
ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-3 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Modeling and Identification of Multirotor Drone
Dynamics for Onboard MPC Motion Planning

Mathias Bos†∗, Bart Theys‡, Jan Swevers† and Goele Pipeleers†
† MECO Research Team, Department of Mechanical Engineering, KU Leuven,

DMMS lab, Flanders Make, Leuven, Belgium
‡ Robotics Research Group, Department of Mechanical Engineering, KU Leuven,

ROB lab, Flanders Make, Leuven, Belgium

ABSTRACT

This paper presents a nonlinear model of multi-
rotor drone dynamics selected specifically to be
suited for onboard motion planning using Model
Predictive Control (MPC), and presents a gener-
ally applicable procedure to identify the model
parameters solely based on outdoor flight data.
The model stems from a trade-off between pre-
diction accuracy and computational complexity,
approximating attitude and thrust control loops
as low order linear time-invariant subsystems but
without linearizing the thrust vector orientation,
and including linear aerodynamic drag and a
simplified battery voltage dependency. An open
loop simulation compared to recorded data from
a free flight maneuver motivates the proposed
model complexity in contrast to further simpli-
fications of the proposed model.

1 INTRODUCTION

Despite the current state of computing hardware with a
form factor that is convenient for compact drones, onboard
real-time motion planning and control remains a challenge.
Fully autonomous operation requires state estimation, motion
planning and control all to be executed onboard at a reason-
able update rate. One of the promising techniques for ad-
vanced motion planning and control is Model Predictive Con-
trol (MPC). Literature shows this technique already being ap-
plied for drone control and navigation, most often restricted
to position reference tracking over short horizons using lin-
earized dynamics to limit the computational load [1].
The modeling for simultaneous motion planning and control
using MPC asks for a trade-off between sufficient model pre-
diction accuracy and limited model complexity, to reduce the
computational load of solving a finite-horizon optimal control
problem. In literature, quadrotor models with varying com-
plexity and accuracy have been established, a short review of
which now follows.

∗Email address: mathias.bos@kuleuven.be
ORCID: 0000-0002-5471-6691

1.1 Related work
A detailed survey of existing kinematic and dynamic

models of quadrotors and their derivation is presented in [2].
This survey covers how in general these models can be de-
rived using the Newton-Euler method or the Euler-Lagrange
formalism, and how given some assumptions on structure
rigidity, symmetry and center of gravity, the most commonly
used basic quadrotor model is derived starting from Newton’s
second law. This basic nonlinear model can be formulated as




ṗ = v
v̇ = g + 1

mRf t
Jω̇ = τ − ω × Jω,

(1)

where p is the drone position vector, v the drone velocity
vector, g the gravitational acceleration vector, m the drone
mass, R the rotation matrix from the body to the world frame,
f t the total thrust force, τ the body torques, ω the angular
rate vector and J the drone inertia matrix. The thrust force
equals the vector sum of all motor thrusts. Often they are
assumed to be aligned with the vertical body axis, such that
the thrust magnitude equals the sum of the individual motor
thrusts. Body torques can be expressed as a function of the
thrust forces and the quadrotor geometry.

The set of equations in Equation 1 still misses a rela-
tion between the orientation, here represented by the rota-
tion matrix R, and the angular rate vector ω = [p, q, r]

>.
This relation is usually constituted in one of three ways, de-
pending on the used representation of the drone body orien-
tation: through roll-pitch-yaw Euler angles and their deriva-
tives, through quaternion derivatives, or through the deriva-
tive of the rotation matrix itself. In terms of the roll-pitch-
yaw Euler angles φ, θ and ψ, R is, introducing cγ , cos(γ),
sγ , sin(γ), tγ , tan(γ):

R = RψRθRφ

=




cψ −sψ 0
sψ cψ 0
0 0 1







cθ 0 sθ
0 1 0
−sθ 0 cθ







1 0 0
0 cφ −sφ
0 sφ cφ



.

(2)

The Euler angle derivatives are in that case related to the
angular rates by



φ̇

θ̇

ψ̇


 =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ



ω. (3)
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http://www.imavs.org/papers/2021/3.pdf



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-3 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

When using the quaternion rotation formulation R(q), the
derivative of the orientation uses the Hamilton quaternion
multiplication to express the derivative of the quaternion as

q̇ = 1
2q

⊙
[

0
ω

]
[3]. In the third alternative, the derivative of

R can be formulated directly as Ṙ = Rbω×c, where bω×c
is the skew-symmetric matrix formed with the elements of ω
[4].

The basic model in Equation 1 does not account for aero-
dynamic effects, which is often sufficient for applications
close to the hovering regime. In [2] and [5], a number of
aerodynamic effects and ways to model them are listed, such
as the ground and ceiling effect, the effect of the angle of
attack with respect to the free stream, blade flapping, and in-
terference caused by the vehicle body in the slip stream of
the rotor. Often, an approximation that is linear in the trans-
lational velocity is used such as in [6], as this describes the
dominant aerodynamic effects fairly well even up to signifi-
cant velocities. The velocity induced aerodynamic drag force
is then given by fv = −RDR>v, with D a diagonal matrix
containing drag coefficients. This drag force is added to the
second line in Equation 1.

A very common approach to avoid the complexity and
nonlinearity of the standard nonlinear model, is to perform a
linearization around the hover state and assume small angu-
lar deviations from this state. Also for drone MPC this is a
popular approach, as it alleviates the computational burden,
but doing so sacrifices prediction accuracy for more dynamic
behavior that deviates significantly from the hover state [1].

Another approach to approximate the full drone model, is
to assume that an attitude controller is already in place, which
is either assumed to track attitude references perfectly as in
[7], or responds as a torsional inertia-spring-damper SISO
system in a fully linear rotational and translational model as
in [8].

Lastly it can be noted that more complex and detailed
models exist, such as [9], in which brushless DC motors and
electronic speed controller models are included. However, to
the best of our knowledge these detailed models are not used
in (online) motion planning and control.

A range of system identification methods is discussed
in [2], covering identification procedures for first principles-
based models, also referred to as white box models, for (lin-
earized) grey box models, and data-based black box models.
Often, however, model parameters are retrieved in a cumber-
some procedure from CAD models, which requires detailed
models for all parts of the quadrotor, and test benches for sep-
arate components such as the motors and propellers [10].

1.2 Contribution and paper structure

This paper proposes a nonlinear multirotor drone model
without a small angle assumption that is specifically selected
to address the trade-off between model complexity and com-
putational efficiency, together with a simple procedure to

Figure 1: Quadrotor used in the experiments, displaying the axis
convention on the body frame with the roll-pitch-yaw Euler angles,
and outdoor infrastructure with safety nets.

identify the unknown model parameters, that does not require
special facilities other than the sensors that are present in a
realistic outdoor drone application and that do not require dis-
mantling the drone to identify components separately.

The paper is structured as follows. First Section 2
presents the model, next Section 3 describes the identification
procedure and parameter fitting results, and finally in Section
4 a free flight experiment qualitatively validates the proposed
model and identification procedure. This validation compares
the simulation of the proposed model to data recorded in the
experiment, and compares the simulation results with more
simplified versions of the model, justifying the inclusion of
nonlinearity, drag and battery voltage dependency. Lastly the
limitations to the applicability of the model are discussed.

2 PROPOSED DYNAMIC MODEL

The proposed model simplifies the ensemble of the drone
dynamics and the control cascade of attitude control, angular
rate control and motor control into a structure that takes throt-
tle input, roll angle, pitch angle and yaw rate references as in-
put, which is the control level often referred to as the stabilize
or angle flight mode in commonly used flight controllers. The
choice for attitude-throttle inputs in the proposed model is
motivated by the applicability on the popular hardware setup
where a Companion Computer (CC) performs high-level op-
timal control and sends reference inputs to the Flight Control
Unit (FCU)1. This setup shows a significant communication
and processing delay in the order of 0.1 s and the update fre-
quency of state estimates from the FCU to the CC is limited
at 50 − 100 Hz, rendering it infeasible to perform attitude
control which requires a control rate in the order of 400 Hz
[11]. Control with attitude reference inputs however has been
demonstrated with input frequencies around 50 Hz in [8] and
[12], which is realistic for the given setup and still allows dy-
namic control.

The proposed model is schematically shown in Figure 2.
The schematic reads from the top, starting with the control
inputs, to the bottom, towards the output which is the drone

1Computation hardware used for this paper:
FCU: Pixhawk 2.1 Cube Black running ArduCopter 3.7-dev firmware.
(https://github.com/unl-nimbus-lab/ardupilot)
CC: Nvidia Jetson TX2 running Jetpack 4.3.
Serial communication with MAVLink using the Mavros library.
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+

Figure 2: Schematic representation of the proposed model.

position or motion. The control inputs are the roll angle, pitch
angle and yaw rate references φr, θr, rr and the throttle in-
put T . The communication and processing delay between the
CC and the FCU is approximated by lumping it into an input
delay. The responses of the attitude and thrust with respect
to the delayed references are modeled as linear time-invariant
second order systems for the roll and pitch, and first order
systems for the yaw rate and thrust. The delayed and filtered
throttle input is multiplied by a thrust gain and a battery volt-
age dependent gain, as the battery voltage affects the deliv-
ered thrust for a given throttle input. R, the rotation matrix
from the body to the world frame, is composed with the Euler
angles φ, θ and ψ, following the axis convention displayed in
Figure 1. It is not linearized, allowing for an accurate rep-
resentation of large tilt angles. The orientation and the thrust
acceleration magnitude at are prerequisites to obtain the rigid
body dynamics.

The rigid body dynamics are considered as those of a
point mass on which four forces act, represented by an equiv-
alent acceleration through division by the drone mass: thrust

acceleration at, velocity induced drag acceleration av , grav-
itational acceleration g and an unmodeled disturbance accel-
eration ad. The thrust acceleration and the drag acceleration
closely follow the proposed model from Faessler et al. [6].
The thrust acceleration, corresponding to Faessler’s mass-
normalized collective thrust term, is assumed to be oriented
along the body z-axis. Axial rotor drag causing thrust loss is
not accounted for in the thrust acceleration, but instead is in-
cluded in the drag acceleration. The drag acceleration follows
Faessler’s ‘RDRv’ model with D a constant diagonal matrix
containing drag acceleration coefficients. Complex aerody-
namic effects as introduced in Section 1 are neglected. The
velocity and position are obtained through integration of the
acceleration.

The equations of the resulting nonlinear state space
model, which is of the form ẋ = f(x,u,Π), are given in
Equation 4. A list of all variables and constants is given in
Table 1. The set of twelve parameters Π that fully charac-
terize the system are highlighted in blue and are listed in Ta-
ble 2. How to obtain their values is discussed in the next
section. Overbarred symbols represent delayed inputs as in
ū = u(t − Td). Vectors and their components are expressed
in the inertial world frame.




ṗx
ṗy
ṗz
v̇x
v̇y
v̇z
φ̇

θ̇

ψ̇

φ̈

θ̈
ṙ
ȧt




=




vx
vy
vz

v̇
(∗)
x

v̇
(∗)
y

v̇
(∗)
z

φ̇

θ̇
tφ
cθ
θ̇ + 1

cφcθ
r

−ωn,φ2φ− 2ζφωn,φφ̇+ ωn,φ
2φ̄r

−ωn,θ2θ − 2ζθωn,θ θ̇ + ωn,θ
2θ̄r

−σrr + σr r̄r

−σtat +K
(
U
Un

)α
σtT̄




(∗)



v̇x
v̇y
v̇z




︸ ︷︷ ︸
v̇

= R




0
0
at




︸ ︷︷ ︸
at

−RDR>



vx
vy
vz




︸ ︷︷ ︸
av

−




0
0
g




︸ ︷︷ ︸
g

(4)

In this equation the rotation matrix R from the body to
the world frame in terms of the roll-pitch-yaw Euler angles is
defined as was described in Section 1.

3 PARAMETER ESTIMATION

To identify the parameters of the selected model, we fol-
low a procedure solely based on flight data, unlike previous
works describing cumbersome identification procedures on
test benches or based on CAD models. This procedure broad-
ens the applicability towards both open and closed source
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http://www.imavs.org/papers/2021/3.pdf



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-3 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Symbol Variable Physical units

T Throttle input -
φ Roll Euler angle rad
θ Pitch Euler angle rad
ψ Yaw Euler angle rad
φr Roll angle reference rad
θr Pitch angle reference rad
φ̇ Roll Euler rate rad/s
θ̇ Pitch Euler rate rad/s
ψ̇ Yaw Euler rate rad/s
p Roll rate rad/s
q Pitch rate rad/s
r Yaw rate rad/s
rr Yaw rate reference rad/s
U Battery voltage V
R Rotation matrix -
a Acceleration vector m/s2

a Acceleration magnitude m/s2

v Translational velocity vector
(ground speed) m/s

p Position vector m
at Thrust acceleration vector m/s2

at Thrust acceleration magnitude m/s2

av Velocity induced drag
acceleration vector m/s2

ad Disturbance acceleration vector m/s2

g Gravitational acceleration vector m/s2

s Laplace variable s-1

Symbol Constant Value

g Gravitational constant 9.81 m/s2

Un Nominal battery voltage 22.2 V

Table 1: Model variables and constants with their symbol and phys-
ical units.

Symbol Parameter Value

ωn,φ Roll natural frequency 25.43 rad/s
ωn,θ Pitch natural frequency 23.40 rad/s
ζφ Roll damping ratio 0.44
ζθ Pitch damping ratio 0.39
σr Yaw rate decay constant 21.54 s-1

σt Thrust decay constant 20.36 s-1

K Thrust gain 54.55 m/s2

α Battery voltage exponent 1.71
dx Drag acceleration coefficient x 0.39 s-1

dy Drag acceleration coefficient y 0.39 s-1

dz Drag acceleration coefficient z 0.51 s-1

D Drag acceleration
coefficient matrix diag([dx, dy, dz])

Td Communication delay time 0.1 s

Table 2: Model parameters with their symbol and identified value.

platforms. Moreover, the procedure only uses sensor infor-
mation that is available in relevant, outdoor scenarios.

To gather the data to estimate the parameters Π, we per-
form three distinct experiments that each apply a maneuver
repeatedly for varying input conditions, as illustrated in Fig-
ure 3. Decoupling the dynamics by applying step inputs on a
subset of the inputs allows to assess the quality of the result-
ing fit more easily. The maneuvers can be executed within
limited space, i.e. in this work specifically a flight zone of
30 × 15 × 10 m shown in Figure 1. Each experiment results
in M time series of varying length N . The sensors used by
the FCU are 1) an integrated IMU 2, 2) a Here+ GPS module,
3) a lidar altitude rangefinder (Garmin LIDAR-Lite v3). As
a consequence of the approximate modeling of closed loop
subsystems, the full procedure including all maneuvers must
be repeated as soon as one of the components (e.g. battery,
propellers) of the drone setup changes.

Each of the maneuvers applies step inputs of varying mag-
nitude. Firstly, the roll/pitch maneuver applies roll or pitch
reference step inputs of 0.2 rad, 0.3 rad and 0.5 rad. The roll
and pitch parameters Π1 = [ωn,φ, ζφ, ωn,θ, ζθ]

> are identi-
fied on the smaller steps of 0.2 rad, 0.3 rad to prevent angular
rate saturation. Each of the steps is repeated three times to
average measurement noise and random disturbances. Sec-
ondly, the yaw rate maneuver applies yaw rate reference step
inputs of 1 rad/s and 2 rad/s, each repeated twice, to iden-
tify the yaw rate parameter Π2 = σr. Thirdly, the thrust
maneuver applies varying throttle step inputs as illustrated in
Figure 3 while recording the vertical acceleration and the bat-
tery voltage to gather data for ascending, descending and near
to hovering conditions. The throttle input switches from T0
at time t0 to T1 at t1. Red arrows qualitatively indicate the
magnitude of the applied throttle input. The thrust maneuver
is executed for 18 combinations of T0 and T1, with T0 rang-
ing from 0.05 to 0.30 and T1 ranging from 0.10 to 0.40, both
in steps of 0.05. Each of the combinations is repeated three
to six times over the battery voltage range from 21.5 V up to
24.5 V, resulting in a total of 72 recorded step responses. This
serves to identify the thrust parameters Π3 = [σt,K, α]

>.
The recorded orientation and acceleration in the roll/pitch
maneuver allow to estimate the drag parameters Π4 =

[dx, dy, dz]
> after an initial fit of the thrust parameters. Only

the data with roll/pitch reference steps of 0.3 rad and 0.5 rad
is retained to assure sufficiently high acceleration such that
the unmodeled disturbance acceleration is relatively low com-
pared to the thrust acceleration and drag acceleration. For the
same reason it is also important that the roll/pitch maneuvers
are performed in near to windless conditions. Because the
thrust identification is more accurate given accurate drag pa-
rameters and vice versa, their parameter estimates are updated
iteratively until convergence.

With the gathered data, first, the delay time Td is found
2LSM303D integrated accelerometer / magnetometer, L3GD20 gyroscope,

MPU9250 Gyro / Accel
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Πj ei,k ẋ = f j(x,u,Π)

Π1 φ̃i,k − φi,k
[
φ̇

φ̈

]
=

[
0 1

−ωn,φ2 −2ζφωn,φ

] [
φ

φ̇

]
+

[
0

ωn,φ
2

]
φ̄

θ̃i,k − θi, k
[
θ̇

θ̈

]
=

[
0 1

−ωn,θ2 −2ζθωn,θ

] [
θ

θ̇

]
+

[
0

ωn,θ
2

]
θ̄

Π2 r̃i,k − ri,k ṙ = −σrr + σr r̄r

Π3 ãz,i,k − az,i,k
[
v̇z
ȧt

]
=

[
at −Dzvz − g

−σtat +K
(
U
Un

)α
σtT̄

]

Π4 ‖ãi,k − ai,k‖




v̇x
v̇y
v̇z
ȧt


 =




R




0
0
at


−RDR>v + g

−σtat +K
(

U
Unom

)α
σtT̄




Table 3: Error term and evaluated dynamics for the estimation of
each of the parameter subsets. The tilde indicates recorded data.

as the mean of the delay time between applied input and ob-
served change on the corresponding output over all experi-
ment data. Next, each of the remaining parameter subsets Πj

is estimated in a least squares optimization:

Πj = argmin
Πj

V

subject to: xi,k+1 = F j(xi,k, ūi,k,Πj) for k=0,1,...,Ni−1,

for i=1,2,...,M

xi,0 = x̃i,0, for i=1,2,...,M

(5)
where

V =

M∑

i=1

Vi =

M∑

i=1

Ni−1∑

k=0

e2i,k

F j(xk, ūk,Πj) =

∫ tk+1

tk

f j(xk, ūk,Πj)dt. (6)

The integral from Equation 6 is evaluated using a fourth order
Runge Kutta integration scheme. The error terms ei,k and the
evaluated dynamics f j for each of the identified parameter
subsets are given in Table 3.

This least squares problem is solved for each of the pa-
rameter subsets using CasADi [13]. The resulting estimates
for the parameters are given by Table 2. Figure 4 shows the
measured roll, yaw rate and throttle input step responses to-
gether with the simulated results using the obtained parame-
ters. The result for the pitch step responses is fully analogous
to the roll step responses and is therefore not shown. The
roll, yaw rate and throttle input step response data, on the top
left, top right, and in the middle respectively, clearly show
delayed predominantly second order and first order behav-
ior, captured well by the model simulation. The middle plot
shows the vertical acceleration as a function of time starting
from t1 and as a function of battery voltage for fifteen rep-
etitions of the thrust maneuver, showing only throttle input
combinations T0 = 0.05, 0.10, 0.15 and T1 = 0.35 for vi-
sual clarity. The acceleration magnitude, shown as a function

Figure 3: Illustration of identification experiment maneuvers, along
with the parameters identified in the experiment.

of both time and velocity in the bottom plots, is predicted re-
markably better with the inclusion of linear drag compared
to the simulation without any drag. The arrows indicate the
magnitude of the estimated drag acceleration.

4 RESULTS AND DISCUSSION

To validate the prediction quality of the model and to mo-
tivate the inclusion of the modeled effects, its simulation on
inputs from the first 1.5 s of a free flight using a rudimen-
tary MPC controller is compared with the simulation of sim-
plified versions of the model and the recorded experimental
data. During this experiment, the battery voltage is around 23
V.

The models under comparison are 1) the full model as
in Figure 2 and Equation 4, 2) a linearization of this model,
treating yaw as described in [4], 3) the proposed model ex-
cluding drag, 4) the proposed model excluding the battery
voltage dependency by assuming nominal battery voltage
throughout the simulation. The roll, yaw rate and yaw re-
sponses are also compared to the situation where no first order
or second order behavior is included and only the communi-
cation delay is considered. The adaptations to the full model
to obtain the simplified versions are given by Table 4.

The simulation results in Figure 5, in which all plots
correspond to the same short maneuver, prove that the full
model predicts the drone motion significantly more accu-
rately than the simplified versions of the model. Compared
to the recorded data and the full model simulation, the only
delay approximation clearly misses distinct evolutions of the
attitude responses because it omits the first and second order
behavior, as seen in the p, φ, r and ψ plots. The linear approx-
imation strongly overestimates the vertical thrust component
because of the assumption of small angles with respect to the
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Figure 4: Validation of the model with estimated parameters.

Model variation Model / change to the full model

Full model ẋ = f(x,u,Π)

Linearized δẋ = ∂f
∂x

∣∣∣
x∗,u∗

x+ ∂f
∂u

∣∣∣
x∗,u∗

u,

x = x∗ + δx, with x∗ and u∗

the hover state and hover inputs

No drag ẋ = f(x,u,Π)
with dx = dy = dz = 0

No battery dependency ẋ = f(x,u,Π) with α = 0

Only delay φ = φ̄r, θ = θ̄r, r = r̄r

Table 4: Variations of the full model for the comparison of predic-
tion accuracy.

  Reference input
  Recorded data
  Full model
  Only delay
  Linearized
  No drag
  No battery dependency
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Figure 5: Comparison of four model variations of varying com-
plexity with data recorded in the validation experiment. From top to
bottom: 1) drone position, 2) roll rate and roll, yaw rate and yaw, 3)
acceleration components in the world frame. All these plots corre-
spond to the same short maneuver.
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hover state, which is seen in the az and 3D position plots. The
no drag approximation neglects the velocity induced counter-
acting force, hence overestimating the achieved acceleration,
most clearly visible in the ay and 3D position plots. The no
battery dependency approximation neglects the effect of the
higher battery voltage of 23 V compared to the nominal bat-
tery voltage of 22.2 V, hence underestimating the generated
thrust and therefore acceleration. Consequently, the 3D po-
sition plots show a lower altitude for this simulation. These
observations confirm the choice to include the low order ap-
proximation of low-level control loops, nonlinearity, drag ef-
fect and battery voltage dependency in the model.

To conclude this discussion, we discuss the limitations to
the applicability of the proposed model that the approxima-
tions of the done dynamics made in this paper bring. Firstly,
the low order decoupled approximation of control loops us-
ing an Euler angle representation and the assumption of lin-
ear drag restrict the use to low or medium velocity applica-
tions with limited roll and pitch angles. Secondly, saturation
on the angular rates is not taken into account, meaning that
for accurate predictions the high level planner should not re-
quest subsequent angle references that exceed the rate limits.
Thirdly, simulating with attitude and throttle as inputs while
neglecting a possible accelerometer bias in the identification
procedure entails large drift on the velocity and position pre-
dictions over longer horizons, as the prediction error on the
orientation and acceleration is integrated twice over time to
obtain the position. This high level of uncertainty demands
frequent corrections when using the model for estimation and
control, which is not a problem in the intended MPC setting
as this control strategy inherently comprises state feedback.

5 CONCLUSION AND FUTURE WORK

This paper presented a multirotor drone model and a pro-
cedure to identify its unknown model parameters using the
data measured during three simple maneuvers that do not re-
quire special facilities other than the sensors that are present
in a realistic outdoor drone application and that do not require
dismantling the drone to identify components separately. The
model was crafted to address the trade-off between sufficient
prediction accuracy and limited model complexity that arises
when considering autonomous drone applications. The com-
plexity of the representation of the low level control systems
steering the attitude and thrust was reduced by modeling them
as low order linear time-invariant subsystems. Linear drag
and simplified battery voltage dependency were proven to
benefit the prediction accuracy when included in the simu-
lation.

In future work we will exploit this model in MPC, aim-
ing for outdoor applications with a requirement for dynamic
autonomous control. Early tests show approximate planning
update rates of 20 Hz and more for time horizons over 10 s,
which, possibly supported by (linear) feedback control, is ad-
equate for many applications. Another interesting use of this

model is the estimation of force disturbances, which were left
untouched in this paper. Disturbance estimation could serve
to estimate and reject wind influence for improved position
tracking performance, and to estimate and compensate for the
relative position and swinging of suspended payloads.
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