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ABSTRACT

In recent years, autonomous drone races have be-
come increasingly popular in the aerial robotics
research community, due to the challenges in
perception, localization, navigation, and con-
trol at high speeds, pushing forward the state
of the art every year. However, autonomous
racing drones are still far from reaching human
pilot performance and a lot of research has to
be done to accomplish that. In this work, a
complete architecture system and an evaluation
method for autonomous drone racing research,
based on the open source framework Aerostack
4.0, are proposed. In order to evaluate the per-
formance of the whole system and of each al-
gorithm used separately, this framework is val-
idated not only with simulated flights, but also
through real flights in an indoor drone race cir-
cuit by using different configurations.

1 INTRODUCTION
1.1 Motivation

Autonomous drones have been increasing their applica-
tion in different tasks in recent years. The short flight time
of a quadcopter limits its use in missions such as search and
rescue. To take advantage of this, it is interesting to develop
agile drones that can explore or traverse an area in a short
time. Autonomous drone racing is a great environment to
push agile drones to the limit. The high speeds and agile ma-
neuvers required for this purpose increase the difficulties of
locating, controlling, and generating trajectories. To test dif-
ferent techniques to get the best results, it is useful to work
in a modulated environment that allows you develop and val-
idate different algorithms independently.

1.2 Related Work

Over the years, many different techniques have been de-
veloped to get the best results in Autonomous Drone Racing.
At the beginning, the speeds achieved in competition were
considerably low. In ADR 2017, a combination of monocular
SLAM localization algorithm and a PID control won with a
mean speed of 0.7 m/s [1]. For IROS 2018 ADR, the winners
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used machine learning techniques for gate detection with an
MPC controller. They also improved the trajectories adding 2
points to the path, one before and one after each gate, getting
flight speeds near 2 m/s [2].

In 2019, there was a big improvement in how fast au-
tonomous drones could fly. For the first AlphaPilot competi-
tion, a novel architecture was developed [3]. In this architec-
ture, machine learning techniques are combined with a non-
linear filter for sensor detection and time-optimal trajectory
planning. Using a PD controller, they reached a maximum
flight speed of 8 m/s. In the same year, the winners of the first
simulated drone racing, NeurIPS 2019 Game of Drones, de-
veloped a controller using reinforcement learning techniques
[4], achieving a maximum speed of 16 m/s in simulation.

On the other hand, there are many simulation environ-
ments to test the different approaches. Moreover, many com-
petitions have been hosted in this simulators. Flightgoggles
[5] is a photo-realistic simulator used for AlphaPilot 2019.
Some of them have some APIs for a specific development.
Flightmare [6] has an API for reinforcement learning. Air-
Sim Drone Racing Lab [7] is a framework from Microsoft
with some APIs that allows you to focus your test on each
of the different research directions in autonomous drone rac-
ing. However, there are not many frameworks that combine
state-of-the-art algorithms with simulators to work as base-
line repositories for autonomous drone racing research.

1.3 Contribution

In this paper, we present a modular framework for de-
veloping and validating new algorithms for improving agile
drone flying using autonomous drone races as a perfect test
environment. This framework provides a modular system ar-
chitecture with some state-of-the-Art algorithms that allows
researchers to concentrate efforts on improving one of the
fields related to drone behavior, without needing to build a
whole system by themselves. Furthermore, a simulation en-
vironment based on gazebo is provided to test the algorithms
before jumping into real experiments. For real experiments,
we decided to use Pixhawk as the autopilot to ease the use of
this framework through the research community.

Finally, we propose a set of metrics for measuring the per-
formance of some modules separately and the performance of
the whole system to be able to compare different algorithms
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easily.
2 SYSTEM ARCHITECTURE

The system architecture that is presented in this work
has been developed using the Aerostack framework [8], an
open-source multi-purpose software framework for the devel-
opment of autonomous multi-robot unmanned aerial systems
created by the Computer Vision and Aerial Robotics (CVAR)
group. The Aerostack modules are mainly implemented in
C++ and Python languages and are based on Robot Operating
System (ROS) [9] for inter-communication between the dif-
ferent components, we refer the reader to the extensive doc-
umentation and publications that are available on its web site
1

Using the Aerostack software framework, a new system
architecture design was developed for the tasks presented in
this work. It has to be noted that, although Aerostack frame-
work is able to provide predefined components and intercom-
munication methods to provide autonomy to UAVs, the com-
ponents that are described in this work were completely de-
signed and developed for the objectives described in this pa-
per. Fig. 1 shows the functionalities that have been imple-
mented in this work. In the figure, colored rectangular boxes
represent data processing units (or processes in short) that are
implemented as ROS nodes. They are organized in the fol-
lowing main components:

» Sensor-Actuator Interfaces: to receive data from sen-
sors on the aerial platform and send commands to robot
actuators.

* Communication Channel: Based on the Aerostack
framework, our architecture uses a common communi-
cation channel that contains shared dynamic informa-
tion between processes. This channel facilitates pro-
cess interoperability and helps to reuse components
across different types of aerial platforms. The chan-
nel is implemented with a set of ROS topics and ROS
messages.

* Robot Behaviors: Robot behaviors implement the
robot functional capabilities including motion control,
feature extraction, state estimation, and navigation.

* Mission Control: Mission control executes a mission
plan specified in a formal description. In this im-
plementation, the mission plan is specified using the
Python language using a set of prefixed functions to
start and stop robot tasks. A behavior coordinator com-
ponent [10] is used to translate planned tasks into con-
sistent activations of robot behaviors.

This work utilises the behaviorlib library for program-
ming robot behaviors with execution management functions

lwww.aerostack.org
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[10]. This library is open-source and provides tools for build-
ing, executing, and monitoring behaviors, as it is influenced
by the behavior-based paradigm in robotics. According to this
paradigm, the global control is divided into a set of behavior
controllers and each one is in charge of a specific control as-
pect separately from the other behavior controllers.

Next sections describe in more detail the components re-
lated to robot behaviors and mission control.

3 ROBOT BEHAVIOURS

A behavior defines a basic functionality of a system, such
as moving to a point, moving an actuator, activating a sensor,
and includes the three following principles:

e Common data channel: Each behavior controller
should be able to execute separately assuming that the
required input data is available in the common data
channel.

* Activation management: Each behavior is programmed
with an activation management mechanism which han-
dles how to start and stop the execution of the behavior
controller.

e Execution monitoring: Execution monitoring is a
kind of self-awareness computing process by which
the robot observes and judges its own behavior. This
includes possible behavior termination states such as
"GOAL ACHIEVED”, "WRONG PROGRESS” or
”PROCESS FAILURE”.

Aerostack provides behaviors which can be divided in the
categories explained in the following subsections.

3.1 Motion control

All the set of behaviors that are responsible for controlling
the movement of the drone. This category includes simple
behaviors such as take-off, hovering or landing, as well as
more complex behaviors such as generating a trajectory and
making the drone follow it.

In order to realize aggressive maneuvers on a quadrotor, it
is necessary to employ a non-linearized controller. We have
implemented a quadrotor control algorithm based on differ-
ential flatness and the corresponding behaviors inspired by
the work made by Melligner et al. [11] with several modi-
fications, so the output of the controller corresponds to an-
gular velocity references and the desired collective thrust of
all motors. The input of this controller consists in the posi-
tion, speed and acceleration references provided by a trajec-
tory generator.

Due to the need of generating trajectories for the con-
troller, a polynomial trajectory generator [12][13][11] has
been used. The trajectories are generated on a set of way-
points and are optimal in acceleration, which guarantees
smoothness in the actuator commands. Moreover, the tra-
jectories generated are constrained by maximum speed vy,q4
and maximum acceleration a,;,,, parameters.
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Figure 1: System architecture

3.2 State estimation

In order to achieve the level of control required for this
project, it is necessary to provide the best state estimation
possible to all components involved. Aerostack provides mul-
tiple components for this task, obtaining data from multiple
sensors such as cameras (for relative positioning to a certain
object), IMU, laser sensors, depth cameras, or lidar.

Some of this sensors or estimators should not be always
trusted, as cumulative errors can and will happen, so it is nec-
essary to combine the feedback from several of them using
sensor fusion approaches, like the multi-sensor-fusion algo-
rithm developed by Linnen et al. [14], to achieve the most
accurate and reliable state estimation possible in every situa-
tion.

However, for the real flights, we decided to use the state
estimation provided by an Intel Realsense T265 Tracking
Module, due to the ease of use and the reduction of the com-
putational load of the on-board computer.

3.3 Perception

Perception is a key problem in the proposed scenario,
since UAVs need to detect and locate each of the gates ac-
curately to be able to complete the full track.

Since the detection and pose estimation of the gates is a
difficult problem itself, to evaluate the rest of the proposed
framework components without the influence of possible er-
rors in perception, we placed ArUco fiducial markers [15] in
each gate to estimate the relative position to the UAV’s main
camera. Each marker also encodes a unique gate ID, enabling
us to design arbitrarily complex tracks. For the detection of
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such markers, we use OpenCV [16] implementation of the
method proposed in [17]

3.4 Navigation

When the gates are located in the real world, it is nec-
essary to plan the path that the aircraft must follow to pass
through them and avoid other obstacles. For this approach
we considered two scenarios:

e Lack of knowledge of gate positions. The aircraft
does not have any information about where the gates
are located, so it has to begin looking for them in order
to generate the waypoints to pass through the gates. As
long as the aircraft pass through the circuit, new gates
will be in sight, so the quadrotor can add these gates to
its route. In this scenario, the aircraft is always consid-
ered to see at least the following gate.

¢ Gate position awareness. The aircraft knows an ap-
proximated position of each gate of the circuit, so it
can generate complete trajectories through all the cir-
cuit that must be corrected with as long as the gates are
in sight, so it has to update the initial gate positions to
pass through the circuit. This is how the majority of the
autonomous drone racing competitions works.

In both approaches, each gate center is treated like a way-
point in a path, and this waypoint position is updated as the
quadrotor flies through the circuit. Whenever the quadrotor
passes through one gate this gate center is removed from the
path. This path is sended to the trajectory generator, which
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takes charge of commanding the quadrotor to pass through
the gates.

4 EXPERIMENTS

To validate the system architecture proposed and the suit-
ability of the different algorithms selected, several experi-
ments have been realized, not only in simulation, but also
in real. For analyzing this performance, several metrics have
been used:

o State Estimation error: For measuring the accu-
racy of the state estimation algorithm, we compute the
RMSE (Root Mean Squared Error) between the esti-
mated state and the ground truth.

* Trajectory following error: To evaluate the perfor-
mance of the controller proposed, we decide to mea-
sure the trajectory following error, calculated with the
RMSE between the trajectory sent by the trajectory
generator and the real trajectory followed by the air-
craft.

* Speeds: In autonomous racing, other metrics like the
maximum speed reached, the medium speed, or the
elapsed time to go through all the circuit must be taken
into consideration.

All metrics obtained from the different experiments were
obtained automatically using an evaluation script on the raw
data recorded during the flights.

4.1 Simulated Flights

Initially, the system was validated in simulation using
Gazebo [18] simulator and the iris drone as a simulated
quadrotor. We generate a 5 gates circuit distributed along a
25 x 20 x 3.5 m area, see Fig. 2. The position of each gate
was known with an uncertainty of 3 meters, which forces the
system to recalculate the gates positions to avoid crashing into
them.

Figure 2: Gazebo environment used for simulated flight ex-
periments

We fly through the circuit multiple times with four differ-
ent speed configurations during each flight. In these experi-
ments, the state of the aircraft was provided by the simulator,
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so the state estimation error was not calculated. All other met-
rics were obtained at different speeds, see Table 1 and Table
2.

—— trajectory
——— estimation

wWw
owu

Figure 3: Path followed by the aircraft when passing through
the simulated circuit with v,,4,, = 4.0(m/s) compared to the
trajectory generated for the motion control behaviour.

| x-axis | y-axis | z-axis | total

Umaz = 1.0 | 0.0552 | 0.0572 | 0.0602 | 0.0807
Umaz = 2.0 | 0.0647 | 0.0831 | 0.0734 | 0.1168
Umaz = 3.0 | 0.0959 | 0.0963 | 0.0924 | 0.1468
Umaz = 4.0 | 0.1001 | 0.1103 | 0.0952 | 0.1583

Table 1: RMSE between trajectory reference and estima-
tor measurements, expressed in meters, when the simulated
quadrotor pass through the whole circuit with trajectories
generated with different values of v,,,4, parameter

| Vinaz | Vavg | Elapsed Time (s)

Umaz = 1.0 | 0.8192 | 0.3848 127.6
Umaz = 2.0 | 1.5414 | 0.6896 61.1
Umaz = 3.0 | 2.7687 | 1.1828 38.8
Umae = 4.0 | 3.2657 | 1.2243 34.5

Table 2: Speeds (m/s) achieve during flights and elapsed time
to complete the whole simulated circuit employing different
values of v,,4, parameter in the trajectory generation.

4.2 Aerial Vehicle Platform

The aerial platform used for the real experiments was a
custom quadrotor based on the DJI F330 frame, shown in Fig.
4. This platform was equipped with a Pixhawk 4 mini as the
aircraft autopilot, an Intel Realsense T265 Tracking Module
used for state estimation, and an USB fish-eye camera for gate
detection.

Additionally, the aerial platform was equipped with a Sin-
gle Board Computer (SBC) NVIDIA Jetson Xavier NX with
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an 6-core ARM v8.2 , 64-bit CPU running Ubuntu Linux
18.04 Bionic Beaver for on-board computing. All computa-
tions required for the real experiments occurred in this SBC.

In order to obtain the ground truth position of the aircraft
during some experiments, a Motion Capture System (mocap)
was used. For localizing the aircraft inside mocap area, sev-
eral IR markers has been attached to the platform.

Figure 4: Quadrotor used for real flight experiments

4.3  Real flights

Due to space limitations in the mocap area we decided to
do two different experiments: in the first one we make the
drone pass through one gate with different speeds to evaluate
the state estimation error and the trajectory following error
of the controller, in the second one the aircraft had to pass
through a small circuit with 4 gates to test the performance of
the whole system in a complex task.

4.3.1 One gate crossing

For these experiments, the aircraft must localize a gate lo-
cated in gateposition = [2.0,0.0,1.5] (m) and pass through it
with 4 different max speed vy,q. = {1.0,2.0,3.0,4.0}(m/s)
values for the trajectory generation, see Fig. 5.

— 1m/s
— 2 m/s
— 3 m/s
— 4m/s

=
~
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Figure 5: Path followed by the aircraft when passing through
the gate at different speeds. The position measures had been
obtained from the mocap system.
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To measure the estimator error provided by the Realsense
T265 Tracking Module when the quadrotor flies at different
speeds we use mocap system for making a comparison be-
tween the ground truth and the estimated pose of the quadro-
tor, see Table 3.

| x-axis | y-axis | z-axis | total |
Umaz = 1.0 | 0.1140 | 0.0248 | 0.0990 | 0.1236
Umaz = 2.0 | 0.1178 | 0.0173 | 0.1475 | 0.1561
Umaz = 3.0 | 0.1079 | 0.0283 | 0.2313 | 0.2468
VUmae = 4.0 | 0.1019 | 0.0545 | 0.3359 | 0.3474

Table 3: RMSE between Realsense estimation and ground
truth measurements, expressed in meters, when the quadrotor
flies through trajectories generated with different values of
Umaz parameter

Before flying through a more complex circuit, it is con-
venient to measure the trajectory following error of the con-
troller employed when the aircraft flies at different speeds,
see Table 4.

| x-axis | y-axis | z-axis | total
Umaz = 1.0 | 0.0360 | 0.0262 | 0.0494 | 0.0558
Umaz = 2.0 | 0.0683 | 0.0294 | 0.0633 | 0.0757
Umaz = 3.0 | 0.1229 | 0.0385 | 0.0691 | 0.0948
Vmaz = 4.0 | 0.1699 | 0.0393 | 0.0820 | 0.0980

Table 4: RMSE between trajectory reference and estimator
measurements, expressed in meters, when the quadrotor flies
through trajectories generated with different values of v,4,
parameter

For evaluating the performance of the system passing
through a drone racing circuit, other measures like the elapsed
time to complete the circuit , the average flying speed, and the
peak speed are needed, see Table 5.

| Vinaz | Vavg | Elapsed Time (s)

Umaz = 1.0 | 0.9670 | 0.5625 9.4
Umaz = 2.0 | 2.2556 | 0.9770 5.5
Umaz = 3.0 | 3.1249 | 1.2059 4.7
Umaz = 4.0 | 41673 | 1.5334 39

Table 5: Speeds (m/s) achieve during flights and elapsed time
to complete the trajectory employing different values of v,,4,
parameter in the trajectory generation.

4.3.2 Four gates circuit crossing

After validating the proper work of the whole system in
the previous experiments, the last experiments consist in fly-
ing through a drone racing circuit with four gates arranged in
the middle of the sides of a square of dimension 5x4 meters,
with different heights each one.We fly through the circuit with
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two speed configurations: v,,q, = 0.5 and v,,4, = 1.0 as we
can see in Fig 6 and Fig 7 respectively.

—— trajectory
—— estimation

Figure 6: Path followed by the aircraft when passing through
the 4 gates circuit with vy,q, = 0.5(m/s) compared to the
trajectory generated for the motion control behaviour.

—— trajectory
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Figure 7: Path followed by the aircraft when passing through
the 4 gates circuit with v,,4, = 1.0(m/s) compared to the
trajectory generated for the motion control behaviour.

Due to the space limitation of the arena, the ground truth
poses were not acquired. However, the trajectory following
errors of the controller and the time and speed metrics have
been taken for comparing both flights, see Table 6 and Table
7.

| x-axis | y-axis | z-axis | total
Umaz = 0.5 | 0.0492 | 0.0701 | 0.0576 | 0.0855
Umaz = 1.0 | 0.0922 | 0.1491 | 0.1258 | 0.1414

Table 6: RMSE between trajectory reference and estimator
measurements, expressed in meters, when the quadrotor pass
through the whole circuit with trajectories generated with dif-
ferent values of v,,,, parameter

5 RESULTS DISCUSSION

On the simulated flights, the system was able to complete
the whole circuit at different speeds reaching speeds up to
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‘ Vinaz ‘ Vavg ‘Elapsed Time (s)

Umaz = 0.5 | 0.5316 | 0.2060 79.1
Umaz = 1.0 | 0.9231 | 0.4125 329

Table 7: Speeds (m/s) achieve during flights and elapsed time
to complete the whole circuit employing different values of
Umag Parameter in the trajectory generation.

3.2 m/s, with the trajectory following average errors around
15 centimeters. which validates the operation of the system.
Real experiments show that the proposed framework allows
a real quadrotor to fly through drone racing circuit gates at
speeds up to 4 m/s with a small increase in the trajectory fol-
lowing error compared with the simulated runs. The state
estimator sensor can reach average estimation errors higher
than 35 centimeters, adding this error to the trajectory fol-
lowing error could make the quadrotor collide with the gates
if their positioning were not updated with respect to the drone
position as long as the quadrotor navigates through the cir-
cuit. However, the limited computing capabilities of the SBC
makes that the trajectory generation spends a lot of time,
which worsens performance of the system when flying at high
speeds through multiple gates.

6 CONCLUSIONS AND FUTURE WORK

In this work, a modular framework for autonomous drone
racing has been proposed and validated through several ex-
periments, not only on simulation but also on real environ-
ments, being able to fly up to 4.16 m/s and to go through
an small circuit successfully. The state-of-the-art algorithms
proposed for each module, combined with the evaluation met-
rics proposed, constitute a baseline for research on improving
autonomous agile drone flying.

To improve this framework, a wider range of possibilities
to choose for each module must be given, like adding Predic-
tive Model Controllers, learning-based gate estimation meth-
ods, or a Visual Inertial Odometry estimator fused with other
sensors to improve the state estimation. Moreover, the do-
main gap between simulation and real life is substantial when
non-photorealistic simulators are used. Using a simulator like
Flightmare[6] would help to develop and test algorithms that
rely on images taken through the flight.
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