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ABSTRACT

Precision agriculture can benefit from the us-
age of swarms of drones to monitor a field.
Crop/weed classification is a concrete applica-
tion that can be efficiently carried out through
collaborative approaches, whereby the infor-
mation gathered by a drone can be exploited
as prior to improve the classification per-
formed by other drones observing the same
area. In this study, we instantiate this con-
cept by exploiting state-of-the-art deep learn-
ing techniques. We propose the usage of a
shallow convolutional neural network that re-
ceives as input, besides the RGB channels of
the acquired image, also an additional chan-
nel that represents a probability map about
the presence of weeds in the observed area.
Exploiting a realistic, synthetic dataset, the
performance is assessed showing a substancial
improvement in the classification accuracy.

1 INTRODUCTION

Use of aerial robots has been steadily increasing over the
past decade, thanks to improved remote sensing abilities, bet-
ter motion control and even onboard manipulation abilities.
Such systems constitute a natural fit for tasks related to mon-
itoring and inspection. In particular, small micro aerial ve-
hicles (MAVs) are very well suited to such operations, even
indoor, as they can navigate in narrow spaces, get close to the
target objects and safely operate around humans. MAVs con-
stitute an extremely attractive option for a number of practi-
cal use-cases—e.g., within application areas such as agrifood
or infrastructure inspection and maintenance—opening up a
wide range of market opportunities. However, for MAVs to
realize their potential and get deployed in unstructured envi-
ronments (outside the lab, without support from any external
infrastructure to operate), a number of technical and scien-
tific challenges related to navigation, perception and cogni-
tion must be solved. In addition, while MAVs small size is
key to operational settings, it also gives rise to a number of
limitations, for instance in terms of useful payload and power
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autonomy. Payload and power limitations do not support the
installation onboard of powerful computing devices, high-
resolution cameras and heavy optics, and in any case the bat-
tery lifetime may be severely limited. Such limitations make
it difficult to address inspection and monitoring tasks over
extensive areas, a necessary requisite for applications in pre-
cision agriculture—both outdoor and within greenhouses—or
in large industrial settings.

The above limitations can be gainfully addressed by
means of multi-robot systems, and notably MAV swarms, that
can improve efficiency through parallel operation over large
areas [1]. By exploiting a swarm of small drones, it is possi-
ble to acquire data at higher resolution, exploiting their ability
to hover close to a given target and to navigate narrow clut-
tered environments. Additionally, the ability for members of
the swarm to actively support each others enables collabora-
tive localisation and collision avoidance [2]. Finally, MAVs
in a swarm can collaborate to improve the quality of exte-
roception and sensory data interpretation, as a result of the
collective intelligence of the group.

In our work, we propose the exploitation of drone swarms
for precision agriculture applications [3]. Specifically, we
consider the problem of identification and mapping of weeds
within a crop field. This is a very relevant application in the
precision agriculture domain, because the detailed knowledge
of the position and type of weeds within a field can support
advanced weed control techniques, from variable-rate herbi-
cide application—a practice that can reduce herbicide usage
by more than 80%—to mechanical removal of weeds, pos-
sibly automatically performed by ground robots. Assuming
that the weed distribution within a field is non-homogeneous,
inspection of extensive fields by drone swarms can be effi-
ciently performed by means of non-uniform coverage strate-
gies, which deploy resources (i.e., drones) only towards por-
tions of the field with high relevance, while areas of low in-
terest receive much less attention [4]. To this end, an estima-
tion of the utility of each area must be performed first, and
on such basis a more or less detailed inspection can be exe-
cuted. Utility estimation is performed by a high-altitude/low-
resolution inspection, while detailed inspection is performed
through low-altitude/high-resolution inspection, and the latter
can be exploited to continuously update the former. Hence,
for non-uniform coverage strategies to be implemented by an
autonomous decentralised system, it is necessary that MAVs
are capable to communicate and adapt their mission on the
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basis of what observed on the field, hence requiring suitable
algorithms for online/onboard feature detection.

While high-altitude/low-resolution inspection can be per-
formed by individual drones with standard estimation tech-
niques based on common indexes used in precision agri-
culture, low-altitude/high-resolution inspection requires the
identification and classification of individual plants, so as to
determine their type and position within the field. In this
study, we address the latter aspect, proposing a framework
for collaborative classification of relevant environmental fea-
tures based on state-of-the-art deep neural networks. We as-
sume here that detailed inspection is performed by a MAV
swarm by flying at a relatively low altitude (e.g., 3m from
the ground) so that images of the field are taken at a suffi-
cient resolution even with low-end and lightweight cameras.
Classification of crop and weed can be carried out with state-
of-the-art techniques making use of convolutional neural net-
works (CNNs) for object detection, which return the position
and class type for all relevant objects identified within an im-
age [5]. However, CNNs are computation-hungry methods
that are not suitable for the limited devices available onboard
MAVs. Therefore, for MAV swarms to be efficient and ac-
curate, it is necessary to reduce the computational complex-
ity of the algorithms running onboard the single MAV, while
exploiting collaboration among MAVs that can support each
other on the classification task.

We propose to exploit the fact that different MAVs can
inspect the same area of the field at different times and from
different perspectives, therefore having redundant informa-
tion about the same plants that can be exploited to improve
the classification accuracy. Each MAV is endowed a stream-
lined version of a deep CNN. On the first passage over an area
of the field, a MAV independently makes a classification of
the different plants it can perceive. Such classification is geo-
localised exploiting onboard devices (e.g., RTK-GNSS) or
self-localisation techniques, and then broadcasted to all other
MAVs in the swarm, possibly using a simple re-broadcasting
protocol to widely diffuse newly available information. Suc-
cessive passages exploit prior knowledge by building prob-
ability maps about the existence of crops and weeds on the
current portion of the field. Such probability maps are fed as
additional input channels to the CNN (similarly to what pro-
posed in [6] for foreground/background segmentation), so as
to improve the classification accuracy on all the relevant el-
ements in the inspected area. To validate this proposal, we
developed a realistic 3D simulation of a sugar-beet field in
which two types of weed are present. This allowed us to gen-
erate a synthetic dataset of field images as gathered from a
MAV flying at a low altitude, simulating multiple indepen-
dent passages over the same area by changing position and il-
lumination parameters. We reduce the depth and complexity
of a state-of-the-art CNN and increase the input channels to
include also the possible availability of probability maps. We
test several training approaches by varying the likelihood of

providing the additional probability maps with respect to sim-
ple RGB channels. We show that across multiple passages,
the performance of the classification substantially improves,
validating the proposed concept and calling for further refine-
ments as well as for tests with real-world datasets.

The paper is organised as follows. In Section 2, we briefly
review the available techniques for classification in a weed
management domain. In Section 3, we describe the exper-
imental setup detailing the synthetic dataset generation, the
proposed CNN architecture and the training methods devised.
In Section 4, we discuss the testing procedure and the results
obtained, comparing our iterative method with one-shot ap-
proaches. Section 5 concludes the paper.

2 CROP/WEED METHODS

In recent years, the interest in robotics applications for
precision agriculture raised constantly [7]. Among the most
important problems tackled through automatic techniques,
weed control represents an important case study as it requires
both advanced vision to recognise weed type and fine me-
chanical control to spray or remove the identified plants. As
a consequence, several approaches to the crop/weed classi-
fication problem have been attempted using both unmanned
ground (UGVs) and aerial vehicles (UAV). On the one hand,
UGVs are generally large powerful tractors adapted from tra-
ditional agricultural machinery, and can be equipped with
performing hardware, thus allowing on-board classifications
even with modern deep neural networks. However, large
UGVs must carefully manoeuvre to avoid damage to the crop
field and to reduce soil compaction. Furthermore, the close-
up view of a camera mounted on a UGV does not allow to
exploit the geometric pattern of a typical field. On the other
hand, UAVs have the possibility to quickly cover large crop
fields and to perceive a wide area at once. However, due to
payload limitations, they cannot exploit hardware with the
same computing capability as for the UGV case.

In recent years, efforts have been made to provide reliable
crop/weed classification methods. Object-based classification
methods exploit the sowing pattern to classify as weed plants
that lay outside the crop rows [8]. In [9], a random forest clas-
sifier was adapted to UAV imagery, using, as input, a large set
of hand computed features including also the main row direc-
tion of the crop field. The same authors [10] exploited also
a very shallow neural network to classify plant species; be-
fore feeding the neural network, a vegetation mask based on
the popular NDVI index is computed, and single plants are
extracted from this mask and passed to the CNN. In [11], fea-
ture learning is exploited for weed classification from UAV
images. In [12], a deep auto-encoder architecture composed
by 26 convolutional layers (the encoder) and 5 up-sampling
layers (the decoder) obtained a pixel-wise semantic segmen-
tation, using as input RGB images with NIR informations.
The same approaches have been deployed to UGV based sys-
tems [13, 14, 15, 16]. In all these examples, the classification
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is performed offline after the collecting stage is finished.

3 EXPERIMENTAL SETUP

As described in Section 2, most current approaches tackle
the crop/weed classification task by means of semantic seg-
mentation solutions, while our goal is to use state-of-the-art
object detection algorithms so that each plant can be individ-
ually classified. This will make it possible, once each plant
is detected, to take action within the field on a per-plant ba-
sis, e.g., with mechanical removal or spraying of individual
plants. For this purpose, there is no large publicly avail-
able dataset that can be exploited. Additionally, the proposed
swarm-based technique requires multiple images of the same
portion of the field taken at different times and possibly from
slightly different positions. While work is being performed
to collect a suitable dataset with the required features, the
validation of the concept can be more flexibly performed on
synthetic datasets that can be generated through modern com-
puter graphics engines [17]. We describe the dataset gener-
ation in Section 3.1. Thanks to such a dataset, we are able
to train CNNs for object detection. The chosen CNN archi-
tecture and the technical choices to provide prior knowledge
from previous passages as input to the CNN are detailed in
Section 3.2. Finally, the training methods used to obtain an
efficient object detection are discussed in Section 3.3.

3.1 Synthetic dataset generation
The proposed method for crop/weed classification relies

on multiple passages over the same area of the field, hence
on multiple images with different illumination and possibly
different perspective. Given the complexity of acquiring a
similar dataset in the field, a synthetic dataset has been gener-
ated using the advanced computer graphics features provided
by the game engine Unity 3D (https://unity.com). As a bonus,
the ground truth labelling is obtained with precision and low
effort directly from the simulator, hence removing one of the
main difficulties in machine vision research.

Starting from the 2D texture of leaves belonging to the
target plant species, it is possible to generate a large variety
of individual 3D plants by assembling multiple leaves and re-
alistically bending the texture [17]. In the simulation environ-
ment, each plant is generated with several parameters which
are individually tuned for each species to resemble as much as
possible the aspect of the real counter-part (see Figure 1). To
each plant, independently from its species, a vertical growth
axis is associated which is slightly perturbed by a random
noise. To simulate a uniform growth stage for all the plants
that have been generated, each plant has a number of layers
up to two. Each plant, moreover, has an associated number
of leaves per layer which is different from species to species.
At each layer, the leaves are homogeneously spread around
the main growth axis, again with a small random disturbance.
In order to simulate succesive visits of the same region of the
field, once a set of plants has been placed on the scene, the il-
lumination parameters have been randomly changed, moving

the position and the intensity of the light sources illuminating
the scene, hence also casting different shadows on the ground.
As a last step to create a realistic environment, the soil is gen-
erated starting from various real world textures. Every time
a fragment of terrain is created, two textures are chosen and
blended together using Perlin noise based linear interpolation
(LERP). Similarly to the plants generation, by changing the
parameters of the Perlin noise, it is possible to create a large
variety of soil textures.

With this method, images of different plants taken at dif-
ferent altitudes can be generated at will. Here, we consider
images taken at about 3m altitude, containing about 80 simu-
lated sugar beets as crop, while two types of weed are present
in variable number, having up to 20 plants per image (see
Figure 1). A training set with 500 images has been generated,
while the validation set is composed of 100 images. Regard-
ing the testing set, 10 blocks of 40 images have been gener-
ated. Each block is composed of the same 40 plant patterns,
but the illumination parameters, such as light source orienta-
tion and intensity, randomly change for each image within
a block. This results in a testing dataset with overall 400
images that we refer to as dataset A. Additionally, a second
testing set has been generated featuring also a small, random
perturbation of the camera position within the same image in
different blocks. In this way, the position error of the MAVs
flying over the same region is simulated. This second dataset
is also made of 40 fields and 10 blocks for a total of other 400
images, and is referred to as dataset B.

3.2 CNN architectures

In the literature, several architectures have been proposed
for classification purposes, either for image segmentation or
for object detection [5, 18]. Competitions and benchmarks
have contributed to establish an objective methodology to de-
termine performance and direct choice of the best approach,
given the task demands. In our case, to perform the plant
detection, Faster R-CNN has been chosen [19], which can

Table 1: CNN Architectures

5 layers 9 layers

7×7, 64, stride 2

3×3, max pools, stride 2
[
3× 3, 64

]
× 1

[
3× 3, 64

]
× 2

[
3× 3, 128

]
× 1

[
3× 3, 128

]
× 2

[
3× 3, 256

]
× 1

[
3× 3, 256

]
× 2

[
3× 3, 512

]
× 1

[
3× 3, 512

]
× 2
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(a) (b) (c) (d)

Figure 1: Synthetic dataset generation. The same field with crop rows and weeds is displayed. Panels (a) and (b) show different
illumination conditions on the same field, and also display the automatically generated ground truth. A small difference in the
plant position within the image is also present. Panel (c) shows a segmentation on the image obtainable as ground truth directly
from the simulation. Finally, panel (d) shows a probability map computed on the ground truth data.

be considered the state-of-the-art method for object detection
tasks. In its standard version, it is composed of two stages,
in which the first stage—referred to as the backbone—is a
deep CNN responsible for generating bounding boxes around
objects to be proposed to the second stage as potentially con-
taining relevant features. Considering the computing capabil-
ities of a MAV, it is not possible to use the standard Faster
R-CNN backbone such as ResNet50 [20], which is way too
demanding in terms of computational power. Therefore, we
have chosen to implement two shallow networks with much
reduced demands, removing several layers from the standard
backbone. In both cases, the first initial layers are the same as
the ResNet architectures, namely a 7×7 convolutional layer
with 64 filters and stride 2, followed by a 3×3 max-pooling
layer. After that, a sequence of 3×3 convolutional layers is
presented as described in Table 1. We will refer to the first as
FCN5 and to the latter as FCN9. Here, FCN stands for Fully
Convolutional Network.

In order to exploit detections previously made by other
agents, the input of the CNN is composed of a fresh RGB im-
age together with an auxiliary channel encoding a probabil-
ity map based on previous classifications. Well-known object
detection algorithms usually output 6 values for each detec-
tion i, that is, the class of the detected object ci, a confidence
score si, and 4 values representing bounding box coordinates
encoding the coordinates xi, yi of the center and the width wi
and height hi of the bounding box. From this values a proba-
bility P (x, y) for each point x, y is computed as follows:

P (x, y) =
∑

ci=W

si · e
−
(

(x−xi)2
2w2
i

+
(y−yi)2

2h2
i

)

. (1)

In other words, each detection belonging to the class ci =
W—standing for weed—provides a probability increment
proportional to the confidence score si, and decaying from
the center of the bounding box xi, yi as a 2D gaussian with a
spread that depends on the bounding box dimensions wi and

hi. The resulting probability map is practically null when
far from any bounding box, indicating that the probability of
finding a weed plant in that position is extremely low. Peaks
are visible in correspondence of detected weeds, as shown in
Figure 1d. Note that we decided to focus on weed classifica-
tion only, as it turns out that the performance on crop classifi-
cation is already very high (see Section 4.1), hence requiring
a specific method only for improving the weed detection.

3.3 Training methods

The CNN that we have devised must be capable of per-
forming two tasks at the same time. On the one hand, it must
observe the RGB channels alone to identify the presence of
crops or weeds. This will output a list of detections that can
be used to compute a probability map for subsequent passages
by other MAVs. On the other hand, the CNN must prove ca-
pable of using—when available—the prior information to im-
prove the classification and reduce errors. Possibly, the NN
must also identify and remove conflicts between the newly
available RGB image and the prior information encoded in
the probability map. This turns out to be an important choice
to achieve better results, since the network has to learn to bal-
ance the information coming from other agents and the fresh
image. Therefore the network will not only rely on informa-
tion coming from the auxiliary channels but it will be able to
make a valuable initial classification and to correct possible
misclassifications. A correct training of the network is there-
fore key to obtain both these abilities within a single CNN.

First and foremost, we have devised three different train-
ing strategies in terms of the frequency with which the prob-
ability map is presented. We used 25%, 50% and 75% of
the training cases, hence pushing more or less towards the
usage of the information encoded into the probability map.
Additionally, to compute the probability map, instead of us-
ing the available ground truth we decided to use realistic la-
belling as produced from a CNN classification. To this end,
we trained a FCN5 architecture with the only RGB channels
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Table 2: Crop/weed classification performance with FCN5
and FCN9, with only the RGB input channels.

Dataset A

FCN5 FCN9

Crop Weed Crop Weed

Precision 0.96 0.98 0.96 0.98

Recall 0.87 0.65 0.91 0.73

F1 0.91 0.78 0.93 0.83

Dataset B

FCN5 FCN9

Crop Weed Crop Weed

Precision 0.99 0.98 0.99 0.98

Recall 0.94 0.64 0.96 0.73

F1 0.96 0.78 0.97 0.83

on the available dataset, and we used the detections obtained
by the FCN5 to generate the probability map, without filtering
out bounding boxes with low confidence. As a consequences
the neural network will learn to deal with errors in the auxil-
iary input as generated by a similar CNN architecture.

4 RESULTS

The trainings and testings are performed with a NVIDIA
Quadro P6000, a 24 GB GPU with 3840 CUDA cores. Each
training was performed with 50000 iterations, a learning rate
of 0.01, weight decay of 0.0001 and batch size 4. Testing of
the trained networks has been perfomed on the two testing
datasets, with and without position error. In order to evaluate
our approach, precision, recall and F1-score have been com-
puted. As in many detection tasks, a detection is considered a
true positive if the Intersection Over Union (IoU) between the
detected box and the ground truth is above a certain threshold
(here: 0.5). Otherwise, it is considered a false positive.

4.1 Crop/weed classification with simple RGB images
First of all, we discuss the classification performance on

the synthetic dataset when no a priori information is provided,
hence no additional input channel is used besides the RGB
channels of the input image. The FCN5 and FCN9 networks
have been trained and tested on both datasets A and B. In this
case, each testing set is composed of 400 images. The per-
formance for the precision, recall and F1 metrics is shown in
Table 2. Note that, not using any a priori knowledge, every
image is processed independently and the differences observ-
able between dataset A and dataset B are only due to the 40
different synthetic fields generated for each.

Specifically, the crop class achieves high scores even with

the shallower FCN5 network, and dataset B appears easier to
classify, possibly due to the relative positioning of crop and
weeds, or border effects (e.g., a crop line partially included
into an image because appearing on the border). The per-
formance on the weed class is instead lower, especially for
the recall, meaning that several weed plants go undetected.
The FCN9 achieves better results here, meaning that there is
room for improvement over the FCN5 results by including
prior information with additional channels. Considering that
the testing datasets are organised in blocks representing the
same field but varying the illumination conditions, it is in-
teresting to analyse how performance varies across different
blocks, so as to determine how much the illumination matters
on the final results. Figure 2 shows that there is indeed some
non-negligible variability in performance among the differ-
ent blocks, hence further motivating the use of prior informa-
tion for more stable and reliable classification. Given that the
performance on the crop class is already very high with the
FCN5, we decided to use only one auxiliary channel repre-
senting a probability map for the weed class obtained from
previous classifications.

4.2 Crop/weed classification with probability maps
To evaluate the performance achievable over multiple pas-

sages on the same field, we perform 10 classifications in a se-
quence using the output of the current stage to compute the
probability map of the following stage (see Figure 3). As it
is possible to note, while the first passage has an empty prob-
ability map, successive passages can exploit the prior knowl-
edge to improve the classification of weeds. As a matter of
fact, it can be noted that in the successive passages, more
plants are correctly detected.

A proper performance evaluation is carried out on dataset
A, where no position error is included (corresponding to the
same condition experienced during training). Considering
that each of the 10 blocks in dataset A have independent illu-
mination conditions, we compute 100 different sequences by
random permutation of the 10 blocks, and use them to have

Figure 2: F1 performance of FCN5 and FCN9 across different
blocks of images, which differ only in the scene illumination.
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Figure 3: Classification over multiple passages. Each row correspond to a single passage over the same portion of the field, but
with different illumination conditions (first column). The RGB image is coupled with a probability map derived from previous
passages, when available (second column). The combined input provides an improved object detection across passages (third
column). In the second passage, a weed is discovered in the center-right part of the image, but one in the bottom right is lost.
In the third passage, the latter weed is detected again, and an additional weed is discovered among the first crop row on the left.

an average performance that is independent as much as pos-
sible from the specific sequence observed. The results for
precision, recall and F1 on the weed class are presented in
Figure 4. It can be noted that the overall classification accu-
racy increases when exploiting the probability maps coming
from previous passages. More specifically, the recall is the
measure most affected by the auxiliary input, while the pre-
cision can undergo a slight degrade, which is observed espe-
cially for networks trained with 75% probability of having a
probability map in input. The training strategy is indeed very
important to obtain a substancial improvement in the classi-
fication through multiple observations. When only 25% or
50% of the training examples are provided with a probability
map, the improvement in the weed classification is only mild.
Instead, with a 75% probability, the neural network learns to
properly exploit the additional input when available, reach-

ing comparable levels of performance as the more complex
FCN9 network. The proposed approach is intrinsically robust
against position errors, as shown by the testing performed on
dataset B (see Figure 5). Even though position errors where
never presented during the training phase, it is possible to
note that a performance improvement is still visible through
successive observations of the same region of the field. This
improvement is not as considerable as for Dataset A but it is
still possible with FCN5 and the auxiliary probability map to
approach the performances of FCN9.

5 CONCLUSIONS

We have proposed an approach to exploit knowledge
available on portions of the field coming from previous ob-
servations to iteratively improve the performance of classifi-
cation by a shallow neural network, to be executed onboard
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lightweight MAVs with limited payload and constraints in
the computational power. We obtained a substancial im-
provement in performance, that makes a shallow architecture
achieve similar performance of a double-size network.

These results validate the concept proposed here for the
first time, and open the way for a thorough analysis of the de-
sign space to identify possible improvements that can further
boost performance. Future work will be dedicated to this as
well as to test the methodology on real-world images. To this
end, a dataset with multiple passages on the same area has
already been collected, and studies are on the way to provide
new grounds for the analysis of the proposed framework.
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performance achieved with different training strategies (i.e.,
25%, 50%, and 75% probability of having a probability map
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Figure 5: Precision, recall and F1-score on dataset B, where
also a positioning error is included.
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