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Quaternion-based attitude sliding mode control with
disturbance rejection observer for a quadrotor
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ABSTRACT

This work presents a Slide Mode Control (SMC)
for the attitude of a quadrotor under unknown
disturbances and whose main characteristic is the
use of the quaternion mathematics for modeling
the system. An extended state observer (ESO) is
designed to estimate unknown disturbances and
uncertainties. Tests are carried under a previ-
ously defined smooth trajectory and the refer-
ence quaternion is calculated, and the controller
is able to follow the reference to keep the de-
sire orientation. Numerical simulation is shown
in order to demonstrate the effectiveness of the
proposed control law.

1 INTRODUCTION

1.1 Motivation and Background
A quadrotor is a multi-engine helicopter powered by four

engines. These vehicles are easy to build and maintain,
and allow very good maneuverability in three-dimensional
spaces. In their early days, these vehicles were very poor
in terms of computational power, payload capacity and ma-
neuverability. However, given the advances in electronics,
which on the hardware side have allowed the miniaturization
of its components, and on the software side has allowed the
flexibility of the tasks, it has been achieved that today the
quadrotors are much smaller, lighter and with such compu-
tational power that has resulted in vehicles to perform some
tasks autonomously [1].

Two subsystems can be considered when dealing with
mathematical models of quadrotors: rotational and transla-
tion dynamics [2]. These subsystems provide a cascade struc-
ture where translational motion is based on rotational dy-
namics [3]. Therefore, attitude control is the main part to
fulfill trajectory-tracking in the space. This is not a simple
task when considering both structural (parametric) and ex-
ternal disturbances. For these reasons, it is necessary to come
back to the low-level control problem, i.e., the attitude control
problem, and therefore to take into account explicitly in the
control design model uncertainties and external disturbances.

In the literature, there are two predominant mathematical
models for the quadrotor representation. The most used is
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obtained by using an Euler’s angles representation, allowing
a more intuitive understanding of the behavior of the vehicle
(see [4, 5]); the second model is based in quaternions offer
a compact representation for vehicle’s orientation in a 3-D
space that is convenient, computationally efficient, and accu-
rate [6, 7, 8].

Both models have disadvantages, for example: the model
with Newton-Euler equations is a system of 12 nonlinear dif-
ferential equations and, in general, to solve them requires a
high computational cost and the consequent loss of informa-
tion in the process due to the numerical methods applied; on
the other hand, the model with quaternions is difficult to in-
terpret due to the abstract nature of its theory [9].

Several linear control approaches, such as PID ([10]),
Linear Quadratic Regulator (LQR) ([11]) and Linear
Quadratic Gaussian (LQG) ([12]), have been proposed in the
literature and applied for attitude stabilization and/or altitude
tracking of quadrotors. However, these methods can impose
limitations on application of quadrotors for extended flight
complex flight trajectories where the system is no longer lin-
ear. In addition, the performances on tracking trajectories of
these control laws are not satisfactory enough [13, 14].

To overcome the linear controllers limitations, there are
nonlinear control alternatives, such as Backstepping [15, 16,
17], Feedback linearization [18, 19], Model predictive control
[20, 21, 22], among others. These control techniques have
shown good performance against sinusoidal wind disturbance
but increasing the cost of computational resources [23].

The Sliding Mode Control has been applied extensively
to control quadrotors. The primary advantages of SMC are:
1. Fast response and good transient performance. 2. Its ro-
bustness against a large class of perturbations or model un-
certainties. 3. The possibility of stabilizing some complex
nonlinear systems which are difficult to stabilize by continu-
ous state feedback laws [24]. The SMC is a high frequency
switching control that causes chattering, an undesired phe-
nomenon which leads towards loss of energy, unmodeled dy-
namics and even actuator destruction [25].

Furthermore, to enhance performance robustness, an Ex-
tended State Observer can be implemented. An ESO can
estimate both, unknown states of system and the “total dis-
turbances” that lump the adverse effects on the output using
limited model information [26].
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1.2 Contributions
The development of a SMC for attitude tracking of a

quadrotor with a ESO applied to the quaternion-based model,
adding disturbances to the inertial matrix and input control
torques.

This paper is organized as follows. The basic concepts of
quaternion theory and dynamic model of a quadrotor are pre-
sented in Sect.2. In Sect.3, the position control is described,
following by the SMC concepts and the attitude controller is
designed, later, an ESO is proposed and designed. The sim-
ulation results of the proposed controller strategies are pre-
sented in Sect.4. Finally, conclusions are included in Sect.5.

2 QUATERNION BACKGROUND AND QUADROTOR
MODELING

A quaternion background is shown next, and the quadro-
tor model based on quaternions as well.

2.1 Quaternions
A quaternion can be thought as a composite of a scalar

q0 ∈ R and an ordinary vector qv = (q1 q2 q3)
T ∈ R3,

that is, q = (q0 qTv )T or as a complex number with three
different imaginary parts, i.e., a hypercomplex number [27].
It is represented as follows

q :=

(
q0
qv

)
= q0 + iq1 + jq2 + kq3 ∈ H (1)

with {1, i, j,k} being a canonical basis of the hypercomplex
space H [7]. The norm of a quaternion is

||q|| =
√
q20 + q21 + q24 + q23 (2)

A unit quaternion, with a norm equal to 1, can be used to
represent a rotation by an angle β about the axis defined by
the unit vector e = (e1 e2 e3)T , that is

q := e
1
2βe = cos

β

2
+ e sin

β

2
(3)

This expression, known as the Euler-Rodrigues formula is
the exponential mapping of the axis-angle representation of
a rotation. Since the n-dimensional unit sphere embedded in
Rn+1 is denoted as Sn = {x ∈ Rn+1 : xTx = 1} then
q ∈ S3. Furthermore, q represents an element of SO(3)
through the map R : S3 → SO(3) defined as:

R(q) := I3 + 2q0[q×v ] + 2[q×v ]2 (4)

R ∈ SO(3) = {R ∈ R3×3 : RTR = I3,det(R) = 1} is
the matrix that rotates the coordinates of a point from frame
Eb to frame Ef with I3 as the 3 × 3 identity matrix. [r×] is
the skew-symmetric matrix associated to vector r.
The sum and subtraction of quaternions is performed by sep-
arate addition of their four parts. A vector can be converted
to quaternion by setting the scalar part to zero and replacing

the vector part of the quaternion by the corresponding values
of the vector. The quaternion product is defined as

q⊗ r = (q0r0 − qv · rv) + (q0rv + r0qv + qv × rv) (5)

The conjugate of a unit quaternion is defined as q∗ = q0−qv .

q∗ = q0 − qv (6)

A quaternion can be used as rotation operator for a vector
between two different frames. Considering pv as a 3D vector
in a given reference frame Ef and p′v as the same vector in
a new different frame, for instance, Eb. Then, the quaternion
p = (0 pTv )T can be transform in p′, and vice-versa through

p′ = q∗ ⊗ p⊗ q, p = q⊗ p⊗ q∗ (7)

The properties of the logarithm in the unit quaternion are use-
ful to obtain the equivalent axis-angle notation. For unitary
quaternions the logarithmic mapping is given by

ln(q) =

{ qv
‖qv‖ arccos q0, ‖qv‖ 6= 0

(0 0 0)T ‖qv‖ = 0
(8)

With this mapping you can change any unitary quaternion to
its axis-angle representation as follows [7]

βv = eβ = 2 ln(q) ∈ R3

β̇v = ωv ∈ R3
(9)

where βv is the vector that represents the axis-angle notation,
e = qv

‖qv‖ describes the unit axis about which the rotation is
applied, ‖β‖ represents the magnitude of the rotation. ωv is
the angular velocity vector of the body coordinate frame Eb

relative to the inertial coordinate frame Ef expressed in Eb.
The attitude error is used to quantify the mismatch between
two attitudes. If q defines the current attitude quaternion and
qd the desired quaternion, i.e., the desired orientation, then
the quaternion that represents the attitude error between the
current orientation and the desired one is given by [28]:

q̃ = q∗d ⊗ q =
(
q̃0 q̃Tv

)T
(10)

When the current quaternion q reaches the desired one qd, the
quaternion error becomes q̃ =

(
±1 0T

)T
, i.e., there exist

two equilibria which have to be considered in the stability
analysis [29].

2.2 Quadrotor Dynamics
A diagram of the quadrotor studied in this paper is shown

in Fig. 1, where the inertial frame and the body frame are rep-
resented by Ef and Eb, respectively. Let define the position
vector p =

[
x y z

]T
. Then, the related quaternion is

given by ξ = [0 pT ]T

According to [7, 30, 31], the equations of motion of a
quadrotor using quaternions are
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Figure 1: Quadrotor diagram.

Ẋ =
d

dt




ξ

ξ̇
q
ω


 =




ξ̇

q⊗ Fth
m ⊗ q∗ + ḡ
1
2q⊗ ω

J−1(τ − ωv × Jωv)


 (11)

where q represents the vehicle attitude, using a unit
quaternion, with respect to the inertial frame, ω = [0 ωv]

T

and Fth =
[

0 0 0
∑4
i=1 fi

]T
describes the total thrust

force applied to the body in the inertial frame, and the angu-
lar velocity. J represents the inertia matrix with respect to the
body-fixed frame, and the total torque τ is given by

τ =



l (f1 + f4 − f2 − f3)
l (f1 + f4 − f2 − f3)∑4

i=1 (−1)
i+1

τi


 , (12)

where l represents the distance between any motor and
the center of mass of the vehicle, fi represents the force gen-
erated in the rotor i, with i ∈ {1, 2, 3, 4}. ḡ = [0 0 0 g]

T is
the gravity vector.

Applying the logarithmic mapping, the system model is
as follows

Ẋ =
d

d t




ξ

ξ̇
βv
β̇v


 =




ξ̇

q⊗ Fth
m ⊗ q∗ + ḡ

β̇v

J−1
(
τ − β̇v × Jβ̇v

)


 (13)

3 QUADROTOR CONTROL

In this section, the control strategy is described, as is
shown in the Fig. 2, position control allows the vehicle to fol-
low a defined trajectory, then the attitude control is designed
to achieve the necessary orientation given by the position con-
trol.

3.1 Position Control
The position dynamics subsystem of the quadrotor can be

written as

ξ̇ =
d

dt

[
ξ

ξ̇

]
=

[
ξ̇

m−1F Ith

]
(14)

where F Ith = q ⊗ Fth ⊗ q∗ + mḡ is a force that can be
designed such that the vehicle reach a desired position. Since
Equation 14 is a linear system, the control law F Ith is pro-
posed as

F Ith = ξ̈d + k1ξ̃ + k2
˙̃
ξ (15)

where ξd is the desired position, ξ̃ = ξd − ξ is the po-
sition error, with k1 and k2 are the control gains. The error
dynamics is given by

d

dt

[
ξ̃
˙̃
ξ

]
=

[
˙̃
ξ

ξ̈d − (ξ̈d − k1ξ̃ + k2
˙̃
ξ)

]
(16)

rewriting equation (16)

d

dt

[
ξ̃
˙̃
ξ

]
=

[
0 1
k1 k2

]

︸ ︷︷ ︸
A

[
ξ̃
˙̃
ξ

]
(17)

if k1, k2 > 0 then A is Hurwitz and the trajectories of the
error dynamics converge asymptotically to the origin of the
vector space error, that is, ξ̃, ˙̃

ξ → 0, when t→∞.

3.2 Basic concepts of Slide mode control
The SMC is a type of Variable Structure Control (VSC).

Its basic idea is to attract the system states towards a surface,
called sliding surface, suitably chosen and design a stabilizing
control law that keeps the system states on such a surface. For
the choice of the sliding surface shape, the general form of
equation (18) was proposed by Stoline and Li in [13]:

S(x) =

(
λx +

d

dt

)q−1
e(x) (18)

where x denotes the variable control (state), e(x) is the
tracking error defined as e(x) = x − xd, λx is a positive
constant that interprets the dynamics of the surface and q is
the relative degree of the sliding mode controller.

Attractiveness is the condition under which the state tra-
jectory will reach the sliding surface. There are two types of
conditions of access to the sliding surface. In this paper, we
will use the Lyapunov based approach. It consists of make
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Figure 2: Control Block Diagram.

a positive scalar function, given by equation (19) and called
Lyapunov candidate function, for the system state variables
and then choose the control law that will decrease this func-
tion:

V̇ (x) < 0, withV (x) > 0 (19)

In this case, the Lyapunov function can be chosen as:

V (x) =
1

2
S(x)2 (20)

The derivative of this above function is negative when the
following expression is checked:

S(x)Ṡ(x) < 0 (21)

The purpose is to force the system state trajectories to reach
the sliding surface and stay on it despite the presence of un-
certainty. The sliding control law contains two terms as fol-
lows:

u(t) = ueq(t) + uD(t) (22)

where ueq(t) denotes the equivalent control, which is a
way to determine the behavior of the system when an ideal
sliding regime is established. it is calculated from the follow-
ing invariance condition of the surface:

{
S(x, t) = 0

Ṡ(x, t) = 0
(23)

and uD(t) is a discontinuous function calculated by
checking the condition of the attractiveness. It is useful to
compensate the uncertainties of the model and often defined
as follows:

uD(t) = −Ksign(S(t)) (24)

where K is a positive control parameter and sign(·) is the
sign operator.

3.3 Attitude Control design
For the attitude control, we use the rotational motion

model given by equation (13), we take the error quaternion
q̃ from Equation 10 and applying the logarithm mapping to q̃
we get

q̃ = q∗d ⊗ q

β̃v = 2 ln(q̃)
(25)

qd is obtained from the shortest rotation between Fth and
F Ith vectors as unitary vectors. According to [7] qd is defined
as

qd = exp
(
ln
(
F Ith ⊗ F ∗th

)
/2
)
⊗ exp (qψd) /2 (26)

where qψd =
[

0 0 0 ψd
]T

is the desired rotation
around the z axis.

The sliding surface is chosen based on the tracking error,
such as:

S =
˙̃
βv + λβ̃v (27)

Deriving S, we get

Ṡ = ω̇e + λωe (28)

where ωe = ω − ωd is the rotation velocity error, and ωd
is the desired rotation velocity which is defined as

ωd = 2
d

dt
(lnqd) (29)

Substituting the model values on equation (28), we get

Ṡ = ω̇ − ω̇d + λ(w − wd)
Ṡ = J−1(τ − ω × Jω)− ω̇d + λ(w − wd)

Finally, the control law is obtained using Equation 22:

τ = J(−(−J−1ω × Jω − ω̇d + λ(ω − ωd)) + uD)

uD = −Ksign(S)
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Figure 3: ESO attitude Control Block Diagram.

3.4 ESO design
The ESO of quadrotor UAV system should be designed

to estimate the model uncertainties and external disturbances
[32]. Fig. 3 shows the ESO implementation in the attitude
control loop.

The attitude subsystem can be written as
[

q
ω

]
=

[
1
2q⊗ ω

J−1(τ − ωv × Jωv)

]
(30)

In order to use the ESO for the estimation of uncertain-
ties in the inertia matrix and unknown disturbances, ESO is
defined as:

˙̂x1 = x̂2 + l2(x1 − x̂1)− J−1τ
˙̂x2 = l1(x1 − x̂1)

(31)

where x̂1 is the estimation of the angular velocity ω, and
x̂2 is the estimated value of an unknown disturbance d. l1 and
l2 are the observer tuning parameters.

4 RESULTS

In this section, the proposed control strategy for the
quadrotor attitude stabilization is implemented in order to
verify his validity and efficiency. For the numerical simu-
lation, the following parameters are using

m = 1.3 kg, J =




0.177 0 0
0 0.177 0
0 0 0.354


 kg m2 (32)

For the position controller, the control gains were empir-
ically selected as: k1 = −24 and k2 = −12. In the same
manner, the attitude control gains λ and K were selected as

λ = 10, K = 50 (33)

4.1 SMC sans ESO
The dynamic model was coded using MATLAB, the cho-

sen trajectory was a spiral as is shown in Fig. 4 with the fol-
lowing initial conditions: ξd = [5 5 0]

Tm, ξ = [0 0 0]
Tm and

[φ θ ψ]
T

= [0 0 0]
T rad. In addition, a uniform noise, ±20%

of nominal value, is added to the inertial matrix and a sine
wave d = 0.1 sin(t) is applied as a disturbance in the control
torques τ1 and τ2 signals @t=50s.

100
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Y (m)

5

X (m)

0

3D Trajectory
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10
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Z
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m
)

20
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Figure 4: 3D spiral trajectory.

The position errors are shown in the Fig. 5
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Figure 5: Errors in 3D trajectory.

The desired quaternion and the vehicle’s attitude quater-
nion are shown in the Fig. 6.
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Figure 6: Desired quaternion (qd) vs Attitude quaternion (q).

The β̃v angle is shown in Fig. 7, where the SMC is able
to compensate the effect of the disturbance and keep the error
low.

The torques for the attitude stabilization of the vehicle are
shown in the Fig. 8, these were limited to ±1 N·m
4.2 SMC with ESO

For this case, the same initial conditions were applied,
and using the following control gain: l1 = 250, l2 = 400, we
get the trajectory shown in Fig. 9
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Figure 7: Error angle β̃.

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

=
1
 (

N
/m

)

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

=
2
 (

N
/m

)

0 10 20 30 40 50 60 70 80 90 100

time (s)

-1

0

1

=
3
 (

N
/m

)

Control Torques

Figure 8: Control torques.

The trajectory errors are shown in Fig. 10.
The desired quaternion and the vehicle’s attitude quater-

nion are shown in the Fig. 11.
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Figure 9: 3D spiral trajectory.

0 20 40 60 80 100

-4

-2

0

X
 (m

)

0 20 40 60 80 100

-4

-2

0

Y
 (m

)

0 20 40 60 80 100

Time (s)

-2

0

2

Z 
(m

)

#10-2

Trajectory Errors

Figure 10: Errors in 3D trajectory.

The β̃ angle is shown in Fig. 12, as in the previous case,
the error doesn’t increase significantly when the disturbance
in the input torques appears. The ESO keeps the error an
order of magnitude lower than the previous case.

The torques for the attitude stabilization of the vehicle are
shown in the Fig. 13, these also were limited to ±1 N·m

Finally, the Integral Square Error (ISE) is shown in the
Fig. 14, where an error of two orders of magnitude smaller
error is observed when the ESO is added to the system

5 CONCLUSION

In this paper, we worked with the problem of the attitude
stabilization and tracking of a quadrotor vehicle using a non-
linear sliding mode control approach. In addition, an ESO
were proposed to estimate the inertia matrix uncertainties and
unknown disturbances. Several simulations results are carried
out in order to show the effectiveness of the proposed nonlin-
ear control strategies and proving that an ESO is useful when
there are uncertainties in the vehicle parameters.
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Figure 11: Desired quaternion (qd) vs Attitude quaternion
(q).
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Figure 12: Error angle β̃.
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