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ABSTRACT

In this paper, the technical approach to achieve the objectives for the indoor and outdoor missions of the Inter-
national Micro Air Vehicle (IMAV) competition are presented. The ARCC team plans to utilize a single drone
for the indoor competition and multiple drones to achieve the outdoor mission objectives. A scaled up version of
the indoor drone would be utilized for the outdoor competitions to increase endurance and carry a larger sensor
payload. A fully autonomous and primarily vision focused approach was taken for both missions with all computa-
tions being performed on-board excluding the 2D mapping which is performed off-board for the outdoor mission,
whereas the indoor mission leverages off-board computing to reduce vehicle mass. Computer vision tasks are per-
formed using a combination of the ZBar library for QR codes, semantic segmentation using the UNet architecture,
object recognition using an RCNN, and classical image processing techniques such as ORB features and Hough
transforms.

1 INTRODUCTION

The Autonomous Robotics Competition Club (ARCC) is
a student run organization formed in the spring of 2018 and
advised by Dr. Eric Johnson. The club consists of gradu-
ate and undergraduate students from the Pennsylvania State
University. The club was founded with the purpose of par-
ticipating in autonomous aerial vehicle competitions. The
club consists primarily of students studying in the fields of
acoustics, aerospace engineering, mechanical engineering,
and electrical engineering but is open to anyone interested
in such activities. A detailed description of the organisa-
tion and prior work can be found at the the club’s website:
https://sites.psu.edu/arcc/.

In this paper the previous work of Penn State’s ARCC
team, the technical approach for the indoor and outdoor com-
petitions, and hardware and software specific elements are
outlined.

2 PREVIOUS WORK

Thus far, the ARCC organisation has participated in the
Vertical Flight Society’s 2019 Mico-Aerial Vehicle Challenge
(videos related to the competition are available on the club’s
website). The competition required the vehicle to pickup a
package, navigate a course avoiding obstacles while flying
over certain zones, and finally drop off the payload at a spec-
ified location while staying within the arena boundaries. The
problems addressed were localisation, image recognition, and
decision making. Initially an optical flow device paired with a
Lidar was used to aid in localisation, but the mono-chromatic
competition floor was featureless and thus we adopted a vi-
sion based approach using the Intel RealSense. A downward-
facing camera was used to detect targets marked by April
Tags. The images were transferred to a ground station via
WiFi for processing. For obstacle detection a sonar sensor

Figure 1: Vehicle used for the Vertical Flight Society’s com-
petition with the optical flow (later replaced by RealSense).

was used. The total weight of the vehicle was 500 grams.
For package retrieval a pick-up mechanism was 3D printed
doubling as the legs of the vehicle. To pick up the pack-
age the vehicle would hover above the package, lower it-
self, and close its servo actuated legs. The vehicle followed a
pre-programmed flight path which was fine-tuned during run
time through visual identification of landmarks reactionary
behaviour to the world state. For example, if the vehicle was
set to go straight but the sonar detected an obstacle, it would
perform an obstacle avoidance maneuver prior to continuing
on its path. An image of the vehicle is shown in Fig. 1.

3 HARDWARE

Since the competition is split into an indoor and outdoor
portion separate drones have been built for the two missions.
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This section outlines the hardware components chosen for
each mission along with an estimate for the component and
total weight.

Due to the increased image processing requirements of
the outdoor competition, in addition to the Aaeon compute
board, the outdoor drones will be outfitted with a much more
capable Jetson Nano board, which is equipped with a GPU
allowing us to speed up CNN inference. The specific com-
ponents are outlined in Table 1. Since the outdoor vehicle is
larger, the frame, power train, gripper, and battery are sized to
reflect this. We chose to reuse the rest of the sensor payload
from the indoor vehicle on the outdoor one. The indoor ve-
hicle currently weighs about 470 grams whereas the outdoor
vehicle weighs about 931 grams.

The open source px4 flight stack was chosen for this com-
petition and thus the Pixhawk flight controller was utilized.
The device has an on-board magnetometer and external GPS
module, but these are disabled/removed on the indoor flight
vehicle. The GPS sensor is removed to reduce weight and the
magnetometer was disabled due to the potential of magnetic
interference indoors. The flight controller is used to stabilise
the vehicle whereas the Intel Realsense, Lidar, and camera
make up the perceptual system.

4 INDOOR MISSION

The indoor mission requires the drone to navigate a ware-
house environment autonomously. The mission profile in-
volves recognition of key features (QR codes, flags, land-
ing pad, etc), avoidance of obstacles (e.g. shelving), pack-
age retrieval and delivery. In order to accomplish these tasks
autonomously several problems need to be addressed and
solved. These are the problems of localisation, image recog-
nition, control, path planning, communication, and package
delivery. Prior to addressing the problems an overview of the
hardware components and how they interact is presented in
the next section.

4.1 Architectural Overview
The control architecture of the vehicle is comprised of

three modules as shown in Fig. 2. The first module is the
manual control. The manual control sends commands di-
rectly to the fight controller on the vehicle via a human con-
trolled transmitter operating in the 2.4GHz band. This link
allows us to take over manual control or disable the vehi-
cle in case of emergencies. The second module is the ve-
hicle. The vehicle is comprised of on-board computer and
micro controller, 5GHz WiFi data link, flight controller, In-
tel realsense, and a camera used to identify mission elements
using computer vision. The inertial sensors and motors are
connected to the flight controller which forwards telemetry
data to the on-board computer. The camera feed is sent to
the on-board computer which transmits it over the data link
to a ground station for processing. The on-board computer
receives control commands from the ground station to be for-
warded to the flight controller which executes the commands.

Figure 2: Overview of sub systems and how they are con-
nected. Red links represent wireless communication. Grey
dashed boxes are specific to the outdoor vehicle only.

In the event of a loss of connection with the ground station,
the on-board computer is able to maintain static stability of
the craft while it tries to reconnect to the ground station. The
micro-controller is used to actuate the pickup mechanism and
read/write to any sensor payloads that may be used.

4.2 Localisation

Localisation will be performed visually using the Re-
alSense T265 camera. Since the camera does not provide a
map, we will be post processing camera images to generate a
map. This map could help us correct deviations in local po-
sition estimates if the ground truth locations of the static en-
vironment are known or estimated during flight using stereo
vision/distance sensor.

In order to effectively command the Micro Aerial Vehicle
(MAV), its current position in inertial space must be known
within some degree of accuracy. Inside a warehouse environ-
ment, the drone is likely denied a GPS signal, and hence must
look towards other sensors to provide the pose measurements
required to estimate the vehicle’s state. To this end, visual Si-
multaneous Localisation and Mapping (V-SLAM) is used, in
the form of the RealSense T265, a camera-CPU suite capable
of performing V-SLAM.

SLAM algorithms estimate vehicle pose by identifying
features in a camera image plane, and tracking it frame-to-
frame. The movement of the feature in the image between
frames, coupled with knowledge of camera movement pro-
vided through accelerometer and gyroscope sensors, allow
for the estimation of the location of that feature point in 3D in-
ertial space with-respect-to the camera. Simultaneously, the
accelerometers and gyroscopes can be used to estimate the
camera’s pose via some filtering technique such as a Kalman
Filter in this case. This estimate is subject to accelerometer
bias and gyroscopic drift. The feature point state estimates
are then used to correct for these sensor drifts. The result
is an accurate estimate of both the camera and feature point
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Component Quantity Weight - Indoor (g) Weight - Outdoor (g) Description
Frame 1 80 150 Composite
ESC 4 10 10 4 in 1

Motor 4 16 16 Emax motors
Flight Controller 1 10 70 Outdoor incl. GPS

Onboard Computer 1 60 N/A Aaeon Up
GPU Compute 1 N/A 130 Jetson Nano
Intel RealSense 1 60 N/A T265

Lidar 1 12 N/A Range sensor
Camera 1 N/A 15 Downward facing

Propeller 4 5 8 APC
Payload Gripper 1 40 30 3D printed

Battery 1 120 300 LiPo
Miscellaneous N/A 50 100 Wires, connectors,...

Total 470g Approx. 931g Approx.

Table 1: Vehicle components and weight. N/A represents components not applicable to that version of the vehicle.

state. A LIDAR distance sensor is used for accurate altitude
measurement and as is common for UAV applications, an Ex-
tended Kalman Filter is used to combine the measurements
from these sensors, with vehicle state equations, to yield an
estimate of the vehicle state (position and pose).

4.3 Image Recognition
QR code recognition will be done using the ZBar library.

This library requires a cropped image containing the QR code
in order to recognise it. We trained a Regional Convolu-
tional Neural Network (R-CNN) using the inception v3 back-
bone on synthetically generated images containing various
QR codes superimposed on a wide variety of indoor back-
grounds. It is hard to quantify accuracy as our synthetic data
set is not standardised, but we obtained an accuracy of ap-
proximately 92% on the held out test set. The bounding box
generated was then cropped out and recognised using ZBar.
A similar strategy was employed to detect the boxes and the
flag.

To circumvent the issue of being unable to predict the ef-
fectiveness of the RCNN in the actual competition environ-
ment and since we have ample computing power due to off-
board processing, we validate our results by performing se-
mantic segmentation using the UNET architecture [2]. The
goal of a segmentation problem is to section the pixels of
an image into the classes that the network has been trained
on. The data for these classes would be obtained from an
image search on the internet thereby augmenting our dataset
with labelled data that represents the classes we are interested
in such as the shelves, mailboxes and other objects of inter-
est. The segmented pixels would then be extracted and then
cross-validated against the CNN classifier to confirm that the
correct class has been detected. A weighted average of the
the R-CNN and UNET prediction would be considered as the
final result.

For the boxes on the shelves we had to train a regional
network as the architecture we used for semantic segmenta-
tion does not segment multiple objects of the same class, only
providing a blob that contains all the objects. Since there are
many boxes on the shelf, we are training a faster-RCNN [3] to
draw bounding rectangles around them. The boxes are non-
descript and of various shapes with the identifying factor that
they contain QR codes. The training dataset for this particu-
lar case was generated from images of cardboard boxes that
were super imposed with a QR code and warped, rotated, and
skewed using classical image processing techniques.

In the case of the flag, during take off we hope to detect
the flag pole and store the image of the flag as a ground truth
image. When we encounter the image during the drop-off
phase, we would compare it to the ground truth image using
ORB [4] features. A backup plan is to use transfer learning
to quickly train a CNN in the 2 training days preceding the
competition when we are made aware of the flags that would
be used as these would only be a subset of all the flags in the
world.

Finally, to detect the landing zone which has an ’H’ on
it, we will reuse code from our previous competitions where
we use probabilistic Hough transforms to identify the 3 lines
which are oriented in a known geometric shape.

4.4 Controls
Control of the MAV must be robust enough to handle the

coupled dynamics of the MAV and payload package slung
load; to this end, control is provided by the PX4 firmware run-
ning atop the Pixracer flight controller. As the lion’s share of
vehicle control is being provided by the PX4 firmware, only
a brief treatment of the controller software will be presented.
The PX4 firmware estimates the state of the vehicle (from ac-
celerometer, gyroscope, LIDAR, V-SLAM, and GPS sensors)
via an Extended Kalman Filter (EKF). It then compares the
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Figure 3: Illustrates the difference between image segmen-
tation and object recognition, the two approaches adopted in
our algorithms. [1]

vehicles current state estimate (position, velocity, pose, and
pose rates) to that which is commanded by trajectory plan-
ning. Error between current and desired state, prompts the
controller to send signals to the four motors, eliciting collec-
tive, lateral and longitudinal cyclic (governing pitch, roll, and
yaw of the vehicle - φ, θ, ψ - and body angular rates p, q, r)
response of the vehicle.

The magnitude to which this state error influences the
motor inputs is regulated via a simple proportional-integral-
derivative (PID) controller.

U(s) = (Kp +
1

s
Ki +Kds)E(s) (1)

Here, E(s) is the tracking error, in the Laplace domain, Kp

gain minimises tracking error, where the higher the gain value
the faster the response; Kd gain dampens the response of the
vehicle, reducing overshoot; Ki gain aids in reducing steady-
state error.

PID controllers are used to control the vehicle’s rate,
attitude, velocity, and position command. Despite the dy-

namics of the system changing after the package pickup,
the PX4 controllers are assumed robust enough (with large
enough margins), as to observe minimal controller perfor-
mance degradation. These gains are tuned for our particular
flight needs, and will likely be slightly different for indoor
and outdoor missions.

4.5 Path Planning

A feature point in the camera image plane is defined as
a point which may correspond to an obstacle in the envi-
ronment. The process of tracking a feature point involves
identifying a point of interest within the camera image frame
and then tracking those points between frames (correlating a
measured feature point with its counterpoint in a database of
tracked features). The first step is to identify which objects
within a frame are of interest. Two methods being utilised
aboard our vehicle are classical image processing techniques
(Harris Corner and Canny Edge detection algorithms)[5] as
well as more contemporary/deep-learning techniques (train-
ing CNNs to identify objects likely to be encountered by the
drone). Once these features are found within the image plane,
these measurements need to be corresponded to those features
seen in prior frames (stored in a database) in such a way that
the same features are tracked between frames. To this end,
the statistical Z-test is employed; a method which, when pre-
sented a new image of measured features/objects, can match
measurements with objects stored in the database, with high-
est probability[6]. It is necessary to store these observed fea-
tures in a database (and subsequently estimate their state - i.e.
position), so that we can track their relative location, even in
their absence from camera frames. To this end, the vehicle’s
state (i.e. pose), and the feature point’s movement within the
image plane, is used to estimate the object’s location[7]. This
is done using an EKF, whereby the vehicle’s state equations,
the feature’s state equations, and the entire suite of vehicle
sensors are fused to provide an accurate estimate of its lo-
cation relative to the vehicle[8]. These estimates can then
be used to avoid (and in some cases track towards - c.f. us-
ing image recognition to identify points of interest) objects
within field of view of vehicle.

Figure 4: The feature point (fp) tracking EKF process. N.B:
this flowchart is invariant of the image processing method.
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4.6 Payload Delivery

For the indoor vehicle, an alternative, weight-saving ap-
proach for the pickup mechanism will be considered since
the package weighs 25 grams for vehicles weighing under
500 grams. The proposed mechanism will be a small hook
like device which can be extended to secure the loop on the
package. The hook will be mounted on a pivot such that it
minimises visual interference during flight, and allows the
vehicle to land on its ’belly’ eliminating the need for landing
gear. A common 3.5 gram micro servo actuates the hook the
device and is capable of moving 60 degrees in 0.05 seconds.
The servo arm is approximately 15cm and exploits the struc-
tural strength of the 3D printed plastic in tension to lift the
package. This minimises the load on the servo compared to a
gripper design which uses servo torque to hold the package.
This allowed us to reduce weight and power consumption.

4.7 Communication

This section outlines how the vehicle and ground station
communicate with one another. Two types of data formats
are sent and received by both the vehicle and the ground sta-
tion. The data formats are Mavlink messages and video. The
vehicle transmits telemetry data to the ground station, and
the ground station logs the information along with displaying
the current state for purposes of debugging and testing. The
ground station sends commands to the vehicle via user input
during testing. Both the telemetry and commands are sent as
Mavlink messages. The other data format is that of video.
Video is transmitted from the vehicle to the ground station,
where the ground station displays the feed and uses it to feed
the object detectors.

The communication protocol used for Mavlink data trans-
mission is TCP/IP and for video is UDP/IP. Bo protocols uti-
lize WiFi at 5GHz for data transmission, but the TCP and
UDP have differing structures. The benefit of TCP is that
it performs rigorous checking to ensure the data transmitted
is received and in the format which it was sent. While UDP
streams data are connection less meaning there is no acknowl-
edgement that a package has been successfully transmitted.
Therefore TCP is better suited for sending telemetry and
commands where the transmission of a corrupted message or
missing a message all together can prove fatal, and UDP is
adequate for video transmission where missing a frame is not
detrimental to the vehicle. When setting up socket communi-
cation a server and client must be specified. In this case the
ground station serves as the server which waits for a client,
the vehicle, to connect.

Apart from the vehicle and the ground station, a transmit-
ter is also able to communicate with the vehicle in order to
take over manual control. The transmitter operates at a fre-
quency of 2.4GHz. In order to minimize interference and in-
crease available bandwidth, Wi-Fi communication will utilize
the 5GHz band.

5 OUTDOOR MISSION

For the outdoor competition, we plan to use a GPS mod-
ule to obtain the current position of the drone in addition to
fusion of vision data. As time is a crucial factor, three drones
would be utilized to simultaneously deliver the three pack-
ages. As the location of the houses and post boxes are not
provided, a random grid search would be performed to lo-
cate these targets. Similar to the indoor approach, we will
leverage R-CNNs to identify the targets, namely the houses,
post boxes, the crashed drones, and the missing parcels. The
system will be equipped with a Raspberry Pi camera for use
with mapping and target detection. From pixel coordinates,
aircraft attitude and altitude, along with the GPS information,
the pinhole camera model would be used to estimate the lo-
cation of the detected objects in the world coordinate system.

Finally, the task of generating a 2D map of the area would
be done using a Geographic Information System library, in
our case GeoPython as our off-board computational stack is
coded using python 3. Features in the images would be iden-
tified and tagged with global positioning information to stitch
them together to generate a 2D map of the area. The process
of feature tracking and determining the latitude and longitude
in the images is automated such that the on-board computer
tags each image taken with the current GPS location at cap-
ture so that the stitching of the images can be completed in
the 20 minutes duration provided at the end of the mission.
Further, vision would be used to detect the balloons in the
takeoff and landing area but since a quad-rotor affords verti-
cal take off and landing, with careful flight planning we do
not anticipate an encounter with the obstacles.

In contrast to the indoor mission, the outdoor vehicle will
communicate with the ground station using a 2.4GHz wire-
less broadcast link with a 900MHz control link for emer-
gency manual control. These frequencies provide adequate
range and bandwidth for video and control signals respec-
tively. This would allow for the transmitting of camera data
from the vehicle to the ground station for 2D map generation.
The vehicles would still be autonomous with all processing
done off-board, so loss of link would only restrict its ability
to map the environment and send telemetry data.

The decision to perform all computation on-board the ve-
hicle unlike the indoor competition is driven by the risk of
connection loss on the 2.4GHz band at the allowed 25mW
power limit at maximum operational range. As the vehicle all
up weight is not as critical in the outdoor mission, we chose
to include a more powerful compute board on-board for ro-
bustness and safety reasons.

5.1 Architectural Overview

The proposed approach to the outdoor competition is to
use two identical 500 gram quadrotors similar to the indoor
competition mainly for package drop off with a larger (ap-
proximately 1Kg) vehicle that identifies drop off locations,
and maps the environment. This is to optimize the weights of
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the vehicles to maximize the weight multipliers while creat-
ing a vehicle which will be powerful enough to lift the avion-
ics as well as a post box package with a reasonable endurance.

The on-board avionics system for the two smaller vehi-
cles will be the same as the indoor vehicle with the addition
of a GPS module. The larger vehicle will use the Pixhawk 2.1
flight controller which supports autonomous waypoint track-
ing, as well as compatibility with all other avionics peripher-
als. To localize the system in the global coordinate frame, the
team will use the Here GNSS GPS system, which is compat-
ible with the Pixhawk and has been found to be accurate up
to 3.7 meters of the desired destination [9]. Additionally for
communication, the team will utilize 915MHz transmitters
with a common ground station. All antennas will be circular
polarized (2-5 dBi gain) to ensure uniform converge regard-
less of azimuth angle.

The vehicles have been designed to optimize the scoring
system of the competition. The weight has been selected as
an ideal point for a high weight scale factor, as well as allow-
ing sufficient vehicle weight to support the proposed avionics
set. Additionally, the system is optimized for target detection
over mapping because the scoring system of the outdoor com-
petition heavily favors detecting the points of interest over
creating a high quality map.

5.2 Localization
The plan to localize each identical system is using the

Here GNSS GPS system which is compatible with the Pix-
hawk 2.1 flight controller.

5.3 Object Detection
A Regional Convolutional Neural Network (R-CNN) is

trained with synthetic databases generated to identify the
house, mailboxes, lost packages and crashed drones similar
to the indoor mission. As the mailboxes and lost packages

Figure 5: Example of an image for training the neural net-
work. The superimposed mailbox can be seen in yellow.

Characteristic Value
f 1.14 mm

X0 0.507 mm
Y0 0.395 mm
k1 -0.013
k2 0.1764
k3 -0.6391
p1 -0.0032
p2 -0.0072

Table 2: Raspberry Pi camera parameters.

are of unique colors, color identification schemes can also be
used to identify these objects. However, owing to the ground
color being a possible mixture of yellow and green, identifica-
tion of the yellow mailbox using color detection schemes may
yield false positives. Further, as the same network architec-
ture can be trained to identify different objects using different
databases, it is more convenient to use the same deep learn-
ing approach for detection of all objects. Transfer learning
approach will be used to train the RCNN at a lower computa-
tional cost.

The CNN is fed images from a Raspberry Pi camera
mounted on-board for inference. Since the multirotors will
be flying at a height of 25 [m], it is possible to determine the
ground dimensions of the image since the internal parameters
of the camera is known. The internal parameters of the cam-
era is not available from the manufacturer and hence the same
needs to be determined through camera calibration. A simi-
lar approach is adopted by Piras et al [10] where the camera
parameters have been determined using camera calibration.
The camera internal parameter as determined in the cited pa-
per have been used. The parameters are listed in table 2.

In order to train the neural network, a database of images
is generated. These images are generated by superimposing a
colored box over an image of the outdoor competition’s ter-
rain in a random location. This colored box is scaled to be of
the correct size relative to the predetermined height of flight
of 25 [m]. An example of one of the training images can be
seen in Figure 5. From this example we observe that the size
of the objects are much smaller than the overall image which
prompted us to use an R-CNN over other architectures such
as YOLO [11] as emperical tests have confirmed that it has
superior performance for smaller objects with careful tuning
of anchor size and aspect ratio hyper parameters.

5.4 2D Mapping
Two approaches are proposed to generate the 2D map of

the area. In the first approach, multiple images with suffi-
cient overlap as explained in the Path Planning section are
obtained. Image stitching is then performed based on key-
points generated and using the RANSAC algorithm. This ap-
proach is currently implemented in the ground station. Figure
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Figure 6: 2D mapping using image stitching.

Figure 7: Predetermined path of each outdoor quadrotor.

6 illustrates the same based on multiple overlapping images
obtained of an area from an elevation.

While the image stitching approach might yield accept-
able results, there exists a possibility of artifacts in the
stitched image owing to 3D objects. Thus, the alternative ap-
proach proposed is to generate orthomosaics. The orthomo-
saics are then geo-referenced using tools such as Open Drone
Map, etc. This will generate the required 2D map of the op-
erational area of the outdoor mission.

5.5 Path Planning
The path design for the outdoor competition will take

advantage of all three quadrotors at the same time. The
two smaller vehicles will transmit their image data to the
ground station for off-board identification of targets whereas
the larger drone will perform this on-board. The common
ground station ensures all vehicles will be kept in sync re-
garding recognised targets. Using this approach, the area will
be mapped in the shortest time possible.

The default path for the vehicles will imitate the ”mow-
ing of a lawn” by starting at the starting location and sweep-
ing back and forth within the competition area, moving in
one direction until the boundary of the area is reached, and

then shifting some distance horizontally while rotating 180◦

to move back toward the starting area. This behavior can be
seen in the Figure 7 In case of a failure in Wi-Fi link at range,
the two smaller drones will be unable to perform this task.
In this scenario, the larger drone will be commanded to com-
plete this behaviour slowing down the search, but still retain-
ing the capability of using the smaller drones to deliver pack-
ages using GPS as this is not dependent on a high throughput
Wi-Fi link.

In order to ensure that the entire area is mapped, suffi-
cient overlap between images need to exist so that the image
stitching can be performed correctly. Based on the geome-
try as detailed in Kraus [12], the percentage overlap in the
forward direction is set to 60% and 30% in the sides. This
will ensure that there are sufficient DoG and Harris keypoints
available to ensure effective image stitching. The homogra-
phy matrix for the matched vectors is determined using the
RANSAC algorithm. With the desired percentage overlap,
images in the forward direction need to be captured at every
40 m and the distance between two parallel paths should not
be greater than 30 m.

5.6 Payload Delivery
Time is a crucial factor in scoring of the outdoor phase of

the competition. Each of the three multirotors will be loaded
with a single package. Once one of the multirotors locates a
post box, this information will be sent to the ground station
and relayed to the multirotor with the corresponding package.

After the multirotor is aware of the location of the cor-
rect postbox, it will use the onboard Pixhawk 2.1 flight con-
troller along with the Global Positioning System (GPS) loca-
tion of the post box to navigate to the post box and deliver
the package. Given the competition’s requirement of land-
ing the package within a 5 meter radius of the post box and
the accuracy of the Here GNSS GPS module being reported
to be within 3.7 meters we did not employ any additional vi-
sion correction. As the competition does not require the pack-
age to be picked up by the drone autonomously, the payload
mechanism used is a mainly a package drop mechanism as
shown in figure 8

Figure 8: Package Drop Mechanism.
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As can be seen in figure 8, the drop mechanism is in the
retracted position. This ensures that the drop mechanism does
not obstruct landing of the drone. The mechanism will be
extended after takeoff and the package can be attached to the
hook when the vehicle is hovering. The package is dropped
at a desired location by retracting the mechanism.

5.7 Communication

The method of communication is similar to the indoor
portion with the major difference being the transmission fre-
quencies. Due to the range required of the outdoor vehicle,
the WiFi operates at 2.4GHz as opposed to 5GHz. The man-
ual control transmitter is operated at 915MHz to ensure it
does not interfere with the WiFi communication.

6 CONCLUSION

The details presented in the paper is a brief insight into
the technical approach that the team has envisioned to suc-
cessfully complete the IMAV 2019 challenge. With many
modules already implemented and ready, the team is on track
to fly, test and validate all modules well in advance of the ac-
tual competition. With the feature tracking methodology, the
warehouse mission can be successfully completed consider-
ing the fact that the real sense module provides localization
with tolerances of within 3cms observed during testing. Fi-
nally, the deep learning framework proposed will enable real
time target detection and identification owing to CNN infer-
ence being computationally efficient compared to classical vi-
sion processing.
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