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ABSTRACT

Intelligent vehicles are equipped with multiple
on-board sensors for environment perception.
Moreover, with the increasing number of these
vehicles on the roads, the more cooperation and
coordination among them is becoming more cru-
cial. Accordingly, this paper presents multiple
heterogeneous vehicles cooperation approaches,
to be used in smart roads to improve driving
safety. The heterogeneity aspect is based on the
use of Unmanned Aerial Vehicle (UAV) to scout
the surrounding of the Unmanned Ground Vehi-
cle (UGV), thus increasing the perception effi-
ciency. Two approaches were proposed for this
cooperation, vehicle and pedestrian detection.
The algorithms are implemented in the on-board
computers. In order to evaluate the proposed ap-
proaches, different scenarios were selected and
multiple experiments were carried out. The ob-
tained results show the high performance of the
algorithm in almost real-time detection and clas-
sification, moreover the ability to communicate
the outcomes to the UGV, thus improving the au-
tomated navigation process for out of the line of
sight pedestrians.

1 INTRODUCTION

The advances in Intelligent Transportation Systems (ITS)
are exponentially improving over the last century. The objec-
tive is to provide intelligent and innovative services for the
different modes of transportation, towards better, safer, co-
ordinated and smarter transport networks. The ITS focus is
divided into two main categories; improve existing compo-
nents of the transport networks, and develop intelligent ve-
hicles which facilitate the transportation process [1]. In re-
cent years, interest in self-driving vehicles has significantly
increased. Accordingly, the necessity of cooperation with all
road entities becomes more crucial. The ITS consists of three
main entities: vehicles, infrastructure and pedestrians [2].

Accordingly, an intelligent vehicle on the road must co-
operate with all road entities, to ensure road safety, especially
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the safety of pedestrians and other Vulnerable Road Users
(VRU). Therefore, the VRU recognition and avoidance in in-
telligent vehicles are essential tasks. However, due to sensor
limitations and several blind spots surrounding the vehicles,
researchers are studying different possibilities improving the
perception to detect out of the line of sight obstacles.

This paper presents a heterogeneous cooperative ap-
proach to tackling the problem of obstacle detection and
avoidance with intelligent vehicles. In particular, an Un-
manned Aerial Vehicle (UAV) is used to help an autonomous
vehicle detect pedestrians located in blind or low visibility
areas for the car. To do this, it embarks on the UAV, a monoc-
ular camera and a computer, which can process visual infor-
mation and determine both the position of the vehicle and that
of pedestrians. The information generated by the vision algo-
rithms is shared with the vehicle to be incorporated into its
perception of the environment through intervehicular com-
munication. In this way, a method is presented that allows
providing the terrestrial system with safer navigation.

The remainder of this paper is organized as follows; Sec-
tion 2 presents the background overview of previous carried-
out work in this field. Afterwards, Section 3 introduces the
proposed algorithms for detecting and tracking pedestrians
and vehicles. In Section 4, the experimental work is illus-
trated with the selected platforms and scenarios, followed by
the discussion of the obtained results in Section 5. Finally, in
Section 6 conclusion and future work are summarized.
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Figure 1: Proposed Approach
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2 BACKGROUND OVERVIEW

Pedestrian detection using computer vision is considered
as a challenging problem in traffic environments, and most
of the solutions presented in this field are based on a com-
mon approach, which uses a Histogram of Oriented Gradi-
ents (HOG) descriptor, and a Support Vector Machine (SVM)
classifier [3]. In [4], a monocular camera is used to de-
tect pedestrians from a UAV by applying a HOG descriptor.
Thereafter, based on three image sequences, the distance to
the pedestrian is estimated. Other works, such as [5], prefer a
Haar-Like based algorithm for pedestrian detection, followed
by a template-based tracking.

Furthermore, a detecting and tracking feature-based
method, from UAVs was presented in [6]. First, the features
are extracted using Harris detector, then the pyramidal Lucas-
Kanade (LK) optical flow model and Least Median Square
Estimator (LMedS) are used; to classify the movement of
the detected features. Then, a Kalman filter and a template
matching algorithm are used to track the targets.

Lately, with the advances in deep learning, new meth-
ods for object detection and classification are used. For in-
stance, in [7], a deep Convolutional Neural Network (CNN)
is trained to classify moving vehicles, showing promising re-
sults. In addition, the heterogeneous cooperation between
ground and aerial vehicles has been explored in applications
such as search and rescue. Recently, a heterogeneous robot
collaboration of UGV-UAV has been presented in [8]; in or-
der to collect observations in cluttered urban environments.
In this approach, the robot team is able to map the environ-
ment while following predefined waypoints. First, the UGV
builds the 3D map of the environment using a LIDAR, then,
the UAV performs the data gathering. Moreover, the UAV
estimates its location by detecting and tracking the UGV.

Furthermore, authors in [9] introduced a method for
pedestrians detection and localization based on perception
for cooperation between a team of UAV and UGV. The ge-
ographic information systems localization system considered
that the UGV as a moving landmark for a perspective trans-
formation; to convert the image locations of the targets.

3 PROPOSED APPROACH

In this section, the proposed approach is divided into two
algorithms: vehicle and pedestrian detection, as it is shown in
Figure 1. These algorithms are explained below.

3.1 Vehicle Detection
The main objective at this point is to be able to detect,

by computer vision and in real time, a characteristic pattern
located on the roof of an autonomous vehicle, and knowing
its position with respect to the UAV while it flies over an area,
in which is located the Vehicle and a set of pedestrians.

The procedure of detecting and estimating the position of
the autonomous UGV consists of analyzing each frame cap-
tured by the camera equipped in the UAV. Once the pattern
is located, the algorithm estimates the position of the UGV

with respect to the UAV. Once the position of the UGV and
the pedestrians with respect to the UAV is estimated, the rel-
ative position of pedestrians to the UGV is estimated.

In this work, the UGV is equipped with a pattern, placed
on the roof, as it is shown in Figure 2. The detection of this
pattern will make it possible to know the position of the vehi-
cle with respect to the UAV, and to be able to know the relative
position of the vehicle with respect to the pedestrians located
in the vehicle environment.

In the case of the circumference, it is defined by Equa-
tion 1 and is described by three parameters: coordinates x and
y to the center of the circumference (a, b) and the radius (r).

(x− a)2 + (y − b)2 = r2 (1)

In this algorithm, Hough is used to detect the circumfer-
ence of the pattern. Since the flight altitude of the UAV is
variable, it can be found in different sizes depending on the
height, at which it is found, so no search size will be set for
the radius. The only parameter established will be the dis-
tance between centres of the different circumferences to be
found within the image, so that in each image only one cir-
cle is detected, given that in the proposed scenarios there will
only be one UGV.

As it is shown in Figure 2, the pattern is formed by a circle
of 790mm diameter, and X-shape inside.

Figure 2: Landing Pattern

The procedure used to try to detect and know the position
of the autonomous vehicle consists of analyzing each frame
captured by the camera and, through computer vision algo-
rithms, detecting the described pattern on the roof of the ve-
hicle. Once located, it will be possible to know the position
of the land vehicle with respect to the UAV.

Once the position of the autonomous vehicle with respect
to the UAV and the position of pedestrians with respect to
the air vehicle is known, the relative position of persons with
respect to the autonomous vehicle may also be known.

The algorithm is based on the localization of circles
within the image and, in the subsequent analysis of the re-
gions of interest (ROIs) generated from the circles detected
in the frame. The algorithm will be taking frame to frame
by trying to carry out positive locations of the model in each
of the captured images, and performing a tracking process in
case there is no detection in the consecutive frame to a posi-
tive detection. The steps within this algorithm for the detec-
tion process are detailed below:

Circle detection: it is carried out using the transformation
of Hough.

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 223

http://www.imavs.org/pdf/imav.2019.28



IMAV2019-28 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Creating a region of interest: to create a new image from
the original frame, extracting the section of the frame in
which the circle has been detected, provided that the pattern
is completely inside the image. Next, a filtering by size is car-
ried out to ensure the successful completion of the remaining
steps of the algorithms. The location of the small-sized pat-
tern would negatively affect all other tasks.

Resetting pattern size: an image of the model to be
searched is created that matches the size of the circle being
analyzed at this time.

Match between model and detection: Once the pattern is
reset, a correlation is established between the model and the
ROI created around the detected circle. If the correlation
value is above a threshold, which has been set experimen-
tally, it is considered that the detected circle corresponds with
the pattern placed on the vehicle, so that it is proceeded to
accept that detection (Figure 3) and to calculate the position
with respect to the UAV.

If the correlation value is below the set value, the algo-
rithm starts the tracking process as long as the pattern has
been detected in the previous frame.

Before moving to a new detection or to carry out the track-
ing process it is verified that the detection is not incorrect by
finding the model rotated with respect to the original, thus re-
peating this step by making turns of 30o in the reset pattern.
This process is repeated as much 2 times before leaving this
step, because when you reach the third iteration the pattern
will have rotated 90o and therefore reach its original position.

Figure 3: Detection of the Landing-Pad

Position calculation: Finally, the calculation of the posi-
tion is performed. For this, as it is collected in the following
equations, it is necessary to know the size of the pattern, both
real and in the image, as well as the focal length of the cam-
era. In addition, the value of the x and Y coordinates of the
image, as well as the value of the x and Y coordinates of the
center of the detected circle, must be used, all in pixels

z[m] =
RealPatternSize ∗ FocalLength

ImagePatternSize ∗ 1000 (2)

x[m] =
|CenterImgX − CenterDetecX| ∗ z

Focal LengthX ∗ 1000 (3)

y[m] =
|CenterImgY − CenterDetecY | ∗ z

Focal LengthY ∗ 1000 (4)

As indicated above, in the case that there is no detection
after a correct location, a tracking process of the pattern is
started using the position of the pattern in the previous im-
age. The tracking is carried out using the OpenCV library
and follows the steps as follow:

Tracker initialization: to carry out the creation and initial-
ization of the tracker. To do this, it is necessary to pass to
the function an image and an area or region of the element to
be followed during the tracking process, so this operation is
performed by passing to the function the previous frame and
the region of interest in which the pattern has been correctly
detected. Each time the detection algorithm concludes with a
positive result, the MedianFlow tracker is initialized.
Tracker update: to update the tracker; in order to carry out
the detection of the model in the current frame, in which the
detection has not achieved a satisfactory result. In this way,
the tracking updates the location of the pattern from the last
known position of the pattern in the new captured image.
Checking the tracking: It establishes a new region of in-
terest obtained from the frame being analyzed and the posi-
tion of the pattern obtained by the tracker. The pattern is read-
justed to the size of the region of interest and again a match-
ing process is performed where the correlation between the
ROI obtained from the tracking process and the model being
sought is checked. If the correlation is above the established
threshold, the tracking is correct and the position of the last
detected pattern is updated, whereas if the correlation result
is below the threshold, the tracker is considered to have failed
and the pattern is lost, so that the algorithm will loop back the
detection process until a good location (Figure 4) is obtained.

From the results obtained from the tracking algorithm, it
has been decided to set a threshold value in the tracking al-
gorithm lower than the threshold value in the detection algo-
rithm. Which resulting the increament the number of frames
in which the location of the vehicle is known.

Figure 4: Tracking of the Landing-Pad

Position calculation: If the tracking is correct, the position
is calculated using the Equations 2, 3, and 4 previously set.

3.2 Pedestrian Detection
The main objective at this point is the detection of pedes-

trian, by HOG in real time, and to locate their positions with
respect to the UAV.
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HOG descriptor uses a global feature to represent an ob-
ject rather than a collection of local features. An entire ob-
ject is represented by a single feature vector, as opposed to
many individual vectors representing smaller parts of the ob-
ject. Typically, HOG descriptor converts an RGB image of
size (width× height× 3) to a single feature vector n.

Pedestrian detection is done by a camera housed on a
UAV. The procedure is to process each frame from the camera
stream to detect pedestrians within the image. Detection steps
within this algorithm for the detection process are as follows:

1. Training HOG descriptor: the descriptor training is
performed using linear SVM. The training set is a bal-
anced one; number of positive set equal number of
negative set. The positive set consists of two hundred
40x40 pixels images of the object of interest (Figure
5a and 5b). The negative set consists of two hundred
40x40 images from the background of the object of in-
terest (Figure 5c and 5d).

(a) (b) (c) (d)

Figure 5: Positive and Negative Training Set

2. Setup HOG descriptor: as stated earlier in subsection
(3.2), the HOG descriptor detection depends on sev-
eral parameters that were tuned through trial and error.
WinStid size is set to 8x8 pixel step between each slid-
ing window location. Padding of size 8x8 was used in
the detection. The scale parameter was set to 1.01, this
value provided a sufficient factor by which the image
is resized at each layer and number of levels in the im-
age pyramid. The hit-threshold proved to be the most
important parameter in HOG detection. In the results
section, the performance of HOG detection under three
different hit-threshold values will be discussed.

3. Detections Filtering: the detection suffered from noise
at the edges of the frame to be processed. A small
number of false positives appeared at the edges of the
processed frame. These false detection are filtered and
omitted from the detection. Furthermore, the detection
was filtered against size. Detections with size greater
than 60x60 pixels are not counted.

4. Position Calculation: the positions of detected pedes-
trians is calculated using Equations 2, 3, and 4. When
the positions of both pedestrians and the vehicle are
calculated relative the UAV, the relative position be-
tween pedestrians and vehicle can be calculated.

3.3 Inter-Vehicular Communication
In this work, an approach for inter-vehicular communi-

cation for the broad off-road environment is proposed. The
approach objective is to maintain a continuous connection
among the vehicles in the system. Accordingly, a Virtual Pri-
vate Network (VPN) is created, which requires secure con-
nection via the use of authentication keys and certificates.
The platforms connect to the VPN via any suitable internet
connection using the proper authentication credentials. In ref-
erence to platform ROS software architecture, the approach
utilizes the multi-master presented in [10]. This enables the
platform to have a separate ROS core, thus it is self-dependent
and does not operate in a centralized paradigm. The proposed
scheme allows the platform to access two networks. One for
the vehicular communication schemes, and another for any
other types of communication.

Accordingly, for the cooperation among the UAV and the
intelligent vehicle, the proposed communication approach as-
sures continuous connection among the vehicles, which was
verified in the previous work for cooperative driving in [11].

4 EXPERIMENTAL WORK

The approach presented in previous sections has been val-
idated by performing real tests with UAV and UGV plat-
forms. The following subsections will describe the research
platforms used, the scenario designed for the experiments.

4.1 Platforms
On the one hand, the experiments have been carried out

on a ground autonomous vehicle under the iCab project (In-
telligent Campus Automobile). This vehicle consists of an
electric golf cart, which has been modified mechanically and
electronically to satisfy the goal of autonomous navigation
from one point to another within campus vicinity, as shown
in Figure 6a.

(a) (b)

Figure 6: Research Platforms

On the other hand, the UAV platform used in the experi-
ments consists of a 3D printed quadcopter as shown in Figure
6b, with a total weight of 1.5Kg. The autopilot used with
this quadcopter is the Pixhawk, equipped with GPS, mag-
netometer, IMU and barometer sensors. For the perception
purposes, SJCAM SJ4000 camera is used and mounted on
Walkera G-2D gimbal, which provides 640×480 RGB im-
ages at 30 frames per second. All the processing is performed
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on-board by an ODROID-XU4 embedded computer. Finally,
both platforms are running Ubuntu 16.04 operating system,
and the software architecture has been integrated into ROS
middleware. Moreover, in order to avoid a centralized ap-
proach and guarantee their operations in an independent way,
each vehicle has its own ROS master.

4.2 Scenario
The tests have been performed in outdoor environments,

emulating a zebra crossing area, with an autonomous vehi-
cle approaching and several pedestrians crossing. A UAV is
hovering while the pedestrian is crossing, detecting both the
vehicle and the pedestrians in the area. The relative distance
from the vehicle to each pedestrian is computed in the UAV
and shared with the UGV to perform safer navigation tasks.

5 RESULTS

In this section, the results from both vehicle and pedes-
trian detection are discussed.

5.1 Vehicle Detection Results
Table 1 collects the results obtained in terms of detections

of the vehicle are concerned (Figures 7a and 7b). Each of the
tables corresponds to each of the two sequences used for the
test of the algorithm.

In the first sequence, the lighting conditions are adverse
for the perception systems, as the UAV is flying over areas
with shadows and light changes. In the second sequence, the
tests are performed in a shaded area, where the level of illu-
mination is low, but without light changes.

Both sequences have been tested with three different cor-
relation threshold values, where the vehicle appears is con-
stant and what varies is the number of detections of the vehi-
cle and the false positives.

(a) (b)

(c) (d)

Figure 7: Vehicle and Pedestrain Detection results

In the case of false positives, a precise knowledge of the
altitude at which the UAV is flying, would allow applying a

filter of size of the circle of the pattern. Knowing the height
at which you are flying, and since you know the size of the
actual model, you can know the size with which the pattern
should be detected in the image, which would allow to carry
out a filtering by the size of the detected circles, thus decreas-
ing the likelihood of false positives appearing.

It is shown that slightly decreasing the threshold signifi-
cantly increases the percentage of correct detection, but also
increases the number of false positives, that is, there are times
when it is detected as good something it is not the vehicle. In
addition, it can be seen how the algorithm improves as the
light conditions become more suitable for the vision system.

As for the value of the threshold, if you want to avoid false
positives, and whenever a detection is known to the 100% that
is being detected the vehicle, it will be necessary to establish
a threshold of at least 0.94. This may interest you if you want
to carry out control actions on the UAV’s flight depending
on the detection, either to follow the vehicle or to carry out
landing maneuvers on it. If instead, what you want is to get a
greater number of detections even if you lose reliability, you
can reduce the threshold value below the 0.94 set above.

Although sequence 2 was performed under better lighting
conditions, the percentage of detections decreased. This is
because the number of frames in which the vehicle appears is
very low, which causes any detection failure to be penalized
more than in the case of sequence 1. Even so, it can be seen
that the number of times the pattern is located is over 90%.

5.2 Pedestrian Detection Results
Table 1shows the results obtained in pedestrian detection

(Figures 7c and 7d). Both sequences have been tested with 3
different hit-threshold values. In each sequence the number
of frames in which the pedestrian pass zebra crossing area
is constant. The table illustrates the variation of the detection
rate and number of false positives, depending on the threshold
with which the detection works. Detection rate is the ratio of
pedestrian detected correctly to the total number of pedestri-
ans detected in the frame, and is defined by Equation 5. False
positives can be filtered knowing the height at which the UAV
is flying and average pedestrian size as stated earlier.

DetectionRate =
TruePositive

TruePositive+ FalseNegative
(5)

A slight decrement in the hit-threshold value significantly
increases the detection rate, but also increases the number of
false positives detected. Furthermore, the results in this ta-
ble support the relation between algorithm detection improve-
ment and light conditions. In sequence 2, the UAV is main-
tained at a high altitude which provided a challenge in train-
ing and detection. The training file size had to be increased
in order to maintain a good detection rate.

6 CONCLUSIONS

This paper presents a heterogeneous vehicles coopera-
tion approach to cope with cutting-edge UAVs technology
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Table 1: Vehicle and Pedestrian Detection Results

Vehicle Detection
Sequence Threshold Vehicle

frames
Detection
rate %

False
positive

Seq. 1
0.92 301 100 65
0.93 301 100 26
0.94 301 100 0

Seq. 2
0.92 36 100 7
0.93 36 91.6 2
0.94 36 91.6 0

Pedestrian Detection
Sequence Threshold Pedestrian

frames
Detection
rate %

False
positive

Seq. 1
0.73 301 98 71
0.9 301 94.7 32
0.98 301 89 0

Seq. 2
0.73 308 96.75 43
0.9 308 94.48 15
0.98 308 87.01 0

for smart roads. This approach consists of real-time pedes-
trian and UGVs detection and tracking. These algorithms are
studied as a complex and essential task for intelligent vehi-
cles in transportation systems. The proposed algorithms take
the advantages of on-board camera for sensing and detect-
ing the two important components in the road (pedestrian and
vehicle), and providing information about its position and ve-
locity; to increase the safety in the smart roads.

Different scenarios are evaluated and difficulties have
been successfully overcame by means of monocular camera
on-board processing, where the pedestrians and UGVs are de-
tected with a total accuracy (>92%).

Future works will focus on the increasing of the environ-
ment understanding; which refers to detecting more compo-
nents in the road, and the combinations of all this information
with on-line context information; such as digital maps.
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