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ABSTRACT

The objective of this project is developing the
computer vision tools for efficient inventory
management of packages of a warehouse. Pack-
ages are identified by unique QR-codes(Quick
Response codes) and are required to be matched
with the alphanumeric codes of the shelves
on which they are kept. Dimensions of the
shelves are pre-known. Figure 1 shows the
setup available to us at the competition. QR
codes are pasted on the body of the packages
and alphanumeric codes are put on the shelves.
QR-code identification relies on OpenCV(Open-
source computer vision) library ZBar which pro-
vides quite reliable and robust output. Cor-
responding alphanumeric code identification is
done using deep learning text detection library
Tesseract. All modules were integrated into a
ROS(Robot Operating System) architecture and
the output preserved in a CSV file. In addition to
it, we developed an algorithm for robust and pre-
cise warehouse management. The novelty of our
approach lies in the detection of text in Tesseract
computationally inexpensively using pre-known
information. In general, this paper can be used as
a working guide for text detection using Tesser-
act under similar conditions. All libraries used
are explained in detail.

1 INTRODUCTION

Real-time text detection from visual input is a useful as-
pect for the development of autonomous robots. Most of the
information that we receive from our surroundings is in the
form of images. And a major part of those images is text.
Text identification and decoding is thus essential for the de-
velopment of fully autonomous drones. This project concerns
with text identification part only. It also concerns with the de-
coding of another kind of visual input, QR codes which are
comparatively in more machine recognizable format, given
the standardized representation of these codes. As already ex-
plained, the problem which we are concerned with involves a
warehouse containing boxes on shelves. We need to make an
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inventory, listing QR-codes pasted on the objects and match-
ing it with the alphanumeric codes pasted on their respective
shelves. The last part of this paper deals with the algorithm
for warehouse management. The warehouse management is
done using a quadcopter autonomously with an attached gim-
bal for image stabilization, implementation similar to [1]. We
produce all the steps that we took to improve the performance
of our algorithm, the test inputs and their results. A basic flow
chart of the developed algorithm is shown in Figure 2.

Figure 1: Sample shelf (Source: www.imav2019.org)

2 PRIMARY PRE-PROCESSING FOR QR-CODE
DETECTION

Images obtained from the video feed is from a fish-eye
camera. A fish-eye camera is used owing to the wide-angle
that it captures. The images obtained from this camera are
distorted. To utilize the data and properly decode QR-codes
and text in the image we have to undistort the images. We use
camera calibration package of ROS [2] and OpenCV [3] to
calculate the camera matrix, distortion coefficients and other
parameters using multiple checkerboard images at different
positions, scale and skew angles.
Having calculated all the intrinsic and extrinsic components,
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Figure 2: Flowchart for the algorithm

we undistort the images and publish them for further usage.
An example of the undistortion process is given in Figure 3.
Some more pre-processing steps are used on the undistorted
images using information extracted from QR codes, which
are explained in section 4. For now, we skip the remaining
pre-processing steps, since they are computationally expen-
sive and not necessary for QR code detection. So, unless
QR codes are observed from camera feed, we do not perform
those steps.

3 QR-CODE DETECTION

We use the OpenCV ZBar library [4] to detect QR-codes.
We pass the images obtained from the undistorted image
feed(as referred to in section 2), to the ZBar class object cre-
ated [5]. It scans the two-dimensional image to produce a
stream of intensity samples. The decoder searches a stream of
intensity values obtained by processing the images from the

(a) Input

(b) After undistortion

Figure 3: Image before and after undistortion

video feed for recognizable patterns and produces a stream
of completely decoded symbol data from which the QR code
text are decrypted. We store the obtained QR-code data and
its coordinates for further usage and move on to Alphanu-
meric code detection.

4 ALPHANUMERIC CODE DETECTION

The most challenging hurdle to the task was detecting
the alphanumeric codes accurately. For this task we used
Google’s open-source library Tesseract[6]. Tesseract is an
OCR(Optical character recognition) engine with support for
Unicode and the ability to recognize more than 100 lan-
guages. It can be trained to recognize other languages.
Tesseract is efficient only in the case of extremely well de-
fined text in a page (like we obtain for a .pdf (portable docu-
ment format) file). It shows quite poor performance for detec-
tion of text from noisy images, such as those obtained from
a drone camera. Parameters need to be properly tuned and
images properly pre-processed to produce optimal output. To
obtain this, we follow a step-by-step approach. First, using
information extracted from the QR-code (center and dimen-
sions), we attempt to further process the input image and cre-
ate more identifiable images. Then we apply Tesseract text
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recognition on it. We list the various parameters that we mod-
ify to obtain perfect solution. Finally, we propose a method
to further improve the result obtained using Tesseract.

4.1 Secondary Image pre-processing for alpha-numeric
code detection

After the initial pre-processing step (section 2), further
processing needs to be done on input feed for better detection
of alpha-numeric characters. The methods mentioned below
helped improve performance.

• Rescaling: Tesseract gives useful results with specific
text size in the image. To improve the result obtained
by Tesseract, we need to resize the image appropriately.

• Cropping desired area: Cropping reduces the
ROI(Region of interest), thus improves the text
detection by increasing confidence in the prediction.

• Blurring: The noise in the image gets reduced and re-
sults thus get better.

• Thresholding: It can be used to binarize the image to
improve the performance and eliminate shadows. [7].

• Rotation / Deskewing: The image could be rotated to
align the text which helps gain better results. [8].

Out of the listed methods, only rescaling and cropping im-
proved output quality, so we developed algorithms that used
those methods appropriately.

4.1.1 Cropping the image

For the text recognition to work well we observed that the re-
sults are better when the domain on which search for the text
has to be done is smaller. The sides of the image is cropped
to reduce the search area. We intend to crop our image with
respect to the QR-code. We do not crop the image from top
or bottom as this may lead to loss of information of the text
and QR-code. Our cropping assumes the following:-
1. Both the QR-code and the alpha-numeric code occur in the
same frame.
2. The QR-code is positioned along the left or right edge of
the shelf and the alphanumeric text is positioned at the center
of the shelf.
3. Only one shelf was detected per image.

Assumptions 2 and 3 were taken as limiting cases of the
alphanumeric detection problem. Our objective is to ensure
that the qr code and text both appear in the final cropped im-
age irrespective of their relative separation. Since we know
the alphanumeric text is placed at the center of the shelf, the
position of maximum separation is if the QR-code is near the
edge. Also, the maximum separation in pixels can only be
obtained if we consider one shelf per image.
Consider the length of the label of the alpha-numeric code be
a and the length of the shelf be L. Position of the center of

the QR-code label be x. And the length of the QR-code is
lq . The part of the image in between the position x. (refer to
Figure:4)

Figure 4: Showing the parameter of the shelf

Distance between farther ends of QR-code and alphanu-
meric code -

d = ((L+ a)/2)− x (1)

When x = 0 (The extreme case),

d max = (L+ a)/2 (2)

This implies that in a d max neighbourhood of the QR-
code, the alpha-numeric code exists. Now, since the image is
undistorted, we can directly compare the ratio of distances to
obtain the part of the image we need to retain. The ratio we
obtain is

k = (L+ a)/(2 ∗ L) (3)

In our current problem, we find this ratio to be 0.56 which
we approximately 60%. So we crop of 2/5th of the distance
of both ends of the image, measured from the center of the
QR-code. So, in the final cropped image, we retain 60 % of
the frame on either side of the QR-code. Using this we can
be sure that the alphanumeric text is detected and at the same
time reduce the region of interest considerably.

4.1.2 Re-scaling the image

The image obtained after cropping does not always yield
good results. This reason is attributed to the size of the the
text in the image, which has to be close to a particular value
for best results. For proper detection, therefore, we need
to estimate the text size before-hand to scale the image ac-
cordingly. There are many machine learning frameworks for
detection of text regions but usually, they are computationally
very expensive. We observed that the text recognition occurs
optimally at a particular text size in the image (174 X 74
pixels using the test drone). This text size in the image occurs
at a particular distance of the camera (here the drone) and the
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object that contains text (here the shelf). When the camera is
at some other distance, the text size in the image is different
from the optimal size and the output is not desirable. We
propose a method for text size approximation in the image
that resizes the image using the information from the camera
matrix [9] (obtained through camera calibration) [10, 11]
and the distance of the shelf from the drone. The drone is
maintained at a constant distance from the shelves using
a depth estimate from a stereo camera mounted on parrot
bebop drone. We make use of known text frame size (on the
shelf) and the depth at which it occurs. Our objective in this
method is to find the scaling factor by which we would scale
our image.

Camera matrix =


fx 0 cx
0 fy cy
0 0 1




where fx and fy are focal-length times a scaling fac-
tor.

fx = f ∗mx (4)

fy = f ∗my (5)

(where mx and my are the scaling factors along correspond-
ing axes). In the camera we used, the scaling factors along
both axes are the same hence we take the focal length f as
the average of fx and fy.

y′ = y ∗ f/z (6)

y′′ = y′ ∗m (7)

where,
y′ = object size in image sensor
y = object real size
f = focal length of camera
z = distance from object containing text
y′′ = object size in pixel
m = pixels per millimeter

Final step is re-scaling by a factor such that the final out-
put image used for detection has optimal text pixel size. Scal-
ing by:

k = a/y′′ (8)

a = optimal text size in image(in pixels) = 74 px
k = scaling factor

To re-scale, we use OpenCV’s [3] built-in re-scaling function
and the obtained ratio k. The representation of the algorithm
is provided in Figure 5.

Figure 5: Re-scaling : The image (a) shows the actual rep-
resentation of the object in 3-dimensions. The image b(i)
shows the projection of object on the image. And the char-
acter recognition at this distance of the object is optimal. (ii)
shows the projection of object on image at another distance
that is not the optimal distance for character recognition. Our
objective is to process this image so that it gives optimal out-
put for character recognition, i.e. achieve situation(i).

Figure 6: Sample testing image

4.2 Improving Tesseract performance

Furthermore, Tesseract contains many intrinsic parame-
ters whose values can modify output results as well as its
frequency. In the following section, we list those parame-
ters and their observations one by one. All provided results
are sampled from a larger output of the algorithms, as tested
on sample Figure 6, therefore they are only indicative of the
actual results and the effects observed on modifying those pa-
rameters. The final results are provided in section 6.

4.2.1 Setting appropriate Page segmentation method

Page segmentation mode(psm) is the first of those parameters.
By default, Tesseract expects a page of text when it segments
an image. How Tesseract will read the page will depend
upon how it segments the image. And we can specify that
using psm. Tesseract provides 13 supported page segmenta-
tion modes for different scenarios. PSM SINGLE WORD
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(i.e Treating the image as a single word) was considered
due to better performance at detection over other methods,
PSM SINGLE LINE (i.e treating the image as a single text
line) and PSM DEFAULT.

S.no. PSM SINGLE WORD PSM AUTO
1 11A
2 11A 11
3 11A 114
4 11A 41h
5 11A 11A

Table 1: Results for different page segmentation modes

Increased frequency and accuracy of prediction, given pre-
defined knowledge as to the type of text present (Refer to
Table 1).

4.2.2 Disabling Tesseract built-in dictionaries and in-
cluding custom word-lists and patterns

Modifying the load system and load freq parameters allows
us to enable/disable Tesseract dictionaries, which are respon-
sible for producing output close to the general dictionary
words. Disabling the dictionaries, Tesseract should increase
recognition since the text we need to detect isn’t dictionary
words but alphanumeric codes having a specific pattern.
Common character patterns were added (/d/d/c for digit, digit,
character) to further trim down image output to more accurate
results. It should be noted that this method only increases the
probability of correct predictions. We need to perform a fur-
ther trim(section 4.2.5) to ensure it. The following table sum-
marizes the improvements.

S.no Using Custom word-patterns Default
1 11A 141A
2 J1A J1A
3 11A 111A
4 11A A1A
5 11A 1A

Table 2: Custom word pattern results

Notice the improvement in detection of both digits instead of
just one (row 5) and of correct text-pattern (row 4) (refer to
Table 2).

4.2.3 Using White-list of characters

White list is another parameter which can be assigned the
value of a string containing all characters which we want to
be used for recognition purposes. Since we are sure to en-
counter only single alphanumeric codes for detection, we can

safely omit special characters and blank spaces from the list
of characters. Thus we can add alphabets and digits under
Tesseract white-list, only they will be used for prediction of
text.

S.no. With White-list Without white-list
1 11A
2 11A 11
3 114 114
4 11A 11&
5 11A !1A

Table 3: Results for character white-list

Using white-list has suppressed occurrence of special charac-
ter ’!’ (row 5) and ’&’(row 4) and has improved confidence
in prediction (Refer to Table 3).

4.2.4 Using an iterator object to examine sub-strings

Owing to background noise, a lot of stray text is also detected,
which is not a part of the text in the input image. To sup-
press those occurrences, we use an iterator object to scan each
string detected separately and select the text sorted on basis
of confidence in prediction and word-pattern. We modify the
code to involve an iterator object to achieve this result.

4.2.5 Trimming the output further

The next step is parsing the output for the desired result and
selecting the most probable alphanumeric code correspond-
ing to a specific QR-code. We run a loop over the obtained
text to find for data of type (int)(int)(character) having the
maximum number of observations.

Algorithm 1 explains the full algorithm.

Algorithm 1 Overall Algorithm per frame

Ensure: QR code & Text Matching
Input: Camera feed image, Depth

Undistorted image←Preprocess(INPUT)
(QR dims, QR data)← QR detection(Undistorted image)
Cropped image←Cropping(Undistorted image, QR dims)
Resized image← Rescaling(Cropped image, depth)
Text← Text detection(Resized image)
Alphanumeric Code← Trim(Text, QR data)

Output: (QR data, Alphanumeric Code)

5 WAREHOUSE MANAGEMENT ALGORITHM

Using the above pre-processing steps guarantees a good
recognition using very minimal computation but during use,
to reduce any possible errors, we improvised on the motion
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of the quadcopter to improve efficiency and quality of results.
The improvisations are listed below:

• The current warehouse consists of various shelves, and
each of the shelf is used to store various packages.
The shelves are further divided into various rows and
columns to store the packages. We observed that detec-
tion when traversing along columns was considerably
slower than when traversing along rows. So a row-wise
traversal of the shelves was used finally.

• Also, since Tesseract gives optimal result at only a defi-
nite text size, we implement an algorithm, in addition to
section 4.1.2, to maneuver forward and backward from
the mean position. This to and fro swaying motion per-
pendicular to the shelf changes the text size by a small
amount thus correcting any drift errors in the position
of the drone and thus assuring an appropriate output
even at an erroneous distance from the shelves. It also
reduces the scope of error in re-scaling of the image.
An oscillation of 10 cm was observed to produce max-
imum results.

• Having observed that Tesseract gives better results
when the text is on the bottom side of the page, we
align it more that way to get a better result using the
pre-known position of the QR code from section 3.

• Once a QR-code is detected, we initiate a hover time so
that sufficient detection results are obtained thus mini-
mizing error during final processing.

• Also, the presence of gimbal ensures that the QR-code
is viewed normally at all times, reducing perspective
distortion in text.

6 TESTING

Figure 7: Drone used for testing (Source: www.parrot.com &
www.amazon.in)

We used a Parrot Bebop 2 drone (Figure 7) for testing
purposes which has a built-in gimbal camera, to eliminate all

hardware limitations. The result obtained was quite satisfac-
tory. QR code and corresponding alphanumeric text could be
correctly recognized from a wide range of distances from the
shelf, depending upon the quality of the camera feed of the
drone. Experiments on Bebop drone gave impressive results
for distances up-to 3m, after which the camera feed depre-
cates due to re-sizing (section 4.1.2). The Average computa-
tion time observed was low, thus the algorithm was capable of
real-time detection. Output frequency and accuracy was suffi-
ciently high, thus the hover time required before each package
was low (Results listed in detail in Table 4).

Parameter Freq(min−1) Acc(%) Frame-Rate(fps)

None 95 96.8 7.10
Config-File 68 95.4 5.96
White-List 97 42.2 7.31

PSM 11 51 7.21

Table 4: Result: Excluding different parameters

Table 4 lists in detail the effect of the absence of any of
the tuned parameters tested in section 4.2. The first column
is the parameter excluded. The second column represents
the number of correct observation observed per minute. The
third column is the percentage of correct observations in
prediction. The fourth lists the frame-rate observed during
detection. These results are obtained during testing on a
desktop PC.

Major takeaways from the results table are -

• An impressive 95 observations/minute were observed
on the final algorithm and an accuracy of 96.8 % with-
out the final trimming step (section 4.2.5).

• Removing config-files (specifying custom user-
patterns and dictionaries, section 4.2.2) decreases
the frame rate as well as the observation frequency.
However, on the limited observations, the accuracy
observed is quite high (95.4%).

• Removing white-list (section 4.2.3) or changing page-
segmentation-mode (psm) (section 4.2.1) has quite
drastic results on detection results.

7 CONCLUSION

This article documents all steps and corresponding results
of the warehouse management sub-module of the IMAV com-
petition 2019. In this article we have mentioned the ways
to optimize the two major modules of warehouse manage-
ment i.e QR-code detection and alpha-numeric detection.The
QR-code detection module is simpler and provides accurate
results even with no modifications. However, the text detec-
tion module has higher complexity and has to be dealt with
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Figure 8: Initial output

great precision. We have described various methods of us-
ing Optical character recognition. To improve the results, we
used undistortion, re-scaling of the input image, cropping of
the input image. We obtained a frequency of 6-7 results per
second and the correct alphanumeric code was embedded in
about 90-95% of identified strings. Refer to Figure 8: Initial
Output, without the final trim(steps up to section 4.2.3) and
Figure 9: Final Output. The results were quite satisfactory.
Given a hover time of 4-5 seconds (modifiable during final
testing of the algorithm at the venue), we obtain enough test
data to predict the correct QR-code with >90% accuracy on
test input. We look forward to reproducing this performance
at the competition too.

ACKNOWLEDGEMENTS

We would like to thank our team members and super-
visors at ARK (Aerial Robotics Kharagpur) to provide us
with valuable insights on this project and all necessary equip-
ments. We would also like to acknowledge Parrot for the
Bebop-2 drone that we have used for testing. We would also
like to thank the authorities at Indian Institute of Technology,
Kharagpur to provide us the funds and support for the pre-

Figure 9: Final output

sented work.

REFERENCES

[1] A. Anand, S. Agrawal, S. Agrawal, A. Chandra, and
K. Deshmukh, “Grid-based localization stack for in-
spection drones towards automation of large scale ware-
house systems,” 2019.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-
source robot operating system,” in ICRA Workshop on
Open Source Software, 2009.

[3] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal
of Software Tools, 2000.

[4] Wikipedia contributors, “Zbar — Wikipedia, the free
encyclopedia,” 2019. [Online; accessed 5-June-2019].

[5] I. Szentandrási, A. Herout, and M. Dubská, “Fast de-
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