term is to penalize the square of jerk is to generate
smooth trajectories. The second term is to minimize the devi-
ation from the current state to the desired goal state. The third
term is flight safety cost of moving obstacles to handle the
collision of potential threats. Differing from the geometrical
constraints, we can obtain the relative closest distance dko(t)
at time t between the predictive trajectories of quadrotor and
moving obstacles. Besides, for flight safety cost of static and
non-convex obstacles, we calculate a potential function over a
Euclidean Distance Transform (EDT) map giving the quadro-
tor global vision to avoid suffering from deadlock point. The
cost to the goal point of every grid for each quadrotor dks is
a value stored on this map. As shown in Figure 1, this colli-
sion cost pushes the quadrotor away from static and dynamic
obstacles to satisfy the collision-free requirements

By solving the optimization problem, a locally optimal
sequence of commands during each predictive horizon can be
attained to drive each quadrotor to reach its desired destina-
tion while avoiding collisions.

3 FRAMEWORK OF MULTI-QUADROTOR
TRAJECTORY GENERATION

In this section, a synchronous and decentralized non-
convex optimization procedure based on MPC is proposed to
achieve distributed cooperative motion planning with consid-
ering deadlock and flight efficiency. The overall structure of
our proposed method is depicted in Figure 2, which consists
of offline training NN process and MPC-based optimization.
The proposed framework consists of the following two stages:
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ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-26 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Goal

Dynamic obstacle

Static obstacleNonconvex obstacle

Surrounding 

environment

Deadlock point

Figure 1: The flight safety of quadrotor k.
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Figure 2: The overall structure of the proposed method for
multi-quadrotor motion planning.

1. Training NN stage: We construct the BSCPs, a trajec-
tory library, designed through JLT generation method,
a BVP solver, with the given start and goal states. Thus,
an NN can be pre-trained to approximate the generated
BSCPs to save the time consumption.

2. MPC stage: Given the objective function Jk, we can
fast evaluate all candidate end states of quadrotors
which are approximated by means of NN with consid-
eration of the surrounding environments X . After this
optimization process, we can obtain the end-state con-
straints xtgt among these candidates to minimize the
cost function Jk given in Equation 3 at each step. In ad-
dition, we also add guidance map to help the quadrotors
to avoid deadlock. After obtaining xtgt, a series of ref-
erence state x∗k can be generated through JLT and only
the first few states will be given to the low level dy-
namic controller. Thus, recomputing the system state
and a current state xk can be returned for the next plan-
ning horizon.

3.1 Construction of BSCPs using JLT

In this subsection, we present detailed procedures for the
offline training stage. To prepare for training data, we use
a BVP solver associated with the JLT generation method to

create a certain range of trajectories of quadrotors in the state
space, which are formulated as BSCPs.

The JLT method can solve the trajectory optimization
problem and obtain an analytical solution under the condi-
tion of limited computing power. Specifically, it can com-
pute the time-optimal trajectory to a set goal x(tend) =
[pref , vref , aref ] for the quadrotor system in Eqs. 1 and 2 with
arbitrary initial state values x(0) = [p0, v0, a0] and with phys-
ical limits vmax, amax, jmax. The jerk profile is given as
j ∈ {jmin, jmax, 0} and the state variables x(t) can be ob-
tained by integrating the jerk profile j(t) at time index t. The
time-optimal JLT generation problem can then be formulated
as

min tend

s.t. p(0) = p0, p(tend) = pref , ṗ(t) = v(t)

v(0) = v0, v(tend) = vref , v̇(t) = a(t)

a(0) = a0, a(tend) = aref , ȧ(t) = j(t)

− vmax ≤ v(t) ≤ vmax

− amax ≤ a(t) ≤ amax

− jmax ≤ j(t) ≤ jmax,

(4)

The algorithm will calculate the covered area of the ve-
locity that equals the desired change in position. The time
distribution can be divided into the ascent phase, descent and
cruise phases, respectively. The problem is to determine the
velocity profile and switching times subject to the state and
input constraints. First, it is to accelerate velocity to the max-
imum with constant jerk −jmax, and then to decelerate the
speed to zero with jmax to determine whether the end posi-
tion exceeds the desired position. If the end position is under-
shooting compared with desired position, i.e., the triangular
case in Figure 3, then we use bisection searching algorithm
given in [13] to calculate the acceleration time tascent and de-
celeration time tdescent. Otherwise, it is corresponding to the
trapezoidal case in Figure 3, we can also use the position area
to determine the acceleration time tascent, cruise time tcruise
and deceleration time tdescent.

(a) Trapezoidal case (b) Triangular case

Figure 3: Three types of velocity profile.

After generating the BSCPs, we then implement the tra-
jectory approximation and evaluation system using a pre-
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trained NN in [9], which is called SNN to save computational
time for real flight implementations.

3.2 Construction of Guided Map

At the MPC stage, we use a guidance map to predict in-
formation of future states navigating the quadrotor to choose
an optimal action. We follow the work of Lau et al. [14] to
use an EDT module to represent a surrounding environment.
The closest distance of the static obstacles and index for every
cell can be efficiently obtained through this map. In this sub-
section, we propose a method to calculate a potential function
from a set of goals to the current positions of the quadrotor
combined with an EDT map. We use the Dijkstra algorithm
to calculate the cost value cg to the goal point for each cell pi,
which is the definition of the potential function over the state
space. Index i is associated with the revolution of the map.
The potential function has the ability to push the quadrotor
away from the obstacles and guide it to the goal. Besides,
it is quite suitable for the quadrotor, a holonomic system, as
this type of robot can freely move in any direction. After con-
structing the EDT map and potential function, we can com-
bine them together, so the cost value of a cell M(pi) con-
sisting of a cost-to-goal value cg and a safety value cs with
consideration of the closest distance to obstacles can be cal-
culated as:

M(pi) = cs(pi) + αgcg(pi) (5)

where αg is a weight factor that trades off the relative impor-
tance of the cost-to-go value, seen Figure 4. It can guide the
local planner to choose appropriate actions u∗ to the lowest-
cost path of a map at every point during execution, which con-
siders both environments and goal information, thus avoids
falling into local minimal, seen Equation 6.

u∗ = arg min
u

M(pi) (6)

Obstacle Goal point

Quadrotor

Figure 4: The illustration of deadloack avoidance.

3.3 Trajectory Generation Strategy

We combine the BSCPs with a gradient-free technique,
i.e., the particle swarm optimization (PSO), for trajectory
planning. This method is capable of finding a feasible so-
lution for each quadrotor in the team to either non-convex or
non-continuous problem without reaching the maximum iter-
ations. The other advantage of such meta-heuristic algorithms
is that the per iteration time is quite uniform thus avoids fail-
ure greatly. The detailed optimization process is shown in
Algorithm 1. First, calculate the mapMk using the method
in the previous subsection (Line 2). Then, perform random
initialization of particles in the search space (Line 3). Each
particle represents a terminal state constraint for one plan-
ning horizon. Next, update the velocity δi and position xtgti
of particles according to the equation in this algorithm (Lines
5–6), where ω1 and ω2 are acceleration constants and x∗tgti
and xgtgt represent the best position experienced by the parti-
cle i and the best position experienced by the particles group
for the previous interactions. After updating the state of par-
ticles, the trajectory Fi can be approximated using SNN for
fast evaluation. The objective function will consider the in-
formation of trajectory and the surrounding environment to
get the cost value costi (Lines 7–8). We can then update the
local best and global best position of particles (Lines 9–10)
to get the optimal end state, where cost∗i represents local best
cost value and costg is the corresponding global best value.
The feasible solution xtgt will be found after multiple inter-
actions, which is used in a BVP solver to obtain a Fk of each
quadrotor (Lines 12–14).

Algorithm 1 Kinodynamic MPC planner using Particle
Swarm Optimization
Input: The surrounding environment X , each quadrotor’s

state xk, and corresponding target’s goal state gk;
Output: Trajectory of each quadrotor Fk;

1: for Each planning horizon do
2: Mk = getGuidedMap(gk, X );
3: ParticleInitialization();
4: for Each xtgti , i = 1, 2, . . . do
5: δi = δi+ω1 ∗ (x∗tgti −xtgti)+ω2 ∗ (xgtgt−xtgti)
6: xtgti = xtgti + δi
7: Fi = approxTrajectory(xk, xtgti ,SNN);
8: costi = Jk(Fi,Mk)
9: Update local best cost∗i , x∗tgti

10: Update global best costg , xgtgt
11: end for
12: xtgt = xgtgt
13: Fk =JLTTrajGenerotion(xk, xtgt);
14: Return Fk;
15: end for
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4 SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present our simulation and experimen-
tal results to demonstrate the feasibility and robustness of the
proposed framework of motion planning for multi-quadrotors
in dynamic cluttered environments. We evaluate different set-
tings for the parameters in our planner and compare its perfor-
mance for different tasks against the state-of-the-art motion
planners in the literature.

4.1 Implementation Details

We use Crazyflie, a small, versatile quadcopter, as the ex-
perimental platform to verify the proposed method for mo-
tion planning of multi-quadrotors. The real flight experiments
are carried out in an indoor VICON environment. The VI-
CON system provides localization and obstacles sensing for
each quadrotor. The following are three scenarios conducted
through simulations and experiments:

• Scenario 1: Each quadrotor must reach its destina-
tion while avoiding obstacles in cluttered environments
containing several pillars.

• Scenario 2: Each quadrotor must reach its destination
while passing through a bridge and guaranteeing the
flight safety simultaneously in the vertical axis.

• Scenario 3: Each quadrotor must reach its destination
while avoiding deadlock in cluttered environments con-
taining non-convex obstacles.

4.2 Simulation and Flight experiment

To obey the limited physical performance, the kino-
dynamic feasibility constraints are specified on the veloc-
ity, acceleration, and jerk with v = [2.0, 2.0, 1.0], a =
[3.0, 3.0, 2.0], and j = [5.0, 5.0, 5.0], which consist of the
maximum horizontal limit, minimum and maximum vertical
limits, respectively. The environment is represented as a 3D
grid map and is then processed to the guided map in Sec-
tion 3. For the PSO algorithm, 40 candidates of population
are iterated over 20 times to find the best candidate solution.
The model predictive planning along the process is executed
at 5 Hz with a prediction horizon of 2 s.

Figure 5 shows cases that the four quadrotors start from
their initial positions to their antipodals while avoiding col-
lision with other quadrotors and static obstacles. All the
quadrotors avoid the obstacles and converge to their antipo-
dal positions in about 4.8 s. The maximum speed reached is
1.99 m/s with an average speed of 0.93 m/s.

(a) An environment with several
pillars

(b) An environment with bridge
openings

Figure 5: Quadrotor trajectories during antipodal position
swapping. In both (a) and (b), the solid circles denote four
quadrotors and the solid curves denotes their trajectories, re-
spectively.

As it can be clearly seen in Figure 6, the six quadrotors
qi, i = 1, 2, · · · , 6, carry out the antipodal position swap-
ping in the environment containing several pillars and non-
convex obstacles which may result in local minima in op-
timizing the objective function. In Figure 6(a), Some ex-
citing results can be found that quadrotors, benefiting from
the potential function, reach their goal points, and avoid the
deadlock simultaneously. As a contrast, in Figure 6(b), the
quadrotor q5 falls into local minima, and it cannot reach its
goal successfully without the potential function. Both scenar-
ios show that multi-quadrotors can achieve tasks successfully.
Detailed flight experiments can be found in the video clips at
https://youtu.be/QgHfa2dgvv8.

(a) With potential function (b) Without potential function

Figure 6: The 3D navigation of multi-quadrotors in cluttered
environments with non-convex obstacles.

4.3 Comparison with Other Method
We compare our method with methods in Augugliaro et

al. [15], Park et al. [7] and Lai et al. [9] on a 10m×10m×2.5m
obstacle-free environment using 8 quadrotors and the same
boundary states. Detailed results are shown in Table 1.

1) Safety Ratio: The safety ratio is defined as min dko/rc
for all k, where rc is an expanding radius of a quadrotor. We
have tested the flight safety 20 times and obtain the minimum
safety ratio of 1.16, which is still over 1, avoiding collisions
with obstacles. Obviously, the SCP-based method sacrifices
the safety of a real flight system.
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2) Total Flight Time: our method performs better in terms
of flight efficiency than the algorithm in Park et al. [7] work
as it uses JLT to get the time-optimal trajectory, thus having a
shorter total flight time.

3) Time Per Iteration: For each planning horizon, the av-
erage time of our work is 0.095s for each quadrotor, satisfy-
ing real flight requirements. Compared with the DP method
in Lai et al. [9], this method has better performance in terms
of reducing the computational burden. Besides, as the num-
ber of quadrotors increases, the computational time will only
fluctuate slightly due to the quadrotor system is distributed.

Table 1: Summary of flight performance.
Method Safety RatioTime Per Iteration Total Flight Time

Our Method 1.19 0.095 56.4
DP Method [9] 1.16 0.132 58.4

SCP (h = 0.34 s) [15] 0.92 16.2 —
Algorithm in [7] 1.01 — 75.61

5 CONCLUSION

In this paper, we have presented a decentralized MPC-
based trajectory planning method of multi-quadrotors in clut-
tered environments. The motion primitives along the flight
trajectory are generated using the jerk limited method with
given initial and goal states and approximated by a pre-trained
NN during the optimization process. Furthermore, a gradient-
free algorithm, differential evolution, has been applied to find
the best solution to meet the requirements of flight safety, ef-
ficiency, and kinodynamic feasibility. The proposed method
has been tested with simulations and real flight experiments
on multi-quadrotors. Experimental results have demonstrated
that the proposed method has excellent performance for mo-
tion planning of multi-quadrotors in dynamic cluttered envi-
ronments.
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ABSTRACT

The use of Micro Aerial Vehicles (MAVs) has
increased in engineering and civil applications to
explore environments without previous informa-
tion. In particular, in autonomous navigation, a
fundamental part is that of detecting and locating
targets of our interest. For this reason, computer
vision has become an essential analysis tool. In
this work, we focus on object classification in
aerial navigation tasks, where texture is involved
as a physical property of the object. We present
a classification model using transfer learning and
wavelet-based features as an additional feature
extraction method. This model is trained with
the Describable Textures Database (DTD), and a
performance of 53% accuracy is obtained. More-
over, the images obtained from the environment
show the generalization of learning for some
database classes. Transfer learning fusion with
wavelet analysis is recommended for small data
sets of images with textures due to the limita-
tion of learning about spectral information lost
in conventional Convolutional Neural Networks
(CNNs).

1 INTRODUCTION

Texture analysis is a traditional problem in computer vi-
sion because it involves obtaining information that describes
the image content. In the robotics area, object detection is a
problem for robots that perform tasks in real scenarios and
in real-time, given the lighting conditions, indeterminate ori-
entations, object identity, shape, color and texture. Further-
more, the information may differ in outdoor and indoor envi-
ronments, which varies the target information [1]. Providing
the resources to the robot by integrating sensors can improve
object detection.

Micro Aerial Vehicles (MAVs) have been used in different
environments due to their easy control and implementation

∗Email address(es): juan.manuel.fortuna@hotmail.com

of algorithms through computer vision. In tasks of the
classification, detection and localization of the target. There
are different vision methods in the area, such as optical flow,
segmentation, edge detector, morphological operations and
feature extractor for different tasks. These methods have been
combined to improve detection performance while the MAV
executes its aerial navigation (recognition) or autonomous
flight. However, using these methods can be computationally
expensive to perform real-time detection, affecting the overall
system performance.

In image processing, texture can be defined from neigh-
boring pixels and intensity distribution over the image [2].
Besides, there are some classification methods for texture
analysis such as statistical, geometric, model and spectral. If
we focus on spectral methods, these methods describe the tex-
ture in the frequency domain. They are based on the decom-
position of a signal in terms of basis functions. Furthermore,
they use the expansion coefficients as elements of the feature
vector.

Deep learning has become a helpful tool for image clas-
sification, object detection, and segmentation. Especially if
we talk about convolutional neural networks, these achieve
learning multiple features to recognize targets without refer-
ence to their position, indeterminate orientations, scale, and
target rotation. VGG16, VGG19, AlexNet, SSD and YOLO
are architectures that have good performance in image classi-
fication and object detection tasks.

Therefore, we decide to merge these methodologies (deep
learning and wavelet features) as a solution for texture
classification. The objective is that the MAV performs the
aerial navigation (inside the virtual environment) for the
classification system to recognize the object, see figure 1.
This work focuses on preview information (in data collected
by MAV) and structural recognition of the object (with a
particular texture) within a region of interest in the image
plane.

The implementation of our system is developed with the
fusion of two approaches. The first is in the spatial domain,
using transfer learning. We take as a baseline the VGG16
architecture with the features of the ImageNet database. The
second approach focuses on the spectral domain, applying the
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Haar wavelet transform in two dimensions to obtain features
at different scales [3]. The VGG16 network has been selected
for its fast performance and implementation with transfer
learning and adaptability with wavelet analysis. Internally,
the system is divided into two stages: the first corresponds
to feature extraction and the second one to the classification
stage. We used the Describable Texture Database (DTD) to
train our model, which contains 47 texture classes, with 120
images per class. On average, we have tested with some
textures for the classification task in the virtual environment,
and the prediction can be performed correctly, with an
average processing speed of 2 fps.

The rest of the paper is organized as follows in Section 2
related work is shown, Section 3 introduces the methodology
to approach the texture classification problem. Whereas
Section 4 shows the results with the DTD dataset and the
experimental part to test our model. Finally, Section 5
presents the conclusions.

Figure 1: We designed a system for texture classification in
aerial navigation based on knowledge inference over the DTD
database. See at https://youtu.be/d41kgBw7Y_c.

2 RELATED WORK

In recent years, MAVs applications for object detection
tasks have been studied and developed [6][7]. Several ap-
proaches are using deep learning, giving excellent perfor-
mance in applications. For example, in some tasks for au-
tonomous navigation, we find in the literature a methodol-
ogy for obstacle detection and avoidance using an architec-
ture called AlexNet that allows classifying the images cap-
tured by the camera onboard the drone [8]. The learning of
this architecture is transferred from the ImageNet database to
improve the classification performance [9]. Moreover, to de-
tect objects and autonomous landing, in [1], a detection sys-
tem is presented to solve one of the missions included in the
IMAV2019 indoor competition. They involve the implemen-
tation of the SSD7 onboard the MAV. This SSD7 network is
chosen for its fast performance on low-budget microcomput-
ers with no GPU. The method proposed in [10] is an architec-
ture called YOLO, which presents an essential performance

in real-time image detection and processing at 45 frames per
second. Besides, in object detection tasks, in [11], the authors
propose a deep learning approach to estimate the object’s cen-
ter in a robust way. Also, generating a line of sight as a guide
proves to be a solution to avoid collision with other objects,
due to complications such as varying illumination conditions,
object geometry, and overlapping in the image plane.

On the other hand, many projects employ deep learning
and wavelet analysis in visual processing. For example, on
image classification, the method proposed in [12] converts
images from the CIFAR-10 and KDEF database to the
wavelet domain, thus obtaining temporal and frequency
features. The different representations are added to multiple
CNN architectures. This combination of information in
the wavelet domain achieves higher detection efficiency and
faster execution times than the spatial domain procedure. In
this sense, the authors in [13] mention that although CNN is
a universal extractor, in practice, it is not clear whether CNN
can learn to perform spectral analysis. In [14], the authors
propose an architecture called CNN Texture to have this
approach within the CNN. Their idea focuses on the fact that
the information extracted by convolutional layers is of minor
importance in texture analysis. They use a statistical energy
metric in the feature extraction stage. This information is
concatenated with the classification stage, the fully connected
layer. Specifically, the architecture shows an improvement in
performance and a reduction in computational cost.

In terms of texture classification in image processing
applications [15], the authors propose an architecture called
wavelet CNN to generalize spectral information lost in
conventional CNNs. This information is beneficial for texture
classification as it usually contains details information about
the object’s shape. Furthermore, the model allows us to
have fewer parameters than in traditional CNNs, so it is
possible to train with less memory. In general, through a
state-of-the-art review, we have observed that computational
intelligence algorithms improve detection strategies in Micro
Aerial Vehicle applications.

3 METHODOLOGY

This work proposes an approach based on transfer
learning and wavelet features. This system allows to predict
or classify the texture in images transmitted by the camera
onboard the drone, whose objects are in an outdoor scenario
(in Gazebo), a virtual simulation environment. We are only
interested in texture recognition, mainly to know one of the
characteristics of the object. So, we limit the image plane
(640×360) to a region of interest (300×300 pixels). As a
result, the system will have the image in RGB as well as a
grayscale version. These two images are the inputs for our
proposed classification system, see figure 2.

Describable Textures Dataset (DTD) was selected to be
used. It contains 47 classes of 120 images in the wild. This
means that the images have been acquired that in uncontrolled
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Figure 2: Texture classification system.

conditions [16]. This dataset includes ten divisions available
with 40 training images, 40 validation images, and 40 test
images for each class. Our experiment will create a new
dataset, with the distribution of 70% for training, 15% for
validation, and the remaining 15% for testing. Figure 3 shows
some images from this set. One limitation of the dataset is the
number of images per class, so it is decided to use the transfer
learning method to improve the classification performance of
our model. The synaptic weights are based on the ImageNet
database, which will feed the feature extraction stage of the
base architecture VGG16.

Figure 3: DTD dataset example images [16].

Before training, the Haar wavelet transforms in two
dimensions is applied to one level, see figure 2. The factor
of one represents the level of image decomposition. This new
spectral information is essential for classification. Therefore,

four sets (in the wavelet domain) are automatically generated
to determine the characteristic attributes of each texture. This
information can be combined with the spatial information
of the VGG16 architecture. Also, it is essential to mention
that this process is only applied to the image previously
converted to grayscale, performing the decomposition for a
single channel, ver figure 4 & 5.

For the test stage in MAV, a scenario is designed in the
gazebo simulator. The virtual scenario is created with ten
cubes with certain textures (figure 1). These textures are
selected due to the performance achieved in the model testing
stage. Therefore, the chosen classes have a performance
above 70% accuracy (Table 3).
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Figure 4: Images textures that have been decoded (Class) to
train the classification model.

4 EXPERIMENTS AND RESULTS

The experiment to train our learning model was carried
out with the Keras API with Tensorflow as Backend [17].
Besides, the OpenCV libraries are used for image process-
ing due to their ease of use and adaptability in program-
ming. Also, we use the Pywt library [18] from which it was
chosen the Haar wavelet transform as the feature extractor
method. An aerial navigation experiment was performed us-
ing the ROS framework and Gazebo simulation environment
to validate the classification system and its learning general-
ization. This section describes the results obtained in each
experiment.

4.1 Model training
In the first instance, the VGG16 network was trained

from scratch. As a result, it is not able to generalize its
learning. Therefore, it is possible to use the transfer learning
methodology. Table 1 shows the achieved performance of the
pre-trained network and our proposal with the wavelet feature
fusion. It shows the accuracy performance on the three sets
to validate the model (training, validation, and test). In the
case of the pre-trained network, slight overfitting is observed.
The model will be adjusted to learn specific cases and will be
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(a) Approximation.
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(b) Horizontal details.
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(c) Vertical details.
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(d) Diagonal details.

Figure 5: Approximation and details set of wavelet features.

unable to recognize new textures. One way to improve the
performance of the model is to integrate the wavelet features.
In this case, we achieve the elimination of overfitting and
homogeneity between the three sets. Besides, the value
of the test set is highlighted because these are images that
the model has never seen. In summary, the classification
system has 14,778,735 synaptic learning weights. 64,047 are
trainable parameters, of which 16,832 correspond to wavelet
features. Table 2 summarizes the achieved performance of
our classification system, as well as a comparison to AlexNet
(trained from scratch), T-CNN, and Wavelet CNN [14][15].

Training Validation Test
Pre-trained model 68.15 50.41 54.49
Our model 57.67 51.22 53.19

Table 1: Classification results for the pre-trained VGG16
network and our model indicated as accuracy (%).

AlexNet T-CNN Wavelet CNN Our model
DTD 22.7 55.8 59.8 53.19

Table 2: Classification results and comparison with other
state-of-the-art pre-trained architectures with ImageNet, in
terms of accuracy (%).

4.2 Texture classification DTD
Other metrics evaluate the performance of the DTD

dataset classes. The metrics such as precision, recall, and
f1-score are given when applying the classification report
method, where it is necessary to involve the true labels and
the prediction label of the model. Table 3 shows the classes
that performed above 70% classification. Also, Table 4 shows
three random classes that perform above 50% classification.
This class selection analysis provides the basis for the design
of the textured cubes of the Gazebo environment. On the
other hand, we can observe the similarity and correlation
between classes (about test set) by performing the prediction.
Figure 6 shows the true label and the prediction label at the
top of each texture.

Class precision recall f1-score support
bubb 0.73 0.61 0.67 18
cheq 1.00 0.78 0.88 18
fibr 0.73 0.61 0.67 18
fril 0.72 0.72 0.72 18
stri 0.77 0.94 0.85 18
stud 0.70 0.78 0.74 18
zigz 0.75 0.67 0.71 18

Table 3: Classes (test set) that results with precision above
70%.

Class precision recall f1-score support
hone 0.58 0.61 0.59 18
line 0.50 0.28 0.36 18
polk 0.65 0.61 0.63 18

Table 4: Classes (test set) that results with precision above
50%. They are chosen from the easy human visual perception
of the texture.
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Figure 6: Classification of textures randomly (from a total of
846 images) using the DTD prediction model.
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4.3 Texture classification in aerial navigation

Navigation and aerial recognition tested the classification
model. We created a virtual environment with the Gazebo
simulator, controlling and sending information from the
camera onboard the drone using the ROS framework. In the
world presented in figure 1, we positioned in a row the ten
cubes with the selected textures. Therefore, the position of
the cubes allows the evaluation of the prediction model during
aerial exploration. The idea of the model is that it generalizes
its learning to textured objects. In total, 1000 image captures
were performed in a navigation recognition for each class.
The proposed texture sets (bubbly, chequered, honey, striped,
studded) obtain a high correlation with their original label
above 60% accuracy, see figure 7.

Bubb Cheq Fibr Fril Hone Line Polk Stri Stud Zigz
Textured targets

0

200

400

600

800

1000

Im
ag

es
 ac

qu
ire

d

The classification system
Correct prediction
Incorrect prediction

Figure 7: The number of images with textures obtained with
the onboard camera while flying recognition.

Some images (figures 8 and 9) of the recognition set
are shown, with its original label and its prediction label.
However, we can observe that the five test images incorrectly
predict the frilly, lined, polka-dotted, and zigzagged set.
These five images relate to the whole recognition set, except
for fibrous, polka-dotted, and zigzagged, which achieve at
least 3% accuracy. This result allows us to understand the
generalization of learning between the model and textured
objects.

5 CONCLUSION

The localization and object detection tasks using visual
information are challenging, particularly when objects ex-
hibit repetitive texture. However, these tasks open the oppor-
tunity for various applications using Micro Aerial Vehicles
equipped with onboard cameras to be used for object detec-
tion and recognition, for instance, for parcel pick-up, place
recognition, landing zone detection and many more. Seeking
to improve the detection and recognition stage, in this work
we have investigated the use of spectral analysis in combina-
tion with deep neural networks. In particular, in this proposal,
we merged the (additionally created) spectral feature maps to
CNN learning. Also, it is shown that the model used achieves
to eliminate overfitting and better accuracy in the classifica-
tion of textures with a significant increase in the number of

(a)
bubb,bubb

(b)
bubb,bubb

(c) bubb,spri (d)
bubb,bubb

(e)
bubb,bubb

(f) cheq,vein (g)
cheq,bump

(h)
cheq,cheq

(i)
cheq,cheq

(j)
cheq,cheq

(k) fibr,cobw (l) fibr,cobw (m)
fibr,cobw

(n) fibr,fibr (o) fibr,fibr

(p) fril,bubb (q) fril,bubb (r) fril,cobw (s) fril,frec (t) fril,stud

(u)
hone,hone

(v)
hone,hone

(w)
hone,hone

(x)
hone,hone

(y)
hone,hone

Figure 8: Image sequence acquired by the camera onboard
the drone. The classification system has a good inference on
the texture in the first, second, and fifth rows.

parameters to be trained. The tests performed in the simu-
lation show some interesting results. The prediction model
shows the creation of a widespread understanding of the tex-
ture attached to the objects. Furthermore, despite having a
low classification rate, it is shown that the model correctly
classifies most of the test classes.

As future work, this will test with other texture features,
also seeking to conduct tests in real-world scenarios.
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2021. Paper no. IMAV2021-7. 16

[8] Aaron Lopez, Hugo Rodrı́guez Cortés, Israel Cruz Vega, and José Martı́nez-Carranza. Immersion and invariance based
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Nov 2021. Paper no. IMAV2021-9. 16, 17

[10] Guillermo Gonzalez, Guido de Croon, Diana Olejnik, and Mat?j Karázek. Position controller for a flapping wing
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