IMAV2019-27 1 1*" INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

http://www.imavs.org/pdf/imav.2019.27

Warehouse Management Using Real-Time QR-Code and

Text Detection

Debjoy Saha? Ganesh Shiridi Balaji Udayagiri! Parakh Agarwal, Biswajit Ghosh, Somesh Kumar*
IIT Kharagpur, West Bengal, India

ABSTRACT

The objective of this project is developing the
computer vision tools for efficient inventory
management of packages of a warehouse. Pack-
ages are identified by unique QR-codes(Quick
Response codes) and are required to be matched
with the alphanumeric codes of the shelves
on which they are kept. Dimensions of the
shelves are pre-known. Figure 1 shows the
setup available to us at the competition. QR
codes are pasted on the body of the packages
and alphanumeric codes are put on the shelves.
QR-code identification relies on OpenCV(Open-
source computer vision) library ZBar which pro-
vides quite reliable and robust output. Cor-
responding alphanumeric code identification is
done using deep learning text detection library
Tesseract. All modules were integrated into a
ROS(Robot Operating System) architecture and
the output preserved in a CSV file. In addition to
it, we developed an algorithm for robust and pre-
cise warehouse management. The novelty of our
approach lies in the detection of text in Tesseract
computationally inexpensively using pre-known
information. In general, this paper can be used as
a working guide for text detection using Tesser-
act under similar conditions. All libraries used
are explained in detail.

1 INTRODUCTION

Real-time text detection from visual input is a useful as-

inventory, listing QR-codes pasted on the objects and match-
ing it with the alphanumeric codes pasted on their respective
shelves. The last part of this paper deals with the algorithm
for warehouse management. The warehouse management is
done using a quadcopter autonomously with an attached gim-
bal for image stabilization, implementation similar to [1]. We
produce all the steps that we took to improve the performance
of our algorithm, the test inputs and their results. A basic flow
chart of the developed algorithm is shown in Figure 2.

Figure 1: Sample shelf (Source: www.imav2019.org)

pect for the development of autonomous robots. Most of the
information that we receive from our surroundings is in the
form of images. And a major part of those images is text.
Text identification and decoding is thus essential for the de-
velopment of fully autonomous drones. This project concerns
with text identification part only. It also concerns with the de-
coding of another kind of visual input, QR codes which are
comparatively in more machine recognizable format, given
the standardized representation of these codes. As already ex-
plained, the problem which we are concerned with involves a
warehouse containing boxes on shelves. We need to make an

2 PRIMARY PRE-PROCESSING FOR QR-CODE
DETECTION

Images obtained from the video feed is from a fish-eye
camera. A fish-eye camera is used owing to the wide-angle
that it captures. The images obtained from this camera are
distorted. To utilize the data and properly decode QR-codes
and text in the image we have to undistort the images. We use
camera_calibration package of ROS [2] and OpenCV [3] to
calculate the camera matrix, distortion coefficients and other
parameters using multiple checkerboard images at different
positions, scale and skew angles.

Having calculated all the intrinsic and extrinsic components,

*Email address(es): sahadebjoy10@gmail.com
TEmail address(es): balajiatvizag @ gmail.com
tSupervising professor

SEPTEMBER 29" TO OCTOBER 4" 2019, MADRID, SPAIN 214

IMAV2019-27
http://www.imavs.org/pdf/imav.2019.27

Flowchart for
the algortihm

Distorted
images

Preprocessing
1
Undistortion

Undistorted
images

QR - Code finder

QR code
coordinates

Processed
Images

Preprocessing 2:
Cropping and
Rescaling

Final
Processed
image

h
Yy

Text ldentification
Algorithm
N

Alphanumeric
code

h
Y

Output

——

Figure 2: Flowchart for the algorithm

we undistort the images and publish them for further usage.
An example of the undistortion process is given in Figure 3.
Some more pre-processing steps are used on the undistorted
images using information extracted from QR codes, which
are explained in section 4. For now, we skip the remaining
pre-processing steps, since they are computationally expen-
sive and not necessary for QR code detection. So, unless
QR codes are observed from camera feed, we do not perform
those steps.

3 QR-CODE DETECTION

We use the OpenCV ZBar library [4] to detect QR-codes.
We pass the images obtained from the undistorted image
feed(as referred to in section 2), to the ZBar class object cre-
ated [5]. It scans the two-dimensional image to produce a
stream of intensity samples. The decoder searches a stream of
intensity values obtained by processing the images from the

SEPTEMBER 29" TO OCTOBER 4" 2019, MADRID, SPAIN

11" INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

(a) Input

(b) After undistortion

Figure 3: Image before and after undistortion

video feed for recognizable patterns and produces a stream
of completely decoded symbol data from which the QR code
text are decrypted. We store the obtained QR-code data and
its coordinates for further usage and move on to Alphanu-
meric code detection.

4 ALPHANUMERIC CODE DETECTION

The most challenging hurdle to the task was detecting
the alphanumeric codes accurately. For this task we used
Google’s open-source library Tesseract[6]. Tesseract is an
OCR(Optical character recognition) engine with support for
Unicode and the ability to recognize more than 100 lan-
guages. It can be trained to recognize other languages.
Tesseract is efficient only in the case of extremely well de-
fined text in a page (like we obtain for a .pdf (portable docu-
ment format) file). It shows quite poor performance for detec-
tion of text from noisy images, such as those obtained from
a drone camera. Parameters need to be properly tuned and
images properly pre-processed to produce optimal output. To
obtain this, we follow a step-by-step approach. First, using
information extracted from the QR-code (center and dimen-
sions), we attempt to further process the input image and cre-
ate more identifiable images. Then we apply Tesseract text

215

IMAV2019-27
http://www.imavs.org/pdf/imav.2019.27

recognition on it. We list the various parameters that we mod-
ify to obtain perfect solution. Finally, we propose a method
to further improve the result obtained using Tesseract.

4.1 Secondary Image pre-processing for alpha-numeric
code detection

After the initial pre-processing step (section 2), further
processing needs to be done on input feed for better detection
of alpha-numeric characters. The methods mentioned below
helped improve performance.

e Rescaling: Tesseract gives useful results with specific
text size in the image. To improve the result obtained
by Tesseract, we need to resize the image appropriately.

e Cropping desired area: Cropping reduces the
ROI(Region of interest), thus improves the text
detection by increasing confidence in the prediction.

e Blurring: The noise in the image gets reduced and re-
sults thus get better.

e Thresholding: It can be used to binarize the image to
improve the performance and eliminate shadows. [7].

e Rotation / Deskewing: The image could be rotated to
align the text which helps gain better results. [8].

Out of the listed methods, only rescaling and cropping im-
proved output quality, so we developed algorithms that used
those methods appropriately.

4.1.1 Cropping the image

For the text recognition to work well we observed that the re-
sults are better when the domain on which search for the text
has to be done is smaller. The sides of the image is cropped
to reduce the search area. We intend to crop our image with
respect to the QR-code. We do not crop the image from top
or bottom as this may lead to loss of information of the text
and QR-code. Our cropping assumes the following:-

1. Both the QR-code and the alpha-numeric code occur in the
same frame.

2. The QR-code is positioned along the left or right edge of
the shelf and the alphanumeric text is positioned at the center
of the shelf.

3. Only one shelf was detected per image.

Assumptions 2 and 3 were taken as limiting cases of the
alphanumeric detection problem. Our objective is to ensure
that the qr code and text both appear in the final cropped im-
age irrespective of their relative separation. Since we know
the alphanumeric text is placed at the center of the shelf, the
position of maximum separation is if the QR-code is near the
edge. Also, the maximum separation in pixels can only be
obtained if we consider one shelf per image.

Consider the length of the label of the alpha-numeric code be
a and the length of the shelf be L. Position of the center of

SEPTEMBER 29" TO OCTOBER 4" 2019, MADRID, SPAIN

11" INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

the QR-code label be x. And the length of the QR-code is
l4. The part of the image in between the position x. (refer to
Figure:4)

Figure 4: Showing the parameter of the shelf

Distance between farther ends of QR-code and alphanu-
meric code -
d=((L+a)/2) -z M

When z = 0 (The extreme case),
d-mazx = (L+a)/2 2)

This implies that in a d_max neighbourhood of the QR-
code, the alpha-numeric code exists. Now, since the image is
undistorted, we can directly compare the ratio of distances to
obtain the part of the image we need to retain. The ratio we
obtain is

k=(L+a)/(2+L) 3)

In our current problem, we find this ratio to be 0.56 which
we approximately 60%. So we crop of 2/5th of the distance
of both ends of the image, measured from the center of the
QR-code. So, in the final cropped image, we retain 60 % of
the frame on either side of the QR-code. Using this we can
be sure that the alphanumeric text is detected and at the same
time reduce the region of interest considerably.

4.1.2 Re-scaling the image

The image obtained after cropping does not always yield
good results. This reason is attributed to the size of the the
text in the image, which has to be close to a particular value
for best results. For proper detection, therefore, we need
to estimate the text size before-hand to scale the image ac-
cordingly. There are many machine learning frameworks for
detection of text regions but usually, they are computationally
very expensive. We observed that the text recognition occurs
optimally at a particular text size in the image (174 X 74
pixels using the test drone). This text size in the image occurs
at a particular distance of the camera (here the drone) and the

216

IMAV2019-27
http://www.imavs.org/pdf/imav.2019.27

object that contains text (here the shelf). When the camera is
at some other distance, the text size in the image is different
from the optimal size and the output is not desirable. We
propose a method for text size approximation in the image
that resizes the image using the information from the camera
matrix [9] (obtained through camera calibration) [10, 11]
and the distance of the shelf from the drone. The drone is
maintained at a constant distance from the shelves using
a depth estimate from a stereo camera mounted on parrot
bebop drone. We make use of known text frame size (on the
shelf) and the depth at which it occurs. Our objective in this
method is to find the scaling factor by which we would scale
our image.

Camera matrix =

fr 0 cx
0 fy cy
0 0 1

where fz and fy are focal-length times a scaling fac-
tor.
fr=f*max “)

Jy=fxmy (5)

(where maz and my are the scaling factors along correspond-
ing axes). In the camera we used, the scaling factors along
both axes are the same hence we take the focal length f as
the average of fx and fy.

Yy =yx*f/z (6)

y' =y xm)
where,
y' = object_size_in_image_sensor
y = object real size
f = focal length of camera
z = distance from object containing text
y'" = object size in pixel
m = pixels per millimeter
Final step is re-scaling by a factor such that the final out-
put image used for detection has optimal text pixel size. Scal-
ing by:

k=a/y’ ®)
a = optimal text size in image(in pixels) = 74 px

k = scaling factor

To re-scale, we use OpenCV'’s [3] built-in re-scaling function
and the obtained ratio k. The representation of the algorithm
is provided in Figure 5.

SEPTEMBER 29" TO OCTOBER 4" 2019, MADRID, SPAIN

1 1*" INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

VA

'
Il
2

b(i) The object when at

timal distance
a. Actual representation of the optimal dista

object and image

b(ii) Projection of object when at
another distance

Figure 5: Re-scaling : The image (a) shows the actual rep-
resentation of the object in 3-dimensions. The image b(i)
shows the projection of object on the image. And the char-
acter recognition at this distance of the object is optimal. (ii)
shows the projection of object on image at another distance
that is not the optimal distance for character recognition. Our
objective is to process this image so that it gives optimal out-
put for character recognition, i.e. achieve situation(i).

Figure 6: Sample testing image

4.2 Improving Tesseract performance

Furthermore, Tesseract contains many intrinsic parame-
ters whose values can modify output results as well as its
frequency. In the following section, we list those parame-
ters and their observations one by one. All provided results
are sampled from a larger output of the algorithms, as tested
on sample Figure 6, therefore they are only indicative of the
actual results and the effects observed on modifying those pa-
rameters. The final results are provided in section 6.

4.2.1 Setting appropriate Page segmentation method

Page segmentation mode(psm) is the first of those parameters.
By default, Tesseract expects a page of text when it segments
an image. How Tesseract will read the page will depend
upon how it segments the image. And we can specify that
using psm. Tesseract provides 13 supported page segmenta-
tion modes for different scenarios. PSM_SINGLE_WORD

217

