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ABSTRACT

Autonomous navigation in dynamic unknown
environments is a key research topic in robotics
and has gained a lot of attention from the re-
search community in the last years. In this paper,
we propose a strategy for autonomous naviga-
tion in an environment with spheric obstacles. In
this strategy, we use the YOLOv3 object detec-
tion model to detect the obstacles and an Iterative
Perspective-n-Point (PnP) algorithm to estimate
the center of the obstacle based on the result from
the detector. Then using the obstacles’ positions,
a Receding Horizon Control (RHC) based plan-
ner is used to plan a trajectory using Covari-
ant Hamiltonian Optimization (CHO) function,
and a trajectory controller controller based on
Model Predictive Control (MPC) is used to fly
the planned trajectory. The proposed navigation
strategy is evaluated with Rotors Gazebo sim-
ulator in a dynamic environment. Experimen-
tal results show that our autonomous navigation
strategy is a valid approach for Unmanned Aerial
Vehicle (UAV) navigation in dynamic environ-
ments.

1 INTRODUCTION

Navigation in dynamic environments is a key challenge
in the area of autonomous navigation. It is still an un-
solved problem because of the requirements of fast percep-
tion, planning and control algorithms when robots operating
in a dynamic environment. During the last years, this prob-
lem has attracted a lot of researchers’ attention and several
methods have been proposed [1, 2, 3]. Among these meth-
ods, the following ones have gained a lot of interest within
the research community, Artificial Potential Field (APF),
geometry-based approach, Velocity Obstacle (VO), Partially
Observable Markov Decision Process (POMDP), learning-
based method and sampling-based strategy.

Our method can be thought of as a kind of geometry-
based strategy because we describe the obstacles using geo-
metric models (spheric obstacle in this case). In our method,
first of all, we build a dataset of the obstacles we want to avoid
and train the tiny version of the YOLOv3 model [4] to detect
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them. Next, the 3D positions of the centers of the obstaces
will be computed using an Iterative PnP algorithm. Then, an
online trajectory planner uses an RHC framework will be ap-
plied to plan a path. Finally, an MPC trajectory controller is
employed to fly the planned trajectory.

The remainder of the paper is organized as follows. Sec-
tion II presents problem formulation. In Section III, we intro-
duce the proposed methodology. We show the experimental
results and discussion in Section VI. And finally, Section IV
concludes the paper and summarizes future research direc-
tions.

2 PROBLEM FORMULATION

2.1 Robot Model Assumption
A multirotor UAV has been used in this research. The

multirotor UAV has 6 Degrees of Freedom (DoF), 3 DoF in
translation and 3 DoF in rotation, and can fly freely in the 3-
dimensional environment. The on-board sensors of the UAV
are a front RGB camera and an Inertial Measurement Unit
(IMU) sensor. The front RGB camera is used to detect obsta-
cles within its the Field of View (FOV) and the IMU sensor
is used for estimating the pose of the UAV. In this paper, the
UAV will be modelled as a sphere that fully contains the UAV.

2.2 Environment Model Assumption
The operating environment in this paper is an environ-

ment with dynamic obstacles, modelled as spheres. The size
of the obstacles is given but their positions are unknown. The
initial point Pinit and goal point Pg are given and the robot
should move from Pinit to Pg without collision. The robot
will be thought as reaching Pg when the distance from the
center of the robot to Pg is smaller than the threshold LG.
The environment model which is used in the paper is shown
in Figure.1.

3 METHODOLOGY

The description of the proposed architecture for au-
tonomous navigation is shown in Figure.2. There are 3 main
parts in it, which are robot localization , obstacles detecting
and pose estimation and online RHC trajectory planner
and controller. The part of the robot localization is based on
our previous work [5].

3.1 Obstacles Detection and Pose Estimation
In this paper, we train tiny YOLOv3 to detect the obsta-

cles. It’s an object detector that uses features learned by a
deep convolutional neural network to detect an object. Given

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 132

http://www.imavs.org/pdf/imav.2019.17



IMAV2019-17 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Figure 1: The environment model with dynamic obstacles.

the controlled experimentation conditions of this work, a very
naive obstacle detection method ( for example thresholding
by color and circle detection) based on classical computer vi-
sion can be designed, but this could not work on future ex-
perimentation that includes real world flights. The reason of
using YOLO instead of an easier method is to take un ac-
count the noise that would be introduced by the detector in
the real world. The detector trained by tiny YOLOv3 has a
very high frame rate and can be run real-time with a Graph-
ics Processing Unit (GPU). The average processing time is
15ms using a GeForce GTX 1050Ti GPU. The output of the
detector are the bounding boxes which enclose the detected
obstacles. The dataset used to train the network has been de-
rived from OpenImages V4.

In order to calculate the pose of the obstacles with suffi-
cient accuracy, the bounding boxes should enclose the obsta-
cle completely. And because the obstacles in our paper are
spheric obstacles, the bounding boxes should have a square
shape. As it can be seen from Algorithm 1, if the quotient
between the bounding box’s width w and height h is within
a predefined range of [σ0, σ1], the bounding box will be con-
sidered valid and used to compute the center of the obstacle.

With selected bounding boxes, we use an Iterative PnP
algorithm [6] to compute the 3-dimensional position of the
center of the obstacles. The average processing time of the
iterative PnP is 14 ms when we run it a laptop with an Intel
Core i7-8750H CPU..

3.2 Online RHC trajectory planner and controller
The RHC framework based trajectory planner is used in

order to find the best trajectory from a trajectory library. In
this paper, first, we use some ideas from Andreas Bircher et al
[7] to generate online goal candidates and some ideas from
Zheng Fang et al [8] to build the CHO objective function.
Then the CHO objective function is used to generate a trajec-
tory library. The initial point and goal point of the path are

Algorithm 1 Bounding Boxes Filter

Input: Bounding Boxes From Detectors
Output: Bounding Boxes Selected

1: B0 ← Bounding Boxes From Detectors;
2: for Bounding Boxes B in B0 do
3: if σ0 < B.width/B.height < σ1 then
4: Bounding Boxes Selected← B;
5: end if
6: end for

the current robot position and the generated goal candidates,
respectively. Finally, the trajectory with the lowest objective
function value is selected as the best trajectory.

The Rapid Random Tree (RRT) framework [9] is used to
generate the goal candidate nodes. As it can be seen from
algorithm 1, first we set the number of maximum goal can-
didate nodes Nmax, next a random node is generated in the
predefined goal candidates searching area VS , then we find
a goal candidate by Nearest and Steer function from the
RRT framework and store this goal candidate. The Nearest
function is responsible for searching for Pnearest and Steer
function is used for generating Pnew, detail information about
these two functions can be found from [9]. At last, if the num-
ber of goal candidates is larger than Nmax, the online goal
candidates generation process is finished.

A modified objective function for CHO is built to create
the trajectory library and search for the best trajectory. Our
objective function measures four different aspects of the tra-
jectory planning problem. First, in order to get a smooth path,
we add a penalization based on dynamical criteria, like veloc-
ities and accelerations to the trajectory. Next, we penalize the
trajectory by the distance from the trajectory waypoint to the
objects to make the trajectory avoid obstacles. Then, the end
of the trajectory is penalized by the distance from it to the
final goal, which can help the trajectory planner plan a tra-
jectory close to the final goal ξg . Finally, we penalize the
trajectory by the distance from its waypoint to the ground to
make the trajectory go far away from the ground. We describe
these four items by fs, fo, fg , fa respectively, and define our
objective function by summing their weights:

f(ξ) = w1fs(ξ) + w2fo(ξ) + w3fg(ξ(1)) + w4fa(ξ) (1)

As described above, the trajectory is ξ and ξ(s) is the
function mapping the trajectory length s to the robot configu-
rations, the initial and end configurations of the trajectory ξ is
ξ(0) and ξ(1) respectively. The waypoints in the trajectory ξ
are 3 DoF point {x, y, z}. w1, w2, w3 and w4 are the weights
for each objective functions.

The objective functions of fs, fo, fg are the same from
[8]:

fs(ξ) =

∫ 1

0

co(ξ(s))‖
d

dt
ξ(s)‖ds (2)

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 133

http://www.imavs.org/pdf/imav.2019.17



IMAV2019-17 11th INTERNATIONAL MICRO AIR VEHICLE COMPETITION AND CONFERENCE

Figure 2: Architecture of the autonomous navigation method proposed.

fo(ξ) =
1

2

∫ 1

0

‖ d
dt
ξ(s)‖2ds (3)

fg(ξ(1)) = ‖ξ(1)− ξg‖ (4)

co(ξ(s)) in the objective function is the obstacle cost for
the spheric obstacle obstacle:

co(ξ(s)) =
w0Ro
3

(1− Dist(ξ(s))

Ro
)3 (5)

w0 is the weight and Ro is the radius of the spheric obsta-
cle obstacle. Dist(ξ(s)) is the distance from the waypoints
in the trajectory to the center of the spheric obstacle.

The objective function of fa is learned from [10]:

fs(ξ) =

∫ 1

0

ca(ξ(s))‖
d

dt
ξ(s)‖ds (6)

ca(ξ(s)) in the objective function is the altitude cost:

ca(ξ(s)) =

{
(Alt(ξ(s))− ε)2, Alt(ξ(s)) ≤ ε

0, Alt(ξ(s)) > ε
(7)

Alt(ξ(s)) is the altitude of the waypoints of the trajectory
ξ and ε is predefined the minimum value of the altitude.

The path library is generated by using the objective func-
tion f(ξ) and the best trajectory is the trajectory with the low-
est objective function value and optimized by minimizing the
objective function f(ξ).

After obtaining the trajectory, an MPC based trajectory
controller which is similar to [11] is used to follow the robot
to correctly follow the planned trajectory.

While the robot is flying along the trajectory, we will
check the status of several trajectory points in front of the
robot. If the distance from one of the trajectory points to the
center of the obstacles is smaller than the obstacles’ radius,
the trajectory planner will search for a new trajectory to fly.

Algorithm 2 Online Goal Candidates Generate

Input: Current Robot Position
Output: Goal Candidate Nodes

1: P0 ← Current Robot Position;
2: T ← P0;
3: NT ← 0;
4: while NT < Nmax do
5: Prand ← SampleFree(VS);
6: Pnearest ← Nearest(T, Prand);
7: (Pnew, Tnew)← Steer(Pnearest, Prand);
8: Put Pnew in Goal Candidate Nodes
9: NT ← NT + 1;

10: end while

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

4.1 Experimental Setup
RotorS Gazebo simulation environment and Robot Op-

erating System (ROS) have been used under Ubuntu 18.04.
The Rviz/Gazebo environment can use real physical param-
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eters of the robot and environment. All the experiments run
on a laptop with Intel Core i78750H at 2.2GHz, a GeForce
GTX 1050Ti GPU. The simulation of the proposed naviga-
tion method is integrated into our open source framework
Aerostack1. The used environments are 3D indoor environ-
ments. The UAV in the simulation is the AscTec Humming-
bird, which is equipped with a front RGB camera. The front
camera takes charge of receiving information from the envi-
ronment in which the robot operates. The UAV can fly freely
in the 3-dimensional environment.

4.2 Evaluation of Obstacle Pose Estimation

We build the environment which is shown in Figure 3 to
evaluate the performance of our obstacle pose estimation al-
gorithm. The size of the environment is 10m × 12m. The
multirotor UAV hovers at the point (0, 0, 1.1)m, the proposed
approach for obstacle detection and pose estimation strategy
are used to calculate the center of the obstacles by using the
images captured from the UAV’s front camera. We test our
obstacle pose estimation strategy with two different spheric
obstacles. The radius of these spheric obstacles is 1m and
1.5m, respectively. The position of obstacle will generate
randomly in the obstacle area. The obstacle area is a cube
area, the center of the area is (5, 0, 1.125)m. The length (L),
width (W) and height (H) of the obstacle area is 6m, 6m and
1.5m respectively. We run our algorithm 1000 times for the

Figure 3: The environment used to evaluate the performance
of obstacle pose estimation algorithm.

spheric obstacles mentioned above respectively, and compute
the error which is the euclidean distance of the estimated ob-
stacle center position and Gazebo ground truth. Then, Max
Error (MaxE), Min Error (MinE), Mean Error (ME) and Root

1www.aerostack.org

Mean Square Error (RMSE) is calculated and can be seen
from Table 1

obstacle radius = 1m obstacle radius = 1.5m
MaxE (m) 1.9534 3.3951
MinE (m) 0.0105 0.0135
ME (m) 0.3061 0.2981
RMSE (m) 0.2315 0.3114

Table 1: Results of obstacle pose estimation.

4.3 Experiments of Autonomous Navigation
We use the environment shown in Figure 1 to test the per-

formance of our autonomous navigation system. In the en-
vironment, there are 3 dynamic obstacles which have a sinu-
soidal trajectory. The initial point of the robot is (0, 0, 0)m.
The coordinate x, y and z are randomly generated between
[8, 8.5]m, [−3, 3]m and [0.75, 1.5]m, respectively. We run
our autonomous navigation algorithm 50 times in the environ-
ment. Table 2 shows the results after running the algorithm
50 times. In the table, the Successful Rate (SR), Path Length
(PL), Time to the Goal (TG), Maximum Velocity (MaxV) and
Mean Velocity (MeanV) express the performance of success-
ful flight from the initial point to the goal point, the mean
length of the path, the average time to reach the goal, the av-
erage maximum velocity, and the average velocity for the 50
runs.

SR (%) 82
PL (m) 9.8848
TG (s) 28
MaxV (m/s) 0.7012
MeanV (m/s) 0.3223

Table 2: Results after 50 runs of our navigation algorithm in
the dynamic environment.

Figure 4 shows 3 flying trajectories from the 50 runs. The
figure of top left, bottom left and bottom right correspond re-
spectively to the top view, left view and normal view of the
3 flying trajectories in the test environment. In the figure, the
red point is the initial point which is (0, 0, 1.1)m, the yellow,
green and blue points are the goal points for different trajec-
tories and the purple, brown and blue line lines correspond to
the 3 different trajectories. The red spheric obstacles are the
dynamic obstacles which move with a sinusoidal trajectory.

A video description of these flights for the 3 trajectories
can be seen from https://vimeo.com/347564788.

4.4 Discussions
As it can be seen from Table 1, there are some errors in

the obstacle pose estimation. However, the SR in Table 2
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Figure 4: Three views of three flight trajectories.

shows that it is still valid for our proposed trajectory planner.
The SR in Table 2 also shows that our navigation strategy
can be used for navigation in an environment with dynamic
spheric obstacles with a maximum velocity of 0.7012m/s
and an average velocity of 0.3223m/s.

In this paper, we build a Gazebo simulation environment
and use Rotors Gazebo simulator to evaluate our algorithm,
Rotors Gazebo model incorporates a good dynamic model for
the aerial robot which can provide realistic flight behaviors
and it is widely used in the research community [12, 13].

5 CONCLUSIONS AND FUTURE WORKS
In this paper, a method for autonomous UAV naviga-

tion in an environment with dynamic obstacles has been pre-
sented. An obstacle detector based on YOLOv3 and an iter-
ative PnP algorithm are used to estimate the relative position
of the obstacles. Then, an online RHC trajectory planner is
used to plan a path and finally, the robot is controlled using
an MPC controller in order to guide it to the goal waypoint.
The experiment results show that this is a valid approach for
UAV navigation in dynamic environments.

In the future, we will improve the performance of our de-
tection and pose estimation algorithm to reduce the errors in
obstacle pose estimation. An Extended Kalman filter or Un-
scented Kalman Filter will be also used to predict the future
position of the obstacle and used in our trajectory planner
to improve its performance. A real flight will also be im-
plemented to evaluate the performance of the proposed algo-

rithm.
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