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ABSTRACT 
In this study, a method based on a Brain-Computer 

Interface (BCI) is proposed to continuously monitor 
emotional states related to the performance of drone 
pilots. As part of the contributions of this work, it is the 
creation of a database to classify two states:  
Quiet and Very Tense. The experiments were performed 
in a simulated environment. The EEG data of each 
participant was acquired using an EMOTIV Insight 
headset with 5 EEG channels. We propose an algorithm 
for automatic real-time artifact removal for five channels 
as a quick alternative. The Asymmetry Index (AI) is 
proposed as the main feature extracted from the frontal 
and temporal regions of the brain, followed by statistical 
measurements calculated from the AI vector to classify 
the signals with standard classifiers: K-Nearest Neighbors 
(KNN) and Support Vector Machine (SVM). We found 
clear evidence that the AI calculated in the frontal and 
temporal lobes of the brain is related to the response in 
drone pilots under emotional tension. 

 
1 INTRODUCTION 

Recently, drones for different applications such as 
civil and military service have increased, including 
maritime, space missions, search-rescue, shipping-
delivery, etc. [1]. Despite being one of the most versatile 
tools, there are not enough studies that specifically focus 
on measuring the emotional state of drone pilots during 
the handling of unexpected emergencies.  

Drone pilots engaged in long working hours manifest 
acute stress, which in the long term can turn into 
perceived stress [2], especially under adverse 
environmental conditions [3]. 

There are different methods for measuring human 
stress.  Subjective methods use questionnaires [4], while 
objective methods use physical measures, for example 
facial expressions and blinking frequency, physiological 
processes, for example measuring the level of adrenaline 
in the blood, or using biosensors measuring the heart rate, 
brain waves, among others [2]. 
__________________________ 
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Neuroscience has shown that the response of human 

brain is affected by stress. Non-invasive technologies 
such as fMRI [5], [6], and Electroencephalography 
(EEG) [7] are the most common sources to study brain 
activity. However, EEG is a preferred application due to 
technological advances and commercial availability.  

In this study, we propose a method based on a Brain-
Computer Interface (BCI) to continuously monitor 
emotional states related to the performance of drone 
pilots, such as stress, fatigue, attention, and mental 
workload levels. We compute the Asymmetry Index (AI) 
[7] of the Alpha and Beta rhythms on frontal and 
temporal regions. The experiments were performed in a 
simulated environment under controlled conditions, 
obtaining eight statistical measurements to characterize 
the AI vector: mean, median, standard deviation, RMS, 
peak-to-RMS, peak-to-peak, mean frequency, and power. 
The proposed system employs these characteristics to 
train two classifiers: K-Nearest Neighbors (KNN) [8] and 
Support Vector Machine (SVM) [9]. The performance is 
evaluated using the average of accuracy, precision, 
sensitivity, and specificity [10]. 

To assess our model, a database was generated, 
which is divided into three classes: Quiet, Tense, and 
Very Tense. For the experiments presented here, we select 
the Quiet and Very Tense groups for the classification 
process. 

The rest of this paper is structured as follows: Section 
2 presents the relevant related work to this project. The 
database generation and its processing are presented in 
Sections 3 and 4, respectively. Results are shown in 
Section 5, and finally, the conclusion are presented in 
Section 6. 

 
2 RELATED WORK 

Emotions have a strong correlation with the left and 
right frontal lobes activity. Stronger activation in the left 
lobe is related to positive emotions. Instead, when the 
activation of the right lobe is relatively more significant, 
it represents mainly negative emotions [11], [2]. 

Numerous studies show clear evidence that frontal 
asymmetry is related to emotional responses and 
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disorders. Theoretical background can be consulted in 
reference [12]. 

Studies related to the detection of stress suggest that 
frontal asymmetry is a promising biomarker. In [13], a 
method for identification of chronic stress is presented, 
finding that the average AI of the stressed group was 
lower than the group in relaxed condition. A similar result 
was found by [14], [15], where alpha and beta power 
asymmetry were analyzed. Low beta waves were 
analyzed in [4] to quantify human stress, using a single 
frontal channel efficiently. In [7], shows that the average 
alpha, beta, and gamma wave AI tends to be lower in the 
stressed group than in the controlled group and suggests 
that alpha asymmetry is the best candidate. The 
calculation of AI on alpha and beta regions reported in 
this work is based on [7]. 

 
3 DATABASE CREATION 

Three healthy male volunteers participated in this 
experiment, with ages between 18 to 23 years old. One 
subject showed a high level of skills for video games, and 
the remaining two showed a moderate level; none of the 
participants had experience in handling drones. Data were 
acquired between 3 and 6 pm by the three participants. 

The EEG data of each participant was acquired with 
an EMOTIV Insight headset with 5 EEG electrodes (AF3, 
AF4, T7, T8, Pz) and two reference electrodes 
(CMS/DRL) located in the left mastoid bone. A data 
transmission rate of 128 samples per second was used, 
with a passband of 0.5 to 43 Hz and a notch filter at 50 
and 60 Hz (https://www.emotiv.com/insight/). 

A database was generated with information obtained 
from the subjects in three emotional states: Quiet, Tense, 
and Very Tense. In addition, Quiet and Very Tense 
conditions have been used for classification. 

 

3.1 Complementary Information 
For each participant, we collect name, age, gender, 

experience level with video games or drone driving, time 
of experience, and relevant medical conditions such as 
injuries, surgeries, chronic diseases, and allergies. 

 

3.2 Experimental Development Environment 
In the experiment, we employed two screens, shown 

in figure 1. First, the operator controlled the experiment 
using a Graphical User Interface (GUI), label in the figure 
as “first screen,” which is linked to an application 
provided by EMOTIV Insight developers, called 
EmotivPRO. Then, using the GUI labeled in figure 1 as 
“second screen,” the participant fulfilled the tasks 
assigned on each test. 

 

 
Figure 1: Experimental development environment. Screen 

for the operator (left) and for the participant (right). 
 

3.3 Practice with the Flight Simulator 
A preliminary training session allowed each participant to 
become familiar with the drone flight simulator and the 
control commands. 
 

3.4 Recording Calibration Signals 
Signals correlated with noise generated by different 

artifacts, as well as a baseline, were measured. Each 
subject listened a guided meditation audio for 5 minutes 
to induce a state of relaxation. Subsequently, each subject 
followed the instructions shown on the screen to measure 
ocular and muscular artifacts (eyes open, eyes closed, and 
movements in all directions of the jaw, neck, and eyes). 

 

3.5 Experimental Tests  
Each participant completed different challenges in the 

“DCL the Game” flight simulator (https://dcl.aero/), such 
as following trajectories and overcoming obstacles on 
each runway, to test precision and concentration skills. 
The tracks sizes range from 30 sec to 2 min, depending on 
the circuit and the pilot's skill in each test. Each session 
was applied on different days lasting from 25 min to 35 
min and exposing the participants gradually to three stress 
levels: Quiet, Tense, and Very Tense (see Figure 2). 

 

 
Figure 2: General scheme of a session. Green, yellow, and 

red blocks for Quiet, Tense, and Very Tense states, 
respectively. The solid lines joining each block correspond to 

a 30-seconds break. 
 
Level 0 (Quiet): The participant performs basic 
maneuvers, such as taking off, landing, turning right, left, 
moving forward, and backward without obstacles. 
Level 1 (Tense): The participant must run each track with 
obstacles without suffering an accident with the drone. 
The subjects are instructed to complete the tracks trying 
to beat his own record in time. The signals obtained from 

First Screen

Second Screen
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each track are recorded and stored in the database. In 
addition, the subject was immersed in music of action and 
related genres to induce a more significant engagement. 
Level 2 (Very Tense): The participant must fulfill the 
same tasks as Level 2, while being distracted with 
auditory and visual stimuli. Auditory distractors consisted 
of sudden, short-lived audios. Visual distractors consisted 
of randomly appearing images, blocking partial vision at 
different sizes and positions on the screen. 

Signals have been labeled and organized according to 
the following characteristics: Emotional Tension Level, 
Track Difficulty, Distractors, Pilot Performance, and Test 
Start/End. In turn, each characteristic can assume one of 
three possible levels.  
 

4 PROCESSING 
Signals classification must perform as a real-time 

application. Therefore, there is a trade-off between 
efficiency and speed throughout the entire process. 
Figures 3, 4, and 5 show the algorithm proposed for real-
time signal processing: Detrend and Artifact Removal, 
Brain Rhythm Filter, Asymmetry Index Calculation, 
Feature Extraction, Model Training and Testing. 
 

 
Figure 3: Flowchart proposed for real-time signal processing.  

 
4.1 Detrend and Artifact Removal 

To detrend and remove the DC component of each 
EEG channel, we applied Empirical Mode Decomposition 
(EMD) [16], reconstructing the signals by omitting the 
three lowest frequencies, using the Intrinsic Mode 
Functions (IMF). 

Several studies that show sophisticated techniques for 
artifact removal are limited to offline systems [17], [18]. 
On the other hand, studies that eliminate artifacts in real-
time use 32 or 64 channels [19], focusing on eliminating a 
single artifact [20], [21], or using a reference signal [22]. 

We propose an algorithm, inspired in the works of 
[23] and [19], for automatic real-time artifact removal 
using five channels. Our aim is to avoid complex 
approaches proposing a practical and quickly applied 
alternative. Figure 4 shows the general process. 
 

 
Figure 4: Proposed algorithm for automatic removal of 

artifacts in real-time. 
 

4.2 Brain Rhythm Filter 
We designed two cascade IIR filters (high pass filter - 

low pass filter) Chebyshev Type II of minimum order to 
extract the Alpha (7-12 Hz) and Beta (12-30 Hz) rhythm. 
Both were applied using an attenuation in the rejection band 
of 60 dB per decade. 

 

4.3 Asymmetry Index Calculation 
The Alpha and Beta Asymmetry Index (AI) were 

calculated using equations (1), (2) and (3), as described in 
[7] and [24], and stored as a vector. Where 𝐴𝐴𝐴𝐴𝑓𝑓, 𝐴𝐴𝐴𝐴𝑡𝑡 and 
𝐴𝐴𝐴𝐴, represent frontal, temporal, and total asymmetry, 
respectively. 𝑃𝑃𝐴𝐴𝐴𝐴4, 𝑃𝑃𝐴𝐴𝐴𝐴3, 𝑃𝑃𝑇𝑇8 and 𝑃𝑃𝑇𝑇7 represent the power 
of the corresponding channel for the rhythm of interest. 

 

𝐴𝐴𝐴𝐴𝑓𝑓 = 𝑃𝑃𝐴𝐴𝐴𝐴4− 𝑃𝑃𝐴𝐴𝐴𝐴3 
𝑃𝑃𝐴𝐴𝐴𝐴4+ 𝑃𝑃𝐴𝐴𝐴𝐴3

    (1) 

 

𝐴𝐴𝐴𝐴𝑡𝑡 = 𝑃𝑃𝑇𝑇8− 𝑃𝑃𝑇𝑇7 
𝑃𝑃𝑇𝑇8+ 𝑃𝑃𝑇𝑇7

    (2) 

 
𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑓𝑓 + 𝐴𝐴𝐴𝐴𝑡𝑡    (3) 

 
4.4 Feature Extraction 

Eight features (mean, median, standard deviation, 
RMS, peak-to-RMS, peak-to-peak, mean frequency and 
power) have been extracted from the asymmetry vector 
𝐴𝐴𝐴𝐴𝑓𝑓, 𝐴𝐴𝐴𝐴𝑡𝑡 y 𝐴𝐴𝐴𝐴, giving a total of 24 for each rhythm. 

Save Relevant 
Informa�on in a 

Structure

Dataset 
Window Size for:
Preprocessing
Asymmetry Index
Feature Extrac�on
Window Step for:
Feature Extrac�on

Capture Each 
Sample

Stores Each 
Sample as a 

Vector in signal

Is the signal
length a 

mul�ple of 
Window Size 

for 
Preprocessing ?

Start Code for 
Online 

Processing

Load Data

Detrend & 
Ar�fact 

Removal

Brain 
Rhythm 

Filter

Stores Result in 
CleanedSignal

and FilterSignal

Is the 
FilterSignal

length a 
mul�ple of 

Window Size 
for AI ?

Asymmetry 
Index 

Calcula�on

Stores Result as a 
Vector in AI

Window Step for 
Feature 

Extraction 
Itera�on

Window Size for 
Feature 

Extraction
Itera�on

1

1

Feature 
Extrac�on

Is the Window 
Size for AI 
length a 

mul�ple of 
Window Step 

for Feature 
Extraction ?

1

AI length
>= 

Window Size 
for Feature 
Extraction ?

Start Code for Ar�fact Removal

Capture the Signal

Calculate the Absolute Value

Normalizes from 0 to 1

Find Peaks

Calculate Peaks Outliers

Calculate Height & Width in Outliers

Calculate Gaussians with Height & Width

Subtract the Gaussians from the Normalized Signal

Rebuild the Signal

NOVEMBER 17th TO 19th 2021, PUEBLA, MÉXICO 59
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4.5 Model Training and Testing 
Several models are trained for each step and window 

size. In each execution (Run Number) the training set 
(80%) and test set (20%) are randomly selected, and 
different hyper-parameters were tested depending on the 
type of classifier. For the KNN classifier, distance type 
(euclidean, seuclidean, cityblock, minkowski, chebyshev, 
cosine, correlation, spearman) and K number of nearest 
neighbors (from 3 to 10) were iterated. For SVM, we used 
Kernel functions linear, quadratic, cubic polynomial, and 
Gaussian with a Kernel scale of 1.2, 4.9, and 20. 

For each execution and iteration of hyper-parameters, 
models are evaluated in their training and testing stage 
with accuracy, precision, sensitivity, and specificity [10]. 
Finally, the mean of the four metrics was calculated to 
select the KNN and SVM hyperparameters with the best 
average for each step and window size (see figure 5). 
 

 
Figure 5:  Process for training and testing all models. 

 
 

5 RESULTS AND DISCUSSIONS 
The dataset used in the process described in figure 3 

contains the data obtained from the tests applied to each 
subject.  Preprocessing the signal and the calculation the 
AI were performed using a window of 2 seconds. Four 
window sizes of 30, 60, 90 and 120 s were considered to 
extract features. Three window shifts for feature 
extraction (see figure 3) were tested: 10, 20 and 30 s. The 
process shown in Figure 5 for the evaluation of the 
models during training and testing stage was repeated 20 

times (Run Number = 20).   Figures 6, 7 and 8 show the 
results obtained for each combination of step and window 
size. These correspond to the best average (in percentage) 
obtained from the four metrics (accuracy, precision, 
sensitivity, and specificity) at the test stage. 

It is observed for all subjects that, regardless of the 
window step considered, the results tend to improve as 
the window size increases. The best performance for all 
three subjects is typically obtained when the window step 
is 10 s for both classifiers. We can see that the results are 
very similar among the classifiers. 

Comparing the alpha and beta rhythms of the 
different steps and window sizes for each subject 
separately, we generally observe that the beta rhythm is 
higher than the alpha rhythm. 

Tables 1 and 2 show the best results and the 
hyperparameters calculated in both classifiers for alpha 
and beta rhythms, respectively. We observe that for the 
KNN classifier, the best results are obtained using 3, 4 
and 5 nearest neighbors. This favors the real-time 
application objective of our study, since the smaller the 
number of nearest neighbors, the shorter the time required 
for classification.  

 
(a) 

 

 
(b) 

 

Figure 6: Subject 01. Mean of the metrics for the KNN and 
SVM classifiers of the (a) Alpha and (b) Beta rhythms. 
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(a) 

 

 
(b) 

 

Figure 7: Subject 02. Mean of the metrics for the KNN and 
SVM classifiers of the (a) Alpha and (b) Beta rhythms. 

 
 

 
Table 1: Best results obtained for the alpha rhythm. 

 

 
Table 2: Best results obtained for the beta rhythm. 

 
(a) 

 

 
(b) 

 

Figure 8: Subject 03. Mean of the metrics for the KNN and 
SVM classifiers of the (a) Alpha and (b) Beta rhythms. 

 
6 CONCLUSIONS AND FUTURE WORK 
In this study, a method is proposed using a BCI to 

continuously monitor emotional states, which is related to 
the performance of drone pilots. We built a database to 
obtain three emotional states where Quiet and Very Tense 
states were classified using KNN and SVM. Our findings 
show that there is a clear separability between these two 
groups. We proposed an algorithm for automatic real-time 
artifact removal for five channels as a fast alternative. 

We found that the AI in the Alpha and Beta waves is 
an excellent feature related to the emotional response in 
drone pilots in situations of emotional tension. Our study 
suggests that the results corresponding to the four metrics 
reported in figures 6, 7 and 8 indicate a better 
performance when the beta rhythm is used, in comparison 
to those obtained from the alpha rhythm. 

Our next step is to expand the database, to test the 
generalization ability of our model. This database will be 
publicly available. Also, we will explore other classifiers 
techniques such as neural networks based on Deep 
Learning. 
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