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ABSTRACT

The use of Micro Aerial Vehicles (MAVs) has
increased in engineering and civil applications to
explore environments without previous informa-
tion. In particular, in autonomous navigation, a
fundamental part is that of detecting and locating
targets of our interest. For this reason, computer
vision has become an essential analysis tool. In
this work, we focus on object classification in
aerial navigation tasks, where texture is involved
as a physical property of the object. We present
a classification model using transfer learning and
wavelet-based features as an additional feature
extraction method. This model is trained with
the Describable Textures Database (DTD), and a
performance of 53% accuracy is obtained. More-
over, the images obtained from the environment
show the generalization of learning for some
database classes. Transfer learning fusion with
wavelet analysis is recommended for small data
sets of images with textures due to the limita-
tion of learning about spectral information lost
in conventional Convolutional Neural Networks
(CNNs).

1 INTRODUCTION

Texture analysis is a traditional problem in computer vi-
sion because it involves obtaining information that describes
the image content. In the robotics area, object detection is a
problem for robots that perform tasks in real scenarios and
in real-time, given the lighting conditions, indeterminate ori-
entations, object identity, shape, color and texture. Further-
more, the information may differ in outdoor and indoor envi-
ronments, which varies the target information [1]. Providing
the resources to the robot by integrating sensors can improve
object detection.

Micro Aerial Vehicles (MAVs) have been used in different
environments due to their easy control and implementation
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of algorithms through computer vision. In tasks of the
classification, detection and localization of the target. There
are different vision methods in the area, such as optical flow,
segmentation, edge detector, morphological operations and
feature extractor for different tasks. These methods have been
combined to improve detection performance while the MAV
executes its aerial navigation (recognition) or autonomous
flight. However, using these methods can be computationally
expensive to perform real-time detection, affecting the overall
system performance.

In image processing, texture can be defined from neigh-
boring pixels and intensity distribution over the image [2].
Besides, there are some classification methods for texture
analysis such as statistical, geometric, model and spectral. If
we focus on spectral methods, these methods describe the tex-
ture in the frequency domain. They are based on the decom-
position of a signal in terms of basis functions. Furthermore,
they use the expansion coefficients as elements of the feature
vector.

Deep learning has become a helpful tool for image clas-
sification, object detection, and segmentation. Especially if
we talk about convolutional neural networks, these achieve
learning multiple features to recognize targets without refer-
ence to their position, indeterminate orientations, scale, and
target rotation. VGG16, VGG19, AlexNet, SSD and YOLO
are architectures that have good performance in image classi-
fication and object detection tasks.

Therefore, we decide to merge these methodologies (deep
learning and wavelet features) as a solution for texture
classification. The objective is that the MAV performs the
aerial navigation (inside the virtual environment) for the
classification system to recognize the object, see figure 1.
This work focuses on preview information (in data collected
by MAV) and structural recognition of the object (with a
particular texture) within a region of interest in the image
plane.

The implementation of our system is developed with the
fusion of two approaches. The first is in the spatial domain,
using transfer learning. We take as a baseline the VGG16
architecture with the features of the ImageNet database. The
second approach focuses on the spectral domain, applying the
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http://www.imavs.org/papers/2021/27.pdf



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2021-27 12th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Haar wavelet transform in two dimensions to obtain features
at different scales [3]. The VGG16 network has been selected
for its fast performance and implementation with transfer
learning and adaptability with wavelet analysis. Internally,
the system is divided into two stages: the first corresponds
to feature extraction and the second one to the classification
stage. We used the Describable Texture Database (DTD) to
train our model, which contains 47 texture classes, with 120
images per class. On average, we have tested with some
textures for the classification task in the virtual environment,
and the prediction can be performed correctly, with an
average processing speed of 2 fps.

The rest of the paper is organized as follows in Section 2
related work is shown, Section 3 introduces the methodology
to approach the texture classification problem. Whereas
Section 4 shows the results with the DTD dataset and the
experimental part to test our model. Finally, Section 5
presents the conclusions.

Figure 1: We designed a system for texture classification in
aerial navigation based on knowledge inference over the DTD
database. See at https://youtu.be/d41kgBw7Y_c.

2 RELATED WORK

In recent years, MAVs applications for object detection
tasks have been studied and developed [6][7]. Several ap-
proaches are using deep learning, giving excellent perfor-
mance in applications. For example, in some tasks for au-
tonomous navigation, we find in the literature a methodol-
ogy for obstacle detection and avoidance using an architec-
ture called AlexNet that allows classifying the images cap-
tured by the camera onboard the drone [8]. The learning of
this architecture is transferred from the ImageNet database to
improve the classification performance [9]. Moreover, to de-
tect objects and autonomous landing, in [1], a detection sys-
tem is presented to solve one of the missions included in the
IMAV2019 indoor competition. They involve the implemen-
tation of the SSD7 onboard the MAV. This SSD7 network is
chosen for its fast performance on low-budget microcomput-
ers with no GPU. The method proposed in [10] is an architec-
ture called YOLO, which presents an essential performance

in real-time image detection and processing at 45 frames per
second. Besides, in object detection tasks, in [11], the authors
propose a deep learning approach to estimate the object’s cen-
ter in a robust way. Also, generating a line of sight as a guide
proves to be a solution to avoid collision with other objects,
due to complications such as varying illumination conditions,
object geometry, and overlapping in the image plane.

On the other hand, many projects employ deep learning
and wavelet analysis in visual processing. For example, on
image classification, the method proposed in [12] converts
images from the CIFAR-10 and KDEF database to the
wavelet domain, thus obtaining temporal and frequency
features. The different representations are added to multiple
CNN architectures. This combination of information in
the wavelet domain achieves higher detection efficiency and
faster execution times than the spatial domain procedure. In
this sense, the authors in [13] mention that although CNN is
a universal extractor, in practice, it is not clear whether CNN
can learn to perform spectral analysis. In [14], the authors
propose an architecture called CNN Texture to have this
approach within the CNN. Their idea focuses on the fact that
the information extracted by convolutional layers is of minor
importance in texture analysis. They use a statistical energy
metric in the feature extraction stage. This information is
concatenated with the classification stage, the fully connected
layer. Specifically, the architecture shows an improvement in
performance and a reduction in computational cost.

In terms of texture classification in image processing
applications [15], the authors propose an architecture called
wavelet CNN to generalize spectral information lost in
conventional CNNs. This information is beneficial for texture
classification as it usually contains details information about
the object’s shape. Furthermore, the model allows us to
have fewer parameters than in traditional CNNs, so it is
possible to train with less memory. In general, through a
state-of-the-art review, we have observed that computational
intelligence algorithms improve detection strategies in Micro
Aerial Vehicle applications.

3 METHODOLOGY

This work proposes an approach based on transfer
learning and wavelet features. This system allows to predict
or classify the texture in images transmitted by the camera
onboard the drone, whose objects are in an outdoor scenario
(in Gazebo), a virtual simulation environment. We are only
interested in texture recognition, mainly to know one of the
characteristics of the object. So, we limit the image plane
(640×360) to a region of interest (300×300 pixels). As a
result, the system will have the image in RGB as well as a
grayscale version. These two images are the inputs for our
proposed classification system, see figure 2.

Describable Textures Dataset (DTD) was selected to be
used. It contains 47 classes of 120 images in the wild. This
means that the images have been acquired that in uncontrolled
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Figure 2: Texture classification system.

conditions [16]. This dataset includes ten divisions available
with 40 training images, 40 validation images, and 40 test
images for each class. Our experiment will create a new
dataset, with the distribution of 70% for training, 15% for
validation, and the remaining 15% for testing. Figure 3 shows
some images from this set. One limitation of the dataset is the
number of images per class, so it is decided to use the transfer
learning method to improve the classification performance of
our model. The synaptic weights are based on the ImageNet
database, which will feed the feature extraction stage of the
base architecture VGG16.

Figure 3: DTD dataset example images [16].

Before training, the Haar wavelet transforms in two
dimensions is applied to one level, see figure 2. The factor
of one represents the level of image decomposition. This new
spectral information is essential for classification. Therefore,

four sets (in the wavelet domain) are automatically generated
to determine the characteristic attributes of each texture. This
information can be combined with the spatial information
of the VGG16 architecture. Also, it is essential to mention
that this process is only applied to the image previously
converted to grayscale, performing the decomposition for a
single channel, ver figure 4 & 5.

For the test stage in MAV, a scenario is designed in the
gazebo simulator. The virtual scenario is created with ten
cubes with certain textures (figure 1). These textures are
selected due to the performance achieved in the model testing
stage. Therefore, the chosen classes have a performance
above 70% accuracy (Table 3).
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Figure 4: Images textures that have been decoded (Class) to
train the classification model.

4 EXPERIMENTS AND RESULTS

The experiment to train our learning model was carried
out with the Keras API with Tensorflow as Backend [17].
Besides, the OpenCV libraries are used for image process-
ing due to their ease of use and adaptability in program-
ming. Also, we use the Pywt library [18] from which it was
chosen the Haar wavelet transform as the feature extractor
method. An aerial navigation experiment was performed us-
ing the ROS framework and Gazebo simulation environment
to validate the classification system and its learning general-
ization. This section describes the results obtained in each
experiment.

4.1 Model training
In the first instance, the VGG16 network was trained

from scratch. As a result, it is not able to generalize its
learning. Therefore, it is possible to use the transfer learning
methodology. Table 1 shows the achieved performance of the
pre-trained network and our proposal with the wavelet feature
fusion. It shows the accuracy performance on the three sets
to validate the model (training, validation, and test). In the
case of the pre-trained network, slight overfitting is observed.
The model will be adjusted to learn specific cases and will be
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(a) Approximation.
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(b) Horizontal details.
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(c) Vertical details.
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(d) Diagonal details.

Figure 5: Approximation and details set of wavelet features.

unable to recognize new textures. One way to improve the
performance of the model is to integrate the wavelet features.
In this case, we achieve the elimination of overfitting and
homogeneity between the three sets. Besides, the value
of the test set is highlighted because these are images that
the model has never seen. In summary, the classification
system has 14,778,735 synaptic learning weights. 64,047 are
trainable parameters, of which 16,832 correspond to wavelet
features. Table 2 summarizes the achieved performance of
our classification system, as well as a comparison to AlexNet
(trained from scratch), T-CNN, and Wavelet CNN [14][15].

Training Validation Test
Pre-trained model 68.15 50.41 54.49
Our model 57.67 51.22 53.19

Table 1: Classification results for the pre-trained VGG16
network and our model indicated as accuracy (%).

AlexNet T-CNN Wavelet CNN Our model
DTD 22.7 55.8 59.8 53.19

Table 2: Classification results and comparison with other
state-of-the-art pre-trained architectures with ImageNet, in
terms of accuracy (%).

4.2 Texture classification DTD
Other metrics evaluate the performance of the DTD

dataset classes. The metrics such as precision, recall, and
f1-score are given when applying the classification report
method, where it is necessary to involve the true labels and
the prediction label of the model. Table 3 shows the classes
that performed above 70% classification. Also, Table 4 shows
three random classes that perform above 50% classification.
This class selection analysis provides the basis for the design
of the textured cubes of the Gazebo environment. On the
other hand, we can observe the similarity and correlation
between classes (about test set) by performing the prediction.
Figure 6 shows the true label and the prediction label at the
top of each texture.

Class precision recall f1-score support
bubb 0.73 0.61 0.67 18
cheq 1.00 0.78 0.88 18
fibr 0.73 0.61 0.67 18
fril 0.72 0.72 0.72 18
stri 0.77 0.94 0.85 18
stud 0.70 0.78 0.74 18
zigz 0.75 0.67 0.71 18

Table 3: Classes (test set) that results with precision above
70%.

Class precision recall f1-score support
hone 0.58 0.61 0.59 18
line 0.50 0.28 0.36 18
polk 0.65 0.61 0.63 18

Table 4: Classes (test set) that results with precision above
50%. They are chosen from the easy human visual perception
of the texture.
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Figure 6: Classification of textures randomly (from a total of
846 images) using the DTD prediction model.
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4.3 Texture classification in aerial navigation

Navigation and aerial recognition tested the classification
model. We created a virtual environment with the Gazebo
simulator, controlling and sending information from the
camera onboard the drone using the ROS framework. In the
world presented in figure 1, we positioned in a row the ten
cubes with the selected textures. Therefore, the position of
the cubes allows the evaluation of the prediction model during
aerial exploration. The idea of the model is that it generalizes
its learning to textured objects. In total, 1000 image captures
were performed in a navigation recognition for each class.
The proposed texture sets (bubbly, chequered, honey, striped,
studded) obtain a high correlation with their original label
above 60% accuracy, see figure 7.
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Figure 7: The number of images with textures obtained with
the onboard camera while flying recognition.

Some images (figures 8 and 9) of the recognition set
are shown, with its original label and its prediction label.
However, we can observe that the five test images incorrectly
predict the frilly, lined, polka-dotted, and zigzagged set.
These five images relate to the whole recognition set, except
for fibrous, polka-dotted, and zigzagged, which achieve at
least 3% accuracy. This result allows us to understand the
generalization of learning between the model and textured
objects.

5 CONCLUSION

The localization and object detection tasks using visual
information are challenging, particularly when objects ex-
hibit repetitive texture. However, these tasks open the oppor-
tunity for various applications using Micro Aerial Vehicles
equipped with onboard cameras to be used for object detec-
tion and recognition, for instance, for parcel pick-up, place
recognition, landing zone detection and many more. Seeking
to improve the detection and recognition stage, in this work
we have investigated the use of spectral analysis in combina-
tion with deep neural networks. In particular, in this proposal,
we merged the (additionally created) spectral feature maps to
CNN learning. Also, it is shown that the model used achieves
to eliminate overfitting and better accuracy in the classifica-
tion of textures with a significant increase in the number of
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Figure 8: Image sequence acquired by the camera onboard
the drone. The classification system has a good inference on
the texture in the first, second, and fifth rows.

parameters to be trained. The tests performed in the simu-
lation show some interesting results. The prediction model
shows the creation of a widespread understanding of the tex-
ture attached to the objects. Furthermore, despite having a
low classification rate, it is shown that the model correctly
classifies most of the test classes.

As future work, this will test with other texture features,
also seeking to conduct tests in real-world scenarios.
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