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ABSTRACT

In this paper we present a CNN architecture to
automatically estimate the position of a drone, in
metres, relative to a gate in a race track. The
latter arises in the context of the autonomous
drone racing competition where the challenge is
to design a drone that can beat a human in a
drone race. There have emerged different pro-
posals to address this problem. Notably, local-
isation of the drone in the race track is one of
the first capabilities that could lead to a solution.
However, global localisation may require sophis-
ticated methods such as odometry or SLAM that
may become expensive to be computed on board.
Furthermore, global localisation may drift as the
drone runs the track. Motivated by the latter, we
present a CNN architecture based on the Posenet
network, which was designed for camera relo-
calisation in real time. Nevertheless, we have
adopted, modified and re-trained such network
to the context of relative localisation w.r.t to a
gate in the track, which can be exploited by the
autonomous navigation algorithms for the race.
We report an average performance of 50 fps and
a maximum up to 100 fps in a low budget com-
puter with a modest GPU, thus outperforming
similar works in the state of the art.

1 INTRODUCTION

Autonomous Drone Racing (ADR) is an open challenge
that focuses on having to beat a human in a drone race.
This task leads to various challenges, such as localisation
and drone control navigation. To know where the drone is,
represent a fundamental task in the planning for autonomous
navigation, in the last decade several works were focused on
estimating the pose of a robot by means of using a single
camera and a techniques such as visual odometry or visual
simultaneous localisation and mapping, with good accuracy
in the estimation, but with the caveat that such estimates may
be obtained at low frame rates (20 - 30 Hz). Pose estimation
at high frequency is desirable as it could be exploited in
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agile flights, such as those expected in a drone race. Even

Figure 1: We design a method for Autonomous Drone Rac-
ing based on CNN for pose estimation and an algorithm
for autonomous navigation. See https://youtu.be/
5rboqinFXYo

proposals that have been employed in ADR competitions
operates at 10 fps.

Motivated by the above, in this work we proposed an al-
gorithm for Autonomous Drone Racing based on Convolu-
tional Neural Networks aiming at estimating the pose of the
drone relative to the gate and at a high frequency. Similar
works have achieved this but at a frame rate of 10 fps. In con-
trast, our proposal achieves an estimation speed of 100 fps on
average with GPU and 20 fps on average with CPU.

To describe our approach, first we will discuss the related
work in section 2, then we will describe the methodology
used to design and train the network and how we use the pose
estimation for autonomous navigation in section 3. Next, we
will present the testing results showing that we can estimate
the pose up to 100 fps, in section 4. Finally, conclusions are
discussed in section 5.

2 RELATED WORK

In recent years, the problem of estimating the position of
the camera has been widely studied. There are two main ap-
proaches to Visual Odometry: geometrical approach and deep
learning approach.
Visual SLAM is one of the most used algorithms to known
the robot (camera) position in navigation. V-SLAM solves
the problem of localisation and mapping the environment by
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landmarks and features from the frame observed [1]. Deep
learning-based algorithms have explore different ways to esti-
mate camera pose. We can found in literature works that uses
CNN as main algorithm and shows the viability of the results
instead geometric ones [2, 3], other ones resolves localisation
via V-SLAM in where estimates VO and also generates a map
of the environment [4, 5]. One relevant work is the reported
in [6, 7] where they propose a Network they called Posenet.
Posenet is based in GoogLeNet [8]. The main contribution
of the work is the change of the softmax classifier in the last
three layers by a regressor to estimate the pose of the camera.
They report high accuracy in their results. Also, it is reported
a real-time computation for pose estimation, a time of 5ms.
There are some works, focus in the estimation of the pose of
an object in the image, this is the scope of the works pub-
lished in [9, 10, 11, 12].
Seminal works addressed the problem to autonomous navi-
gation by using visual odometry or visual SLAM algorithms
to resolve the drone’s localisation [13] and then generate a
planning based on the pose of the drone. In this same con-
text, the works [14, 15] describe an algorithm to autonomous
navigation by detecting the gate objective and develop a plan-
ning route for the drone flying. Using traditional computer
vision, the works presented in [16, 17] propose a strategy
based on colour pixels of the gate for detection (four corners)
and subsequently, the problem of perspective n-point (PnP)
is solved to estimate the relative position of the drone. Other
approach based on gate detection by the use of deep learning
is presented in [18], they propose a modified SSD network
they called ADR-Net to gate detection and then they propose
a guidance algorithm based on LOS vector guidance to per-
forms autonomous flight to cross the gate.

3 METHODOLOGY

For autonomous navigation in drone racing, the principals
approach have shown an efficient way to planning navigation
knowing the position of the gate.

In this work we propose an approach to pose estimation
based on gate position, this means, not to estimate the pose
of camera based on the whole scene, instead take the gate as
reference an estimate how far is the camera from the gate.

We propose a CNN solution based on Posenet [6].
Posenet allows to estimate 6D camera pose for a complete
scene outdoors and indoors. We are only interested in 3D
camera pose, it means only translation is required for this
work, thus we modify the regressors layers to outputs only
position (x, y, z) and set the euclidean distance only for trans-
lation for the learning algorithm. Also is eliminated a image
normalization (mean subtraction) due the use in continuous
video images (real-time). For this propose, this modifications
are made in a complete network and also is designed a re-
duced one for increasing network rate predict (see figure 2).

The dataset was designed in simulated environment using
gazebo. The scene is created with two gates only, the reason

Figure 2: Reduced Posenet architecture.

for this is because when the drone is far enough of gate one, it
can see the both gates. Then the drone flies towards the gate
and when it is close to the gate one the camera will be in a
blind point from that gate, this means that the drone will no
be able to see the gate one. Thus, gate two will appear in the
line vision producing a new estimation of the pose related to
gate two. It is for that reason that the dataset is design in that
way, figure 3 shows an example of the gates in the Gazebo
scene.

Figure 3: Example of gates used for training.

Using the gates designed as shown, the pose of the drone
is calculated used gazebo model state, but not from scene ori-
gin, the pose is related to the gate one. Thus the groundtruth
is created related the distance of the drone from the gate one,
the figure 4 illustrates how is the pose of the drone taken in
the simulator.

The pose estimation calculated by the CNN, is used to de-
velop autonomous navigation. The algorithm developed cal-
culates the trajectory adjustment necessary to fly through the
gate. In the first step, the drone aligns its position to the cen-
ter of the gate (y position), and then when it is centered the
algorithm commands to fly the distance necessary to close
the gate. As we describe early, when the drone is in the
blind point of the gate, then predict the position to the next
gate, with this new position, it is estimate the distance left
to cross the gate. When the gate has been through, the algo-
rithm restarts the process to fly and cross the next gate. The
methodology described is illustrated in the figure 5.
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Figure 4: Pose of the drone related to the center of the gate,
top view.

Figure 5: Proposed methodology.

4 EXPERIMENTS AND RESULTS

The experiments were conducted by the use of simulated
environment using gazebo. This section describe the results
obtained in each experiment.

4.1 Pose evaluation
To evaluate the pose predicted. ROS framework was

used to communicate simulated environment (Gazebo) with
the Predictor (Modified Posenet) and RVIZ. The experiments
performed showed that exist a precision zone for the predic-
tion due to the design of the training dataset. Inside the pre-
cision area (this area has size 2.2m x 2.5m), the mean error
decreases and prediction is close to the groundtruth, the fig-
ure 6 shows the evaluation of the pose predicted displayed in
RVIZ, also is attached to figure a white rectangle indicating
the precision area detected.

The error calculated inside and outside the area indicates
that when the gate is the line vision of the drone the error
decreases (inside area), but the error increases as the drone
flies away leaving out of the line of vision to the window. The
poses were compare calculating the distance between them
(error). Figure 7 plots the errors in the navigation test. As the
drone flies insider of the precision area, the error decreases to
a mean of 0.16 m. Even if the drone is inside the area, the
orientation also affects the pose estimation, the more oriented
to the front of the gate, implies the less error in prediction.

To evaluate the performance of the Reduced Posenet, nav-
igation tests are carried out in the same way as the Modified
Posenet. It can observes from figure 9 that the pose predicted
is close to groundtruth inside the precision area in the same

Figure 6: Predicted pose compared with groundtruth using
RVIZ. White arrow shows Groundtruth and Blue arrow Pre-
dicted.

Figure 7: Error over time in navigation. Left graph shows the
error while navigating inside the precision area. Right graph
shows the error while navigating outside the precision area.

way that Modified Posenet, besides the error increases more
outside the precision area. This is not really significant, be-
cause when the drone is flying towards the center of the win-
dow automatically will be placed inside the area and the pre-
diction will be best for the navigation algorithm.

We have found a similar behavior for the error in the in-
side and outside area when we plot the error (position differ-
ences between predicted and groundtruth) over the time in a
navigation. This is showed by figure 8.

Figure 8: Error over time in navigation. Left graph shows the
error while navigating inside the precision area. Right graph
shows the error while navigating outside the precision area.

We have test the algorithm for autonomous drone rac-
ing. Using the scenario from Gazebo, via ROS framework,
we communicate the pose prediction with the algorithm for
navigation to the Gazebo world. In the world presented in
figure 10, we put three gates in the line vision of the drone to
evaluate at first the prediction in the autonomous navigation.
The algorithm correctly estimate the pose from the gate and
command the drone to center the gate to fly across. As the se-
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quence shows, the drone flies satisfactorily through the gate
and then stop and oriented to the next gate.

In the table 1, we summarise the error results of both ap-
proaches as well as the frequency of process of the pose pre-
diction. The best performance is for the Reduced Posenet,
that has minimum error inside the precision area and has the
highest frame rate operation for prediction.

Inside ε Outside ε Frame rate (GPU)
MPoseNet 0.1597 m 0.4866 m 50 fps
RPoseNet 0.1285 m 0.5867 m 100 fps

Table 1: Results in navigation testing Modified PoseNet
(MPoseNet) and Reduced PoseNet (RPoseNet) for both in-
side and outside precision area of prediction. ε is the mean
error of the predictions over the time of navigation.

All the test of the algorithm were conducted in a computer
with a GTX 860m, 16Gb of RAM and an i7-4710HQ CPU.

5 CONCLUSIONS

Autonomous Drone Racing represents a big challenge
to develop efficient algorithms that can beat a human pilot
in navigation. Localisation at high-speed is still one of the
principal problems to solve.
In this work, we have shown that it is possible to estimates
3D pose of a drone relative to a gate in real-time, and at high
frame rate.
To achieve this, we have developed a dataset that allows the
proposed CNN to learn the pose of the drone with respect to
the gate with a low error. In addition, we have designed an
algorithm for Autonomous Drone Racing based on the pose
obtained from the CNN.
The tests performed in simulation shows goods results with
low error.
We report the highest rate for pose prediction at 100 fps
(20 fps with CPU) with our reduced Posenet for and with a
low error of around 13 centimetres, which still enables our
navigation algorithm to centre the drone w.r.t the gate to then
command it to cross the gate.

As future work, we will improve the test for real-world
scenarios to evaluate the pose estimation and the autonomous
drone navigation.
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Figure 10: Autonomous navigation algorithm flying through one gate. In the first row, the algorithm centre the drone flying to
the left, once the drone is centred, the drone flies to cross the gate (row two), this is marked with a dotted rectangle. Finally in
row three when the drone complete cross the gate, the algorithms predict the pose of the drone and centres it again.
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