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ABSTRACT

In this work, we address the problem of drone
detection flying nearby another UAV. Usually,
computer vision could be used to face this prob-
lem by placing cameras on board the patrolling
UAV. However, visual processing is prone to
false positives, sensible to light conditions and
potentially slow if the image resolution is high.
Thus, we propose to carry out the detection by
using an array of microphones mounted with a
special array on board the patrolling UAV. To
achieve our goal, we convert audio signals into
spectrograms and used them in combination with
a CNN architecture that has been trained to learn
when a UAV is flying nearby and when it is
not. Clearly, the first challenge is the presence
of ego-noise derived from the patrolling drone it-
self through its propellers and motor’s noise. Our
proposed CNN is based on the Google’s Incep-
tion v.3 network. The Inception model is trained
with a dataset created by us, which includes ex-
amples of when an intruder drone flies nearby
and when it does not. We tested our approach
with three different drone platforms, achieving
a successful detection of 97.93% for when an in-
truder drone flies by and 82.28% for when it does
not. The dataset used for this work will be avail-
able as well as the code.

1 INTRODUCTION

Recently, the autonomous drones have grown in popular-
ity in aerial robotics since they are vehicles with multiples
capabilities, with the help of on-board sensors such as In-
ertial Measurement Unit (IMU), laser, ultrasonics, and cam-
eras (both monocular and stereo). Visual sensors can be used
to generate maps, for 3D re-construction, autonomous nav-
igation, search and rescue, and security applications. How-
ever, these applications face serious problems when attempt-
ing to identify another drone in circumstances where the vi-
sual range is lacking, which can cause collisions, putting by-
standers at risk in public places. Thus, it is necessary to have
strategies that employ other modalities other than vision to
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Figure 1: Classification of audio in two different envi-
ronments. Left: spectrogram of an intruder aerial vehi-
cle nearby. Right: spectrogram without an intruder vehicle
nearby. https://youtu.be/B32_uYbL62Y

ensure the discovery of an intruder drone. One such modality
can be audio.

Audio processing has been a topic of research for years,
which includes the challenge of recognising the source of
an audio signal. In aerial robotics, the signals usually tend
to present noise that disturbs the original signal, making the
recognition an even more difficult task. However, if this is
successful, it can be used to find the relative direction of a
sound source (such as another drone) as well as identify other
sounds in different distance ranges. A useful manner with
which audio is represented in this type of applications is in
the time-frequency domain, in which the spectrogram of the
signal is manipulated as if it were an image. These images al-
low a detailed inspection of the noise of the rotors to analyse
vibration and prevent future failures in the motors. By identi-
fying features inside the spectrogram, sound source identifi-
cation and localisation may be possible over a drone.

Recent works employ deep learning strategies (such as
Convolutional Neural Networks, CNN) to classify sound
sources, and many of these methods aim to learn features
from a spectrogram. We propose to use a CNN to identify
when there is or may not be an aerial vehicle near our drone
from a given input spectrogram (See Fig.1).

We base our CNN-based classification model on the
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Google’s Inception v.3 architecture. The information is sepa-
rated in two different classes: with and without a drone. Each
class has 3000 spectrograms for training. Each spectrogram
is manipulated as though it is an image, with each pixel rep-
resenting a time-frequency bin, and its colour representing its
energy magnitude. Moreover, our approach aims to classify
with a high level of performance over different aerial plat-
forms.

This paper is organised as follows: Section 2 provides re-
lated works which identify sources in the environment with
aerial vehicles; Section 3 describes the hardware used; Sec-
tion 4 provides a detailed description of the proposed ap-
proach; Section 5 describes the analysis of the spectrograms
for each class; Section 6 presents the classification results us-
ing the proposed approach; and conclusions and future work
are outlined in Section 7.

2 RELATED WORK

As mentioned earlier, drones that solely employ vision
may be limited when identifying aerial vehicles in an envi-
ronment near a flight zone. Thus, works with radars have
used the micro-doppler effect to identify a target [1] or dif-
ferent targets [2]. This use, as the basis for classification, the
change of the audible frequency due to changes in the velocity
of the propellers [3,4], as well as other features [5]. Addition-
ally, when this effect is represented by its cadence frequency
(CFES), it can be used to recognise other descriptors like shape
and size, achieving the classification of multiple classes of
aerial vehicles [6].

As for audio processing techniques, they have been used
in aerial robotics for classification, detection, and analysis of
rotors, to analyse annoyances generated by the UAV’s noise
through psycho-acoustic and metrics of noise [7]. Likewise,
they have been used for the localisation of sound sources [8],
reducing the effect ego-noise of the UAV’s rotors and localise
the source in high noise conditions in outdoor environments
[9]. These auditory systems have been used in conjunction
with radars and acoustic sensors, showing good performances
when identifying UAVs in public places [10] and detecting
sound sources in spaces of interest [11]. Even though these
alternatives have been developed, the audio processing area
of research over a drone is a challenging task that still has
considerable room to develop.

On the other hand, good acoustic identification using har-
monic spectrums can help avoid collisions between two fixed-
wing aircraft by increasing the detection range of an intruder
UAV to 678 meters [12]. This localisation range can be fur-
ther improved by 50% (while reducing computational costs)
by using harmonic signals [13]. In [14], a design for position-
ing an 8-microphone array over a drone is presented, aimed
to detect distinct nearby UAVs from a given drone. This de-
sign is useful for detection, localisation, and tracking intruder
drones operating close to undesired areas such as airports or
public environments.
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There are several strategies that employ deep learning for
sound classification. For example, the direction of a sound
source was estimated using spherical bodies around a drone
and microphones on-board in [15]. Furthermore, multiple
targets were detected, localised and tracked using audio in-
formation and convolutional networks in [16]. Deep learn-
ing strategies have also been used to identify the presence of
different drones in outdoor environments, by analysing and
classifying their spectrogram-based sound signatures in [17]
or by merging them with wave radar signals in a convolutional
network [18]. However, these strategies are performed from
ground stations. There isn’t much developed when it comes
to identifying a UAV from the audio data captured from mi-
crophones on-board another UAV.

3 SYSTEM OVERVIEW

The primary aerial vehicle from which all test are carried
out is a quad-rotor "Matrice 100”, manufactured by DJI. This
platform is popular because it can carry multiple sensors for
outdoor navigation and autonomous flight, as it can bare a
load of up to 1000 grams.

The audio capture system is the 8SoundUSB system that
is part of the ManyEars project [19]. It is composed of 8§
miniature microphones and an USB-powered external audio
interface. The microphones were designed for mobile robot
audition in a dynamic environment, implementing real-time
processing to perform sound source localisation, tracking,
and separation.

For audio recording and processing, we mounted the mi-
crophones over the same 3D-printed structure used by [14] to
record eight-channel audio in raw format. All of the hardware
was driven by the on-board Intel Stick Computer, with 32 GB
of RAM and Linux Ubuntu 16.04 LTS. The recordings were
carried out in two different environments: with an intruder
drone and without an intruder drone. The intruder drone was
a Drone Bebop 2.0, manufactured by Parrot, which is known
for its stability and ease of control.

The place where the recordings were made was in the
Centre of Information of the Instituto Nacional de Astrofisica,
Optica y Electronica (INAOE), where there is a considerable
large area that is appropriate for flying multiple drones at
once.

The recording process is shown in Figure 2. First, the
microphones are placed in the Matrice 100, with microphones
1, 2, 3 and 4 mounted in the front and microphones 5, 6, 7
and 8 mounted in the back. Then, an expert pilot controls
the drone while the audio is recorded on-board the Intel Stick
Computer.

The specifications with which audios were recorded are:

e The sampling rate is 48 kHz to allow a considerable
amount of original resolution which can later be re-
duced if need be.

e Recording time: 240 seconds in the environment
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Figure 2: General overview to record the audio in two different environments and generate a dataset.

with an intruder drone, labelled as the class “intruder
drone”’; and 198 seconds in the environment without it,
labelled as the class ’no intruder drone.”

e The drones performed different actions while record-
ing in both environments. In the environment “intruder
drone”, these actions were: on the ground with just the
motors activated, hovering, and manual flight. In the
environment “intruder drone”, the actions were: the in-
truder drone flying on the side of the drone and over the
top of the drone.

e The audio files were then manually transferred to a
computer in the ground. This was done to avoid latency
issues in the wireless transfer. The audio files were then
transformed to the time-frequency domain, generating
a spectrogram for each microphone (as detailed in the
following section).

4 TRAINING DATASET

The training dataset was created from the spectrograms
generated by the recorded data, and apart from the train-
ing dataset, a testing dataset was created to validate the sys-
tem. Each audio file was segmented in 2-second segments.
The Short Time Fourier Transform was applied to each seg-
ment, with a 1024-sample Hann window (to avoid spectral
leakage) and 75% overlap. The audio files in the negative
class "no intruder drone” include recordings of the air blow-
ing through the trees, voices, cars, people and the noise of
the Matrice’s motors. The positive class “intruder drone” in-
cludes the recording of 200 seconds of the intruder drone fly-
ing on the side and over the Matrice 100. The Tables 1 and 2
show the spectrograms generated for each action which make
up the whole of the training data set.

4.1 CNN architecture

We propose a convolutional neural network (CNN) as our
classification model. This network is based on the architec-
ture of the Google Net Inception v.3 (as shown in Figure 3)
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Action Time Spectrograms (by mic)
Motor Activation  198.0 sec 98
Hovering 198.0 sec 98
Flight Manual 198.0 sec 98
Flight Manual 2 198.0 sec 98
792.0 sec 3168 (by all mics)

Table 1: Spectrograms of the class “no intruder drone”.

Action Time Spectrograms (by mic)
Flight over 200.0 sec 100
Flight to the side ~ 200.0 sec 100
Flight over 2 200.0 sec 100
Flight to the side 2 200.0 sec 100
800.0 sec 3200 (by all mics)

Table 2: Spectrograms of the class “intruder drone”.

using Keras and Tensorflow. We employ a transfer learning
strategy. Meaning, our system uses a model that was already
trained on the ImageNet corpus [20], but we then augmented
it with a new top layer to be trained with our recorded data.
This is done so that the resulting model is focused in recog-
nising the spectrogram-type of images relevant to our appli-
cation: identifying an intruder drone flying near another.

The training data set was arranged in folders, each rep-
resenting one class and baring approximately 3000 images.
The model inherited the input requirement of the Inception
V.3 architecture, receiving as input an image of size 224 x
224 pixels. The network was trained for 4500 epochs. Since
the softmax layers can contain N labels, the training process
corresponds to learning a new set of weights; that is to say, it
is technically a new classification model.
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Figure 3: Schematic diagram of Inception V3.

5 SPECTROGRAM ANALYSIS

It is important to manually analyse the resulting spectro-
grams, to observe (in a preliminary fashion) if both classes
are distinguishable to a human listener. The first analysis was
made with the Audacity software [21] to visualise the audio
data as a spectrogram. Then, the audio files were reproduced
to see if a human listener was able to identify the intruder
drone flight during the recordings. In Figure 4, the possible
positions corresponding to these moments are marked in a
circle.

Figure 4: Comparison between spectrograms of manual con-
trol (top) and intruder drone (bottom).

Once it was shown that a human listener is able to identify
the intruder drone, further analysis was carried out. 2-second
time-frequency spectrograms were generated (as described in
Section 4) for the two classes, and are shown in Figure 5. As
it can be seen, there is an important amount high-frequency
energy present in the “intruder drone” class that is not present
in the class “no intruder drone.”

Figure 5: Spectrograms generated of activate motors (left)
and intruder drone flight (right).
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6 RESULTS OF THE DRONE CLASSIFICATION

The results shown in this section is that of the trained
classifier. Its aim is to classify between two classes of input
spectrograms. It could be argued that it is actually a verifier.
However, we evaluated it as a classifier for future proofing.

6.1 Validation

We performed two experiments to evaluate the classifi-
cation model. The first experiment shows the overall effec-
tiveness of the model by testing it with 920 images for each
class with an average inference time of 0.4503 sec. Table 3
presents the results of this test, and it can be seen that the class
“intruder drone” is consistently classified correctly, with only
19 wrong classifications out of 920 tests. However, the class
’no intruder Drone” gives a lower accuracy, with 163 images
wrong classifications.

Class Images Incorrect Accuracy
No intruder Drone 920 163 82.28%
Intruder Drone 920 19 97.93%

Table 3: Validation of classification network.

To a better understanding of the performance of the clas-
sifier we considered a binary classification where a nearby
drone is considered as a positive sample in this way we have
the true positive (Tp) = 901, true negative (Tn) = 757, false
positive (Fp) = 19 and false negative (Fn) = 163. In Table 4,
we show the result of Accuracy, Precision and Recall provide
a better understanding of the performance of the classifier.

Recall
0.84680

Accuracy Precision

0.90108 0.97934

Table 4: Accuracy, precision and recall result.

The second experiment measures the output of the model
for each class, given a representative spectrograms to test
with. 20 spectrograms were chosen (10 for each class), and
the model outputs of each class are shown in Table 5. Al-
though some outputs are below 70% (which implies some
uncertainty of the model), the final classification is correct
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Class

Classification

97.82%
2.18%

93.28%
6.72%

No intruder Drone
Intruder Drone

78.82%
21.18%

63.80%
36.2%

76.59%
23.41%

77.54%
22.46%

85.76 %
14.24%

No intruder Drone
Intruder Drone

84.66 %
15.34%

89.57 %
10.43%

82.31%
17.69%

88.23%
11.77%

90.46 %
9.54%

Intruder Drone
No Intruder Drone

93.14%
6.86%

91.10%
8.90%

Intruder Drone
No Intruder Drone

94.70 %
5.30%

70.50%
29.50%

91.57 %
8.43%

75.93%
24.07%

65.27%
34.73%

98.89 %
1.11%

Table 5: Example of classification with CNN using some test images.

in all cases. These results give us a representative view of the
expected performance of the model with the two classes that
are relevant to our application: identifying an intruder drone
flying near another.

7 CONCLUSION

In this paper, we proposed a CNN-based classifier of two
types of environments: with and without an intruder drone,
using only audio captured by a UAV. A time-frequency spec-
trogram was used as an the signal representation, which is
compatible with known CNN-based architectures. We em-
ployed a transfer-learning strategy, with which the top layer
of a pre-trained Google’s Inception V.3 model was modi-
fied and trained, which made the training process very effi-
cient. The classifier was evaluated in two experiments, and
it achieved a good classification performance in most cases.
The work can be further strengthened by using the eight mi-
crophones individually to detect the direction of the intruder
drone. This would allow a fast enough detection, to give
enough time to plan a strategy for collision avoidance.
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