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ABSTRACT

Recently, the concept of Incremental Nonlinear
Dynamic Inversion (INDI) has seen an increas-
ing adoption as an attitude control method for a
variety of aircraft configurations. The reasons
for this are good stability and robustness prop-
erties, moderate computation requirements and
low requirements on modeling fidelity. While
previous work [1] investigated the robust stability
properties of INDI, the actual closed-loop perfor-
mance may degrade severely in the face of model
uncertainty. We address this issue by first analyz-
ing the effects of modelling errors on the closed-
loop performance by observing the movement of
the system poles. Based on this, we analyze the
neccessary modeling fidelity and propose simple
modeling methods for the usual actuators found
on small-scale electric aircraft. Finally, we ana-
lyze the actuator models using (flight) test data
where possible.

1 INTRODUCTION

Incremental Nonlinear Dynamic Inversion (INDI) has been
applied to a variety of aicraft including quadrotors, hybrid
aircraft (tailsitter, tiltwing) and conventional airplanes [2, 3, 4,
5]. The method was first introduced by NASA [6] and then
further developed at TU Delft [2, 3]. At the core of INDI a
simple control law given by

δu = M−1
u · J · (ν − Ω̇) (1)

is used, where ν is the commanded angular acceleration, J is
the aircrafts inertia and Mu describes the actuator effectivity.
This paper concentrates on the last term Mu and the associated
neccessary dynamic actuator models. We summarize modeling
approaches which have been successfully applied in practice
for quadrotors [3], tiltwing [7] or tailsitter [4, 8] aircraft. Since
the problem of oscillations frequently arises when applying
INDI, we try to gain some insight into this issue by observing
the closed-loop system poles. A similar analysis was already
done in previous work [1], but concentrates on the stability
properties of the closed loop.
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2 EFFECTS OF MODELING UNCERTAINTY

The goal of Nonlinear Dynamic Inversion (NDI) is to
invert the plant dynamics, so that the resulting closed-loop
dynamics are a series of integrators. In principle, the INDI
formulation in [3] shares this goal. However, due to the way in
which state-derivatives (i. e. angular accelerations) are calcu-
lated, the resulting closed-loop dynamics from the commanded
anguluar accelerations ν to the actual angular accelerations
Ω̇ are the actuator dynamics A(z) in the nominal case. Thus,
the design of outer controllers (e.g. angular rate and attitude
controllers) is influenced by these actuator dyanmics A(z).
One major motivation in using NDI (or INDI), is to simplify
the design of outer loop controllers. We thus want to develop
an understanding of how well the actuator dynamics and effec-
tivity needs to be known, to still achieve an appropriate outer
loop performance.

To analyze this, we assume an INDI-based angular rate
controller, as shown in figure 1. For simplicity, we only ana-
lyze the single-input single-output case, but expect the results
to be transferable in principle to the multiple-input multiple-
output case aswell. The parameters of the system consist of the
plant parameters – namely the control effectivity Mη , actuator
time constant T and actuator delay τ – and the corresponding
controller parameters M̂u, T̂ , τ̂ . The actuator dynamics are
modelled as first-order lags with an optional delay:

A(s) =
1

1 + Ts
e−τs (2)

In the nominal case M̂u = Mu, T̂ = T and τ̂ = τ . To develop
an understanding of how uncertainty in the parameters affects
the closed loop system, we analyze movement of the system
poles when parameters are changed.
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Figure 1: Controller structure

2.1 Poles of the INDI controller
In the nominal case, the closed loop transfer function from

the commanded angular accelerations ν to the actual angular

1
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accelerations Ω̇ is equal to the actuator dynamics A. In the
non-nominal case additional dynamics appear, because the
system poles and zeros don’t cancel each other. Since the
analytical expression for the closed-loop transfer function in
the non-nominal case is somewhat convoluted, we graphically
analyze the behaviour of the poles instead. While INDI is
an inherently discrete-time control algorithm, we choose to
display the poles (and zeros) in the continous-time domain
because we are more familiar with this setting.

Figure 2 shows the movement of the poles of the INDI
loop, when the control effectivity Mu is incorrect. In the
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Figure 2: Effect of uncertainty in control effectivity on signifi-
cant poles of INDI loop, 0.2 < M̂u/Mu < 4

nominal case (left), the poles of the filter H are completely
cancelled and thus don’t influence the closed-loop dynamics.
Only the poles of the actuator dynamicsA remain. We selected
the filter parameters of H as follows:

H(s) =
ω2
0

s2 + 2ζω0s+ ω2
0

ω0 = 50 rad s−1

ζ = 0.55

(3)

For M̂u 6= Mu the cancellation of the filter poles does not
occur. For M̂u < Mu, the poles of the filter H become
less damped and start to show as oscillations in the time-
domain. The frequency of this oscillation roughly equals the
natural frequency ω0 of the filter H . For M̂u > Mu the
system dynamics basically slows down, because the poles of
the assumed actuator dynamics Â move to the right. For the
chosen filter parameters (see (3)), the closed-loop becomes
unstable for M̂u

Mu
< 0.2, though clearly visible oscillations

start to appear at around M̂u

Mu
< 0.5. Note, that these margins

change when chosing different filter parameters H . In general,
a larger damping ratio ζ and a larger natural frequency ω0

lead to more robustness w.r.t. uncertainty in Mu. At the

same time, these filter parameters influence the amount of
noise introduced when calculating Ω̇ as well as the disturbance
rejection performance [3]. Thus, the filter parameters will be
a trade-off between robustness w.r.t. to Mu, performance of
disturbance rejection and noise.

Figure 3 shows a similar analysis as before, this time
changing the assumed actuator dynamics T̂ . Here, for T̂ <
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Figure 3: Effect of uncertainty in actuator dynamics on signif-
icant poles of INDI loop, T = 0.07, 0.01 < T̂ < 0.14

T the poles associated with the actuator dynamics become
underdamped and move towards lower damping while the
frequency stays roughly the same. Again, the more benign
direction is an overastimation of the actuator time constant
T̂ , since in this case the most significant pole merely moves
towards lower frequencies while still being fully damped.

Finally, figure 4 shows a similar analysis for the effect of
uncertainty in the time delay τ̂ . As was already discussed in
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Figure 4: Effect of uncertainty in actuator delay on significant
poles of INDI loop (sample time Ts = 0.001 sec), τ/Ts =
40, 0 < τ̂/Ts < 80
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the literature [1], a lack of assumed time delay τ̂ can lead to
oscillations in the closed-loop. In case of underestimating the
delay τ̂ , the significant poles first tend towards faster dynam-
ics, while still being fully damped. Once a critical error in
the estimated delay τ̂ is reached, the dynamics become under-
damped. The more benign case is again an overestimation of
the delay τ̂ , which leads to slower system dynamics. How-
ever, with an increasing overestimation of τ̂ , the poles of the
filter H become less damped and lead to visible oscillations
in the time-domain response. Unfortunately, an error in the
estimated delay leads to a behaviour, which is similar to the
behaviour in case of an error in either the control effectivity
Mu or the actuator time constant T . Determination of the
delay τ can however be quite easily accomplished by either
analyzing flight test data or performing dedicated testing of
the actuators.

In summary, this analysis gives some insight into the be-
haviour of INDI in case of uncertainty. In our experience, a
common problem when implementing INDI for a new aircraft
are oscillations. Based on the discussion above, observing
the frequency of the oscillations can give a hint as to what
the source of the oscillations is. Appropriate mitigations can
either be to adapt the assumed model (M̂u, T̂ , τ̂ ) accordingly
or the parameters (ω0, ζ) of the filter H . Additionally, overes-
timation of the control effectivity Mu and the actuator time
constant T generally leads to slower dynamics and thus might
serve as a good starting point for new controller designs. In
section 4 we show how the performance of an INDI controller
can easily be assesed and tuned in real-time, enabling rapid
controller development.

3 ACTUATOR MODELS

Small electric aircraft typically feature two kinds of actua-
tors: rudders and electric motors with propellers to produce
thrust. Depending on the configuration, the rudders might addi-
tionally be positioned in the slip-stream of the propellers. This
configuration is often used to create rudder effectivity even
when there is no aerodynamic velocity (e. g. flying-wings,
tiltwing aircraft).

To model the effectivity of these actuators, we propose a
two-step approach: First, we calculate the thrust, slip-stream
velocity and effectivity of the motors. Second, we calculate
the effectivity of the rudders, taking into acount slip-stream
velocities if neccessary.

In addition to these static acutator model properties, we
also model the dynamic behaviour of the actuators. This is of
course only strictly necessary, when the actuator positions are
not measured. Still, for designing the outer rate and attitude
controllers, an estimate of the actuator dynamics is beneficial.

For both, the static and dynamic properties we rely as much
as possible on properties which are either easily measurable
or specified by the manufacturers. In Section 4 we analyze
how well these actuator models actually perform and how this
compares to the requirements on modeling fidelity derived in

Section 2.

3.1 Static Actuator Effectivity Models
Within the scope of attitude control, the actuator effectivity

describes the change in moments due to changes in actuator
position (i. e. rudder deflection or throttle). For many applica-
tions it is sufficient to look at the force induced by an actuator
and use the corresponding lever to calculate the induced mo-
ment. We thus get expressions of the form

Mu =
∂M

∂u
= r× ∂F

∂u
(4)

where Mu describes the actuator effectivity of an actuator u
in the body-fixed coordinate frame given by the cross-product
of the actuator position r and the induced change in force F.
In the following section we will mostly focus on determining
the term ∂F/∂u.

3.1.1 Motors

The most common type of electric motor used in electric
aircraft is the synchronous AC motor. It needs to be driven by
a specialized electronic component called an Electronic Speed
Controller (ESC), see Figure 5. An ESC is controlled via a
throttle value δ, which can typically be normalized to ranges
from 0 to 1 (or −1 to 1, if the ESC supports driving the motor
in reverse). The ESC generates the appropriate voltages to
drive the motor, resulting in an angular velocity measured as
Revolutions Per Minute (RPM) n. Depending on the propeller
and inflow conditions, these angular velocities then result in a
thrust F . This description makes the simplifying assumption

ESC BLDC
Fδ

U
Prop.

ω

Va

Figure 5: Motor model

that the angular velocity is independent of the inflow. It thus
enables using a simpler model at the cost of modeling fidelity.

The motor model we propose consists of two parts: a
mapping from the throttle δ and the supply voltage U of the
ESC to the RPM n and a mapping from n combined with the
inflow Va to the thrust F .

ESC/BLDC model When the motor RPMs are not mea-
sured, we use the following model based on the supply voltage
U , the motor speed constant KV and the throttle setting δ

n = U ·KV · δ (5)

This model basically assumes that the motor is in a no-load
condition, which is a very crude approximation. The advan-
tage is however, that only the parameter KV needs to be
known, which is usually specified by the motor manufacturer.
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Propeller Model For small electric aircraft a database of
measured propeller performance exists [9]. Also some man-
ufacturers provide additional performance preditictions [10]
based on analytical methods. To model the propeller thrust we
first calculate the static thrust produced at zero inflow speed
and then correct this value using an estimate of the current
inflow speed. We model the static thrust as

T1 = K1n
2 (6)

The value of K1 can either be derived using one of the previ-
ously mentioned propeller databases, from simple test setups
or from previously acquired flight data.

To correct for the inflow velocity, we add a correction term,
resulting in

T = K1n
2 +K2V n (7)

where V represents the axial inflow speed. The actuator effec-
tivity according to (4) thus becomes

Tn =
∂T

∂n
= 2K1n+K2V (8)

This choice of correction term is informed by the propeller
data displayed in Figure 6. Figure 6 shows the thrust produced
by a propeller1 at different axial velocities and at different
RPMs. For the relevant inflow speeds (< 20 m s−1) and the
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Figure 6: Thrust over axial velocity

region of relevant RPMs an affine function approximates the
data well. Given these data,K1 andK2 can be found by fitting
the propeller model (7) to the data. If propeller data are not
available K2 can be calculated using analytical approaches
like blade element momentum theory [11].

As a first approximation, K2 can also be interpolated
from available propeller performance data. The performance

1APC 10x3.8 Slow Fly

database published in [10] was calculated using blade element
momentum theory. While here the parameter K1 is consis-
tently overestimated, the parameter K2 matches the measured
data published in [9] well. The data suggest that K2 can be
approximated as a function of the propeller diameter D and
the propeller pitch S:

K2 = p11D
2 + p10D + p20S + p0 (9)

Fitting this function over the available data results in the fol-
lowing model parameters (all units in inch, if applicable):

Database p11 p10 p20 p0

UIUC [9] -1.79e-06 1.70e-05 2.30e-06 -6.75e-05
APC [10] -1.75e-06 1.70e-05 8.51e-06 -9.28e-05

Since the UIUC database [9] features a wide range of dif-
ferent propeller types and manufacturers, we expect that the
corresponding model will extrapolate well to new propellers.

3.1.2 Rudders

We approximate rudders as thin plates, where the rudder effec-
tivity is given by

Fδ =
∂F

∂δ
= 2π · ρ

2
V 2S · Λ

Λ + 2
(10)

with the air density ρ, inflow speed V , rudder aera S and
aspect ratio Λ. If a rudder is partly in the slip stream of a
propeller, the rudder is split accordingly into separate parts.
In this case, the aspect ratio Λ still represents the aspect ratio
of the whole rudder. The inflow speed V is either the free
stream speed or the slip stream speed. In the latter case, we
apply momentum theory and assume that the slip stream is
fully developed. [5] shows a more detailed example of this
approach. Using the propeller model (7) to calculate the thrust
T produced by the corresponding propeller, this gives the slip
stream velocity as

V =

√
T

S

2

ρ
+ V 2

A (11)

where VA is the inflow speed of the propeller, usually the
measured airspeed.

3.2 Dynamic Actuator Models
For dynamic actuator models we use first-order lags with

time-delay and optional rate-limit, which is a common ap-
proach found in the literature [3, 4]. Figure 7 shows the cor-
responding block diagram. The actuator time constant T and
the rate limit (denoted as θ̇max) can either be measured or ap-
proximated using the manufacturers specifications. Typically,
we only model servo motors with a rate limit.
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Figure 7: Actuator Model

4 ANALYSIS

In this section we analyze the accuracy of the previously
described models. Where possible, we validate the models
using measured data from flight tests or other test setups. We
already presented the rudder model presented here in previous
work [5]. Determining the fidelity of the model would require
dedicated wind-tunnel testing which was beyond the scope of
this work. We thus don’t discuss the rudder effectivity model
further in the following analysis.

4.1 Motor model
The motor model consists of two parts: the ESC/BLDC

model and the propeller model. To validate the ESC/BLDC
model, we analyzed flight test data of a tiltwing aircraft, where
the RPM were measured. Figure 8 shows a comparison of the
predicted RPM and the measured RPM. As mentioned pre-
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Figure 8: BLDC/ESC model

viously, the ESC/BLDC model assumes a no-load condition,
which naturally does not reflect the actual flight conditions.
Thus, using the KV value specified by the manuafacturer will
always result in an overestimation of the RPM. The relative
error between the expected RPM n̂ and the measured RPM n
is about 20 %. We found similar accuracies when analyzing
wind-tunnel measurement data. The model can be signifi-
cantly improved by adjusting (i. e. lowering) the KV value
to account for the additional load-conditions. However, im-
plementing such an adjustment requires measuring the actual
RPM, in which case the ESC/BLDC model is not needed
anyways. Thus, we recommend using the manufacturers KV

value, if RPM measurements are not available. Note, that this
model fails to represent fast decelerations, because in this case
the propellers are in a windmilling state and are accelerated
by the inflow, which is not represented in the model.

The propeller model (8) consists of two constants K1 and
K2. We assume thatK1 can be accurately determined from the
static motor model (6). K2 however has to be either measured
in wind-tunnel tests or determined using analytical methods.
The approximation of K2 as a function of the propeller di-
ameter and propeller pitch given in (9) can be used as a first
approximation if no other data are available. It is however not
clear if over- or underestimation occurs. In our experience,
K2 only becomes significant at high airspeeds, at which point
the rudder effectivity usually is high enough for the rudders to
act as the primary control surface.

In summary, we expect the motor model to be sufficiently
accurate with a tendency to overestimate the propeller effec-
tivity. Thus, reffering to Figure 2, this should result in fully
damped system dynamics.

4.2 Dynamic actuator model

The rate-limited first-order lag model used to model servo
motors has three parameters: the rate limit θ̇max, the time
constant T and the delay τ . Typically, servo manufacturers
only specify a “servo speed” given as the time needed to travel
a certain angular distance. Unfortunately it is not clear how
exactly this speed specification relates to the servo parameters
given above. Directly using the servo speed as the rate limit
does certainly not result in an accurate model. To find the
model parameters, dedicated tests have to be conducted, for
example by probing the internal potentiometer output of the
servo motor as suggested in [4]. As an alternative, we built a
servo testbench, which also permits us to study the frequency-
dependent behaviour of a servo motor. Figure 9 shows the
commanded angle and the measured servo angle over time. As
is clearly visible, the servo motor cannot reach the commanded
amplitude at this frequency. The rate-limit thus leads to an
attenuation of the input signal. There is also a phase delay
between the commanded and the actual signal. The attenuation
and the phase delay give rise to a Bode plot, where we define
the phase shift as the value which provides the best-fit between
input and output signal.
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Figure 9: Servo dynamics at high frequencies
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Figure 10 shows an example Bode plot obtained by run-
ning the test displayed in Figure 9 for many different frequen-
cies. It is clear, that a low-order linear servo model cannot
capture the magnitude and phase behaviour of the nonlinear
servo model. The sharp edge in the magnitude plot is related
to the nonlinear effects of the rate limit. The time constant T
of the servo actually has little impact on the overall modeling
accuracy. How and if this actuator model should influence the
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Figure 10: Bode plot of servo dynamics

design of outer loop controllers still needs to be investigated.
As a comparison, Figure 10 also shows an approximation of
the nonlinear servo model using a first-order lag, where the
time constant is chosen such that it matches the edge frequency
of the nonlinear servo model. In terms of designing outer loop
controllers, such an approximation might serve as a useful
abstraction of the nonlinear dynamic model to still allow the
application of linear control methods.

In summary, the actuator models presented here are able
to capture the dynamic behaviour of the real actuators well.
In case of electric motors, simple linear models seem to suf-
ficiently capture the relevant dynamics. In the case of servo
motors, the model parameters are hard to derive based on
the typical manufacturer specifications. To apply the analysis
summarized in Figure 3 suitable alternative (linear) actuator
models need to be derived.

5 CONCLUSION

This paper presented our approach to modeling actuators
for use in the framework of INDI. First, by studying the effects
of modeling uncertainty on the poles of the closed-loop system,
the robustness properties of INDI controllers were analyzed.
We confirmed the known stability properties of INDI, but
found that the uncertainty bounds of acceptable closed-loop
performance are (of course) much tighter. With that in mind,
we then considered the typical actuator elements found in
small electric aircraft, namely electric motors with propellers
and rudders actuated by servo motors. We derived suitable

models for these elements, trying to rely as much as possible
and easily obtainable information.

In the following analysis we assessed the resulting model
fidelity using real flight data or measurements where possi-
ble. Special consideration was given to typical servo models,
which feature a nonlinear rate-limit element. We discussed
some effects of this nonlinearity, though further works needs
to investigate how and if these nonlinearities should be consid-
ered in the design of outer loop controllers.
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