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ABSTRACT

To investigate how an Unmanned Air Vehicle
(UAV) can detect manned aircraft with a single
microphone, an audio data set is created in which
UAV ego-sound and recorded aircraft sound are
mixed together. A convolutional neural network
is used to perform the air traffic detection. Due
to restrictions on flying UAVs close to aircraft,
the data set has to be artificially produced, so
the UAV sound is captured separately from the
aircraft sound. They are then mixed with UAV
recordings, during which labels are given indi-
cating whether the mixed recording contains air-
craft audio or not. The model is a CNN which
uses the features MFCC, spectrogram or Mel
spectrogram as input. For each feature the ef-
fect of UAV/aircraft amplitude ratio, the type of
labeling, the window length and the addition of
third party aircraft sound database recordings is
explored. The results show that the best perfor-
mance is achieved using the Mel spectrogram
feature. The performance increases when the
UAV/aircraft amplitude ratio is decreased, when
the time window is increased or when the data set
is extended with aircraft audio recordings from
a third party sound database. Although the cur-
rently presented approach has a number of false
positives and false negatives that is still too high
for real-world application, this study indicates
multiple paths forward that can lead to an inter-
esting performance. In addition, the data set is
provided as open access, allowing the commu-
nity to contribute to the improvement of the de-
tection task.

1 INTRODUCTION

More and more UAVs are entering the air every day, both
for professional as well as for recreational purposes. Safety
and regulations are subjects undergoing intense study nowa-
days in the UAV industry, as UAVs form a hazard for people,
other (air) traffic, buildings, etc. For this research, the focus
is on the collisions between UAV and air traffic, which are
still possible to occur. For example, emergency helicopters

∗Email address(es): c.dewagter@tudelft.nl

sometimes fly low in UAV-permitted airspace. Part of this
problem can be solved by establishing (and following) good
rules and laws, but also technology can help out. Technol-
ogy becomes even more important when UAVs have to oper-
ate fully autonomously, as required by many future applica-
tions. A project initiated by Single European Sky ATM Re-
search (SESAR) that aims to increase air traffic safety regard-
ing to UAVs is called Percevite1. Using multiple lightweight,
energy-efficient sensors obstacles should be avoided to pro-
tect UAVs and their environment. One such a sensor is a mi-
crophone, which fulfills the task of ’hear-and-avoid’, mean-
ing that it should detect and avoid air traffic by sound. The
goal of this research is to create a safer airspace by creating
this hear-and-avoid algorithm.

Figure 1: The acoustic camera on the runway of Lelystad
Airport.

The first feasibility study for hear-and-avoid has been per-
formed by Tijs et al [1]. In this research an acoustic vector
sensor is used to detect other flying sound sources. Two co-
authors, De Bree and De Croon [2], have used an acoustic
vector sensor in order to detect sound recorded on a UAV for
military purposes. However, neither works have used deep ar-
tificial neural networks to separate aircraft and UAV sounds.
Moreover, there are two research groups that have tried to
identify the position of other UAVs using sound recorded
from a UAV. Basiri et al. [3, 4, 5, 6] try to determine the po-
sition of a UAV in a swarm of UAVs. The transmitting UAV
sends a chirp sound in the air that has frequencies different
than the UAV’s ego-sound, which can be picked up quite well

1www.percevite.org
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while flying. Also, they do tests with engines of the receiving
UAV turned off and the transmitting UAVs not transmitting
the chirp anymore. Also here, based on the engine sounds
of the transmitting UAV its location can be determined. The
hear-and-avoid algorithm can be seen as a follow up of these
researches, as they have not managed to identify other air
traffic by its original sound while also having the engines
turned on. Harvey and O’Young [7] show that with two mi-
crophones, the detection of another UAV can be performed at
such a distance that is double the distance to prevent head-on
collision. Furthermore, research is performed focusing only
on the UAV sound by Marmaroli et al. [8]. They have created
an algorithm that is able to denoise the ego-sound of the UAV
based on the knowledge about the propellers’ revolutions per
minute (RPM).

One of the reasons that there is not a large amount of re-
search performed on audio analysis for UAVs is that there are
alternatives that provide traffic information, such as ADS-B,
GPS, vision, etc. However, all alternatives have their disad-
vantages and do not fully eliminate the chance of a collision.
For example, ADS-B requires a system in an aircraft that
is not always present or turned on. For vision based sense-
and-avoid its images can be disturbed due to speed, rain, fog,
darkness, objects, etc. Sound, on the other hand, is inevitable
for motorized aircraft, so it is a promising method. More-
over, microphones are lightweight, easy to use, omnidirec-
tional and only weakly influenced by weather. The challenge
that sound brings in this application is that many different
sounds are present, such as the UAV’s ego-noise, wind, air
traffic and environmental sounds.

In this research the following situation is studied: a UAV,
which is carrying a single microphone, flies around and
should detect incoming or passing aircraft based on sound.
The detection of aircraft will be realized by means of a convo-
lutional neural network (CNN) due to their promising perfor-
mance on sound in [9],[10] and [11]. The representative data
set that is needed, which consists of audio recordings taken
on a UAV including aircraft sound, does not exist yet and
therefore needs to be artificially created. The CNN uses three
audio features as input: Mel Frequency Cepstral Coefficients
(MFCCs), spectrograms and Mel spectrograms. Four vari-
ables are changed in the data sets to discover their influence:
the window length, the amplitude ratio UAV/aircraft, the type
of labeling and the use of third party database recordings.

The remainder of the article is structured as follows. The
generation of the data set is explained in section 2, including
how the individual sound recordings are obtained, how those
are processed and mixed to recordings that include both UAV
and aircraft sound. Secondly, the features and the model are
described in section 3. The results for each of the models are
shown in section 4 and discussed in section 5.

2 AUDIO ACQUISITION

This research needs a database that contains audio record-
ings, recorded on UAVs, of the UAV’s ego-sound and closely
approaching aircraft. Such a database does not exist yet and
therefore it is created for this purpose. The database consists
of (preprocessed) sound recordings (of UAVs, aircraft and ro-
torcraft) and labels, which indicate whether only UAV sound
is present or UAV and aircraft sound are present.

2.1 Sound recordings
The laws on UAVs prevent the UAV to come in the vicin-

ity of an aircraft. In order to still have a representative
database of UAV sounds that include passing aircraft, the
UAV sounds and aircraft sounds are recorded separately and
mixed afterwards. Three types of recordings have been used:
self-made recordings using a microphone on a UAV, general
aviation aircraft recordings using a microphone array and air-
craft recordings obtained from a third party audio database.

2.1.1 Recordings of the UAV sounds

The UAV sounds are recorded in the Cyberzoo of the TU
Delft. This is a protected area for UAVs to be safely and
legally flown at the university. An 808 micro camera2 is
placed under a Parrot Bebop UAV, so that its body already
blocks part of the UAV’s ego-sound. Between the UAV and
the microphone, foam is used to absorb the mechanical vibra-
tions. During the recordings, the UAV performed rotations
and movements around its pitch, roll and yaw axes at differ-
ent speeds. After recording, the data is cropped to remove
the silences at the beginning and at the end. These record-
ings are complemented with audio recordings from a mobile
phone that filmed the UAV from a close distance. Effectively
a total of 20 minutes of UAV recordings are used.

2.1.2 Recordings of general aviation flights

Since the most probable group to come in contact with UAVs
is general aviation (GA) rotor- and aircraft, flyover data has
been obtained at the biggest GA airfield of the Netherlands,
Lelystad Airport, in collaboration with the Aircraft Noise and
Climate Effects (ANCE) section of the TU Delft.

As Lelystad airport is expanding to a larger airfield, the
runway is extended, but the new part is not in use yet. This
part of the runway is therefore a perfect place to obtain
recordings as the aircraft would fly straight over the so-called
”acoustic camera”.

The acoustic camera, designed and built by the TU Delft
[12], consists of an array with 8 bundles of 8 microphones3.
The bundles are arranged in a spiral shape for optimal beam-
forming purposes. The microphones are covered in a foam
layer to decrease the noise due to wind. Moreover, the array

2http://www.chucklohr.com/808/
3Model: PUI AUDIO 665-POM-2735P-R
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is covered in foam in order to absorb ground reflections. All
the bundles are connected to a Data Acquisition Box (DAQ)
which samples the data at 50 kHz and sends it to the con-
nected computer. Not only the DAQ is connected to the com-
puter, but also an ADS-B receiver in order to receive aircraft
position information. However, the ADS-B did not produce
useful information as none of the GA aircraft broadcast ADS-
B information. Moreover, a mobile phone camera is placed in
the center of the array to capture the flyover on video, but this
data is not used for this research. The setup of the acoustic
camera is shown in Figure 1.

In total 75 recordings are obtained, which consist of back-
ground noise recordings and flyovers. One recording some-
times consists of more than one flyover. Effectively, 75 GA
aircraft and 9 helicopter flyovers are captured. The back-
ground noise consists of microphone noise, noise due to wind,
distant traffic and a distant motor race track.

For this research only the recording of one microphone
is necessary, so from only one microphone the recordings
are extracted. Every microphone is checked to make sure it
worked correctly. One of the 64 microphones is faulty, so its
data is not used.

2.1.3 Recordings obtained from a third party audio
database

With regard to creating a data set that is representative for the
possible air traffic sounds that a UAV could encounter, it had
to consist of more than only flyover data. For example, other
background noise could influence the detection performance.
Therefore also a (free) audio database4 is consulted to obtain
helicopter and (propeller) aircraft sounds. Only the sound
samples that are of sufficient quality and which are not mixed
with (too much) other background noise are selected.

2.2 Data preprocessing
All the separate recordings are manually modified before

adding them together. Some UAV recordings contained heavy
vibrations of the tape that held the microphone. Those record-
ings are removed from the data set. For both the UAV record-
ings and the third party database recordings the silent/fading
start and end are cut out. The recordings obtained at Lelystad
airport do not require this as the parts that do not include
aircraft sound are used as background noise. Instead, we
manually labelled every second in the recording, indicating
whether it consists of only background noise or include air-
craft sound. The recordings from Lelystad Airport include
noise introduced by the microphones and the wind. A first
order Butterworth low-pass filter is used to remove most of
the noise. Most of the time the aircraft sound information is
in the frequency region lower than 100 Hz. Only during a
flyover aircraft sound information comes above this value. In
order to capture the higher frequency content during a flyover

4https://freesound.org/

but also remove much of the noise during the rest of the time,
the cut-off frequency is set on 2.5 kHz.

All the recordings are resampled to a sample rate of 8
kHz as there is no important information present above the
Nyquist frequency of 4 kHz and it decreases the size of the
data set significantly, which shortens the computational time.
Secondly, the sound recordings are normalized by scaling the
amplitude between -1 and 1, so that the amplitude of two
recordings is similar. Before mixing aircraft and UAV sounds,
also data augmentation is applied to all the separate aircraft
and UAV recordings in order to increase the size of the data
set, which increases the performance of the model. Three
types of data augmentation are applied: addition of white
noise, increase in pitch and decrease in pitch. The white noise
is a randomly generated Gaussian distribution with mean 0
and a variance of 0.005. The pitch is increased and decreased
by two semitones on the 12-tone. An increase of two semi-
tones relates to 12/2

√
2 ≈ 1.12 times the original frequency.

After augmentation, the data set is four times its original size,
one original data set plus three augmented data sets.

2.3 Mixing the recordings

In order to get sound samples that include both aircraft
and UAV sound, the following mixing procedure is used.

First, the whole data set is split up in a test set and in a
training set. All the augmented versions of a sound sample
are always in the same set as their original sound sample to
ensure that the two sets are uncorrelated.

Secondly, each recording from Lelystad airport is com-
bined with a randomly selected UAV recording of the same
set. In some (part of the) recordings only background noise
is present. This background noise is necessary since without
the noise, the model might classify every sound which is not
UAV sound as aircraft sound. Mixing consists of adding a
segment of the Lelystad airport sound sample, which has a
random length, to one of the UAV recordings on a random
starting position. If the starting position plus the length of
the segment is longer than the length of the UAV sound sam-
ple, the added segment is cut off at the end of the UAV sound
sample. The mixed sample therefore never exists of only air-
craft sound. The total length of each mixed sample is equal to
the length of the UAV recording, which is different for each
recording.

Mixing the third party database recordings is done
slightly different than the method described for the Lelystad
recordings because the third party database recordings always
exist fully of aircraft sound. The difference between the two
mixing methods is that not only a part of the recording is
added to the UAV sound sample, but the whole recording is
added instead (at a random starting position).

The detection model in this paper requires the inputs to be
of equal length (more on this in subsection 3.2). As this is not
the case for the combined samples, the third step is to cut the
combined samples to equal lengths. To maximize the amount
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of data in the sets, the cutting length is set on 51 seconds,
which is equal to the length of the shortest combined sound
sample.

The amplitude ratio when mixing the UAV and aircraft
sound is not always 1:1. In this work, four UAV/aircraft am-
plitude ratios will be used, namely 0:1 (which means no UAV
sound), 1:1 (equal amplitudes), 1:4 (aircraft sound amplitude
is four times larger) and 1:8 (aircraft sound amplitude is eight
times larger). Most of the time, a ratio of 1:4 is used. This
ratio is obtained as follows. Assuming the average Sound
Pressure Level (SPL) of a UAV at one meter distance is 76
dB5 and that of an aircraft at 300 meters distance is 88 dB6,
the difference between the SPLs of the two sounds is 12 dB.
Equation 1 shows how the SPL is calculated from the pres-
sure p1 (which is the amplitude in the waveform) of a sound
and a reference pressure p0. Taking the amplitude of the UAV
waveform as reference pressure and the aircraft waveform as
p1, an SPL of 12 is obtained when the aircraft waveform is 4
times larger. If the ratio 1:4 is corresponding to an airplane
on 300 meters distance, 1:1 corresponds to a distance of 1200
meters and 1:8 to a distance of 150 meters, following Equa-
tion 2. In this equation, r2 is the distance of interest, r1 the
original distance, SPL1 the SPL at r1 and SPL2 the SPL at
r2.

SPL = 20 log
p1
p0

(1)

r2 = r1 · 10
|SPL1−SPL2|

20 (2)

2.4 Labels
Each second of a mixed sample is given a binary label,

indicating whether there is other aircraft sound present (1)
or not (0). The recordings from Lelystad airport are labeled
manually before mixing. There are two types of labeling,
called nearby detection labeling and distant detection label-
ing. Nearby detection labeling is partly based on listening
to the sound, and partly on looking at the spectrogram. The
spectrogram, which is shown in Figure 2 and elaborated on
in subsubsection 3.1.2, shows the amount of frequency con-
tent over time. Nearby detection labeling gives label 1 when
a peak is visible in the spectrogram. By ear this is noticeable
as more high frequency content is heard.

Distant detection labeling is purely based on hearing. The
frames in which a human is able to separate noise from air-
craft sounds are labeled 1. This time it cannot be based on the
spectrogram as the aircraft sound is either not visible on the
spectrogram (when it is blended in too much with the back-
ground noise) or it is visible (as a line on a single frequency
caused by the propeller’s rotational speed) but the background
noise is louder than the aircraft sound. An example of the lat-
ter is shown in Figure 3, at which the horizontal line around
100 Hz is also present when no label is given.

5https://www.youtube.com/watch?v=uprXhH6-FNI
6http://airportnoiselaw.org/dblevels.html

Figure 2: Spectrogram of a flyover recording. The exact fly-
over is between 100 and 110 seconds, which can be recog-
nized by a yellow peak and a Doppler shift around 100 Hz.
Also before and after the peak the aircraft sound is present,
which is visible by the horizontal line around 100 Hz.

The time instances that are not labeled one are labeled
zero, so also the background noise from the Lelystad record-
ings is given the same label as when there is no other aircraft
sound present. In Figure 3, the areas in the spectrogram that
are labeled as 1 are indicated in red for nearby detection la-
beling and green for distant detection labeling.

For the third party sound database, the whole aircraft
recording is always labeled as a one, as each of the sound
samples is selected on only having aircraft sounds. Again, all
the time instances in the mixed recording that are not one are
labeled zero.

3 AIRCRAFT AUDIO EVENT RECOGNITION

The aircraft sound will be detected by a framework that
exists of a feature extractor and a classifier. The features
capture important sound information and reduce the dimen-
sionality of the data. They are the inputs for the classifier.
Thereafter the classifier determines whether the sound sam-
ple contains aircraft sound or not.

3.1 Feature extraction
Three features are extracted from the combined sound

samples using Python library Librosa [13]. First there are the
Mel Frequency Cepstral Coefficients (MFCCs) [14], which
are chosen because of their popularity in one of the biggest
domains in machine hearing, Automatic Speech Recogni-
tion (ASR). The two other features, the spectrogram and Mel
spectrogram, are visual representations of the sound samples.
Content-based analysis of images is already quite developed
[15], therefore the image of a sound might be a good starting
point.

For every feature, each frame in the time dimension has a
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Figure 3: Spectrogram showing nearby detection labeling
(red) and distant detection labeling (green).

length of one second. One second is a rather large frame but it
chosen to reduce in dimensionality. The window moves over
the sound sample with a step of one second. All the sound
samples are 51 seconds long, thus from each sound sample
51 separate frames are obtained in the time dimension.

3.1.1 MFCC

The cepstrum is a domain which represents the rate of change
in multiple frequency bands. MFCCs are the coefficients of
which the cepstrum is composed. It has the ability to sepa-
rate convoluted signals in the time domain7. This domain is
therefore often used in speech recognition, to separate the vo-
cal pitch and the vocal tract. The coefficients are obtained by
taking the logarithm of the amplitude spectrum, converting
this to the Mel scale and taking the Discrete Cosine Trans-
form (DCT). The Mel scale, which is expressed as a function
of frequency (f ) in Equation 3, is a scale that approximates
the human perception of frequency. This scale emphasizes
the low frequencies (<1 kHz), which is also the frequency
range in which most of the UAV/aircraft sound information is
present. The full transformation from time domain signal to
MFCC is shown in Equation 4 [16].

M(f) = 2595 log

(
1 +

f

700

)
(3)

MFCC(d) =

K∑

k=1

(logXk) cos

[
d

(
k − 1

2

)
π

k

]

for d = 0, 1, ..., D

(4)

In this equation Xk is the Discrete Fourier Transform
(DFT) obtained in Equation 5 of which the frequency belong-

7http://research.cs.tamu.edu/prism/lectures/sp/
l9.pdf

ing to each k is warped to the Mel scale by Equation 3. D is
the total number of coefficients and N the number of data
point in the time frame. The number of coefficients used in
this research is 20.

Xk =

N−1∑

n=0

Xne
− 2πi

N kn for k = 1, 2, ..., N (5)

3.1.2 Spectrogram

Spectrograms are visual representations of the energy per fre-
quency plotted against time, of which the Mel spectrogram
uses the Mel scale of Equation 3 on the frequency axis. A
typical flyover spectrogram (without UAV sound), is shown
in Figure 2. In this figure the point where the aircraft is pass-
ing the array is between 100 and 110 seconds, which is visible
with the large yellow peak and a Doppler shift (the sigmoid-
shaped line around 1 kHz). It also shows that when the air-
craft is further away, it lacks in high frequency content (due to
atmospheric attenuation). That means most of the time only
the aircraft’s low frequency content is heard by the UAV in
combination with low frequency noise.

The spectrograms are calculated following Equation 6,
which is the magnitude to the power p of the Short-Time
Fourier Transform (STFT). Usually the Power Spectral Den-
sity (PSD) is chosen, for which p = 2. It uses a window
function w[n], in this case the Hann window of one second,
of which m is the index of the position in the window func-
tion with length N , discrete frequency k, signal x[n] at time
n.

Spectrogram =

∣∣∣∣∣
∞∑

n=−∞
x[n]w[n−m]e

−i2πkn
N

∣∣∣∣∣

p

(6)

3.2 Model
The previously described features are the input for a deep

artificial neural network: the convolutional neural network
(CNN). It has shown best performance for sound event recog-
nition tasks in [9],[10] and [11]. The basic CNN used in this
research is shown in Figure 4. The network is created with
the Python libraries Keras [17] and Tensorflow [18].

Even though the features consist of 51 second of
UAV/aircraft sound, the input for the CNN is a smaller time
window which slides over the time axis. The smaller time
window is used as otherwise the detection output of a frame
could be depended on data from later frames, due to the fully
connected layer. Multiple window lengths are used, as shown
in section 4. In the basis, however, the window size is three
seconds. This window slides over the feature’s time axis with
a step of one second.

The first layers of the CNN are convolutional layers.
There are two subsequent sets of layers, each consisting
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