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ABSTRACT

We present the integration of a polarization com-
pass in a visual-inertial sensor fusion framework
onboard a Micro Aerial Vehicle (MAV). The po-
larization compass estimates the position of the
sun indirectly from the pattern of skylight polar-
ization even in cases where the sun is not visi-
ble. It is based on a polarization sensor which
consists of a standard RGB camera and a small
polarizing unit that creates three polarization im-
ages on the camera sensor. Due to its low weight
and compact size it is ideally suited for small
aerial systems. The readings from the polariza-
tion compass are fused with angular rate and ac-
celeration measurements from an Inertial Mea-
surement Unit (IMU) and the 6 Degrees of Free-
dom (DOF) pose changes from the Visual Odom-
etry (VO) in an indirect extended Kalman fil-
ter (EKF). Two different approaches to integrate
the readings from the polarization compass in
the filter are presented and compared. We show
in experiments that adding a compass to visual-
inertial sensor fusion does not only eliminate the
drift of yaw angle estimates but also improves
overall state estimation of the system.

1 INTRODUCTION

Due to the complementary information they provide, the
fusion of visual and inertial data is widely used for state-
estimation of MAVs, in particular in environments where
global navigation satellite systems (GNSS) are unavailable
or unreliable. While it is possible to estimate absolute roll
and pitch angles based on acceleration measurements, the
yaw angle is subject to drift as it can only be estimated by
continuously integrating orientation differences. Therefore,
magnetometers are often added. By measuring the magnetic
field of the Earth, the absolute yaw angle can be estimated.
In this case all degrees of rotation are observable, as well as
the angular velocity and acceleration biases, which results in
higher overall accuracy of the system. However, magnetic
compasses can be disturbed by magnetic objects or electrical
devices. Beside the magnetic field of the earth the position of
the sun can be used as a compass cue and even if the sun is not
directly visible its position can be estimated indirectly via the
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Figure 1: Multicopter “ARDEA” with a frame in triangle
shape, three pairs of counter-rotating rotors and a sensor suite
mainly consisting of an IMU, two pairs of wide-angle stereo
cameras and an insect-inspired polarization compass (high-
lighted by red ellipse).

polarization pattern of the sky light. An other advantage com-
pared to a magnetic compass is its insensitivity to interference
fields caused, for instance, by electric devices. This motivated
us to equip our multicopter “ARDEA” [7] with a bio-inspired
polarization sensor and integrate its compass measurements
in our Visual Inertial Navigation System (VINS).

In [1] a polarization compass was fused with IMU read-
ings, but VOs were not used, the measurement equation for
the polarization is different and instead of a indirect EKF a
complementary filter was used. In [2] accelerations and angu-
lar rates are fused with readings from a polarization compass
in a Kalman filter. But they also used readings from a GNSS
and only estimated the orientation of their device.

The main contributions of our approach are a system for
pose estimation onboard a MAV which does neither depend
on external infrastructure nor readings of the magnetic field
and nonetheless can provide a drift-free 3 DOF orientation
estimate. Its accuracy is improved in comparison to a pure
VINS and it avoids the usage of 3 DOF measurements of the
direction vector to the sun with almost singular covariance
matrix by projecting the measurement errors to different two
dimensional subspaces.

In the following we describe the polarization compass
in Section 2, the approach to combine data from different
sensors in Section 3, the experiments in Section 4 and finally
conclude the paper with Section 5.
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Figure 2: The polarization sensor, a standard camera with
cylindrical polarizer unit mounted in front of the camera lens
is positioned between the two stereo camera pairs (left). The
sensor was inspired by the ocelli of orchid bees. As high-
lighted by the red circle in the inset of the right figure (shown
is a close up view of the head of the bee Euglossa imperi-
alis), bees have three simple eyes with polarization sensitive
photoreceptors (photos courtesy of Emily Baird, Stockholm
University). In orchid bees, the preferred polarization orien-
tation is very similar within each eye but differs between eyes
by somewhat less than 60◦ [3].

2 POLARIZATION COMPASS

We briefly describe the polarization sensor and summa-
rize the computation of the sun vector. For more details
see [4]. The polarization sensor utilized on our multicopter
is identical to the one described in [4] except for the camera
sensor. It is replaced by an USB3 camera with Sony IMX265
CMOS color sensor (IDS UI 3271LE-C).

2.1 Sky polarization pattern as compass cue
Scattering of sun light in the atmosphere creates a charac-

teristic polarization pattern in the sky that is essentially sym-
metric with respect to the position of the sun. The degree of
polarization is low close to the sun, increases with angular
distance from the sun up to 90◦ and decreases for larger an-
gles. Measuring the polarization, in particular its orientation,
which is known to be more reliable than the degree of po-
larization [5], even just for small regions of the sky allows to
estimate the sun position or at least its azimuth in cases where
the sun is occluded by clouds, trees or buildings. Therefore,
similar to the sun, the polarization pattern can be used as a
compass. Interestingly, insects are known to use both, direct
sun position and polarization pattern for orientation [6]. Bees
and many other insect species, like desert ants, have a spe-
cialized region in the upper part of their compound eyes that
are sensitive to polarization. In addition, there is recent evi-
dence that the three simple eyes of bees located at the top of
the head in between the two compound eyes, the “ocelli” (see
right sub figure of Figure 2), might also play a role in polar-
ization sensing. While each ocellum contains photoreceptors
of similar preferred orientation, the preferred orientations of
all three ocelli differ strongly. This arrangement of polariza-
tion sensitive photoreceptors in bees inspired the polarization

sensor design and its use as compass cue on our multicopter
ARDEA. As sky light is predominantly linearly polarized, i.e.
contains almost no circular or elliptical polarization, three is
the minimum number of linear polarizers sufficient for esti-
mating all relevant polarization parameters.

2.2 Polarization sensor and multi-camera setup on MAV

As shown in Figure 1 and 2 the polarization sensor is
placed between Ardea’s “compound eyes” that consist of two
wide-angle cameras on either side. The arrangement of these
cameras provides a very large stereo FOV of approx. 240◦

vertically. As described in [7], each wide-angle camera is
remapped to two virtual pinhole cameras to allow for efficient
image processing.

The polarization sensor consists of a standard camera
with a small-aperture lens to which the cylindrical polarizer
unit is attached, see Figure 2. By means of this unit the cam-
era image contains three basically identical images of the sky
seen through three differently oriented linear polarizers (Fig-
ure 3 left). The preferred polarization orientations differ by
60◦.

In contrast to several devices based on photodiodes,
e.g. [8, 9], the polarization sensor allows to estimate a large
number of polarization vectors, which – in combination with
a comparatively large field of view of approx. 56◦ – enables
the estimation of the “sun vector”, i.e. not only the azimuth
of the sun but also its elevation angle can be inferred.

2.3 Remapping and polarization estimation

Raw images of the polarization camera of size 800× 800
pixels are de-bayered, scaled down by factor 0.5 and then
remapped to three polarization images (120×120 pixels) with
constant radial resolution of 0.5◦ per pixel. From the inten-
sity differences of corresponding pixels, i.e. pixels with same
viewing directions as estimated by a three-camera-calibration
using the DLR-CalDe/CalLab tool [10], the angle φ and de-
gree of polarization δ can be determined for each pixel of the
reference image (the remapped sub-image ’1’), see [4] for de-
tails. By retracing the pixel rays, the polarization orientation
on the sky sphere can be computed, which we describe by the
3D unit vector ±fi in the following, where i is the index of
the pixel with image coordinates (ui, vi). If the multicopter
is aligned with the north direction then the u-axis of the cam-
era image points towards the west and the v-axis towards the
south (see p-frame in Figure 4). The exact transformation
between the polarization camera frame and the IMU or body
frame of the multicopter was estimated based on an extrin-
sic calibration of the polarization camera and the topmost left
virtual pinhole camera and an IMU-to-camera calibration be-
tween the reference pinhole camera and the IMU.
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2.4 Sun vector estimation
As described in [4], the sun vector pps can be estimated

by minimizing

E(pps) =
∑

i

w̃i(±f>i
pps)

2 =p p>s
(∑

i

w̃ifif
>
i

)
pps (1)

under the constraint ‖pps‖ = 1. w̃i = (
∑
k wk)−1 wi are

normalized weights. The weights wi basically depend on the
degree of polarization and the “blueness” of the correspond-
ing pixel favoring “sky-pixels”. Equation 1 is motivated by
the fact that ideally all polarization vectors {fi} are orthog-
onal to the observer-sun axis, i.e. the sun vector cpps. Pre-
whitening [11] of matrix P =

∑
i w̃ifif

>
i is used to reduce

the bias that would result from solving the eigenvalue prob-
lem defined in Equation 1 directly. Assuming independent
and identically distributed errors with standard deviation σ,
the covariance matrix of the sun vector can be estimated,

Σpps
≈ σ2 Q

∑

i

w̃2
i (1− (pps

>ei)
2)fif

>
i Q> . (2)

Q is a matrix describing rotation, scaling and projection onto
the plane orthogonal to the estimated sun vector, and ei is the
viewing direction of pixel i.
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Figure 3: Estimation of sun position from the three images of
the polarization sensor. Left: The camera image containing
the three sub-images after de-bayering. In this example the
sun is located outside the field of view of the camera. A bright
cloud visible in the upper right corner of the sub-images in-
dicates the approximate sun direction. Intensity differences
between the three sub-images allow to estimate polarization
degree and angle for each pixel. For example, quite strong in-
tensity differences can be observed in the lower left corner of
the three sub-images indicating high degree of polarization.
Right: Shown are the sky polarization angles, i.e. the angles
of the polarization vectors with respect to the local meridi-
ans (great circles of constant azimuth) in color code, rang-
ing from −90◦ (blue) to +90◦ (red), and polarization vectors
fi with length scaled according to weight wi (black arrows),
projected onto the image plane. The red cross in the upper
right corners depicts the estimated position of the sun (ap-
prox. −34.5◦ azimuth and +36◦ elevation angle with respect
to the camera frame).

3 FUSION

3.1 Extended Kalman filter based visual-inertial odometry
In [12] and [13] an indirect, extended Kalman filter was

introduced that combines the readings from an IMU and a
single VO. In [7] the filter was extended to cope with multiple
VOs.

Figure 4: An image of ARDEA with the navigation frame
(n-frame), the body frame (b-frame), the frames of one stereo
pair (cl- and cr-frame) and the frame of the camera with the
polarization compass (p-frame).

The main state x of the filter is defined by

x =
[
n
bp> n

bv> n
bq> bb>a

bb>ω
]>
, (3)

with the position n
bp ∈ R3 of the body frame (b-frame) rela-

tive to an earth-fixed, inertial frame (n-frame), the velocity
n
bv ∈ R3, the orientation n

bq ∈ R4 represented by a unit
quaternion and the acceleration bba ∈ R3 and angular rate
bbω ∈ R3 biases of the IMU. The relationship between the
main coordinate systems involved is shown in Figure 4.
If a raw measurement from a sensor is taken, its transmission
and processing needs time and is therefore delayed when the
results are available to the filter. For some sensors, e.g. IMUs
the delay can often be neglected, for other sensors, e. g. cam-
eras the delay usually has to be taken into account. Therefore,
parts of the main state that are necessary to process the de-
layed measurements, when they arrive have to be augmented
to the state. The final state consists of the main state x and an
arbitrary number of augmented states xaug.
A measurement from the VO that becomes available at time
tk can be described by

hk = h(xk−n,xk−m), (4)

where the states at time tk−n and tk−m must be part of the
augmented state.
Instead of estimating the state directly, it is possible to esti-
mate the errors of the state. This has several advantages, e.g.
system dynamics can be decoupled from error dynamics, a
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sophisticated model of the system is not needed and rotation
errors can be locally described with a minimal representation.
The indirect formulation is given by

δx =
[
n
bδp

> n
bδv

> n
bδφ

> bδb>a
bδb>ω

]>
, (5)

where all errors are in the form of n
bp̂ = n

bp+ n
bδp, except the

orientation error, which has an multiplicative error definition
n̂qb = nqb⊗ n̂δqn. The quaternion multiplication is denoted
by ⊗ and n̂δqn is the error quaternion corresponding to the
angular error δφ.

3.2 Extending the EKF with readings from a polarization
compass

The polarization compass determines the direction vector
pp̄s ∈ R3 pointing to the sun expressed in the frame of the
polarization camera (p-frame) and its corresponding covari-
ance matrix Σs ∈ R3×3.
Using the convention to indicate the spherically normalized
version of a vector p by p̄ = p

‖p‖ , the equation to transform
the position of the sun in the navigation frame nps to the cam-
era frame pps is given by (see [14])

pp̄s = cRb
bRn

np̄s . (6)

The relation between the error of the expected measurement
ĥ and the actual measurement hm as well as the error of the
system state δx have to be defined in order to use them in the
filter,

δh = Π(ĥ− hm)

= Π(pRb
bRn̂

np̄s − pRb
bRn

np̄s)

= Π(pRb
bRn̂

np̄s − pRb
bRn(I3×3 + b δφ c×)np̄s)

= Π pRb
bRn̂b np̄s c×δφ .

(7)

To solve Equation 7 the true rotation from the navigation
frame to the body frame bRn is unknown and can be ap-
proximated by bRn = bRn̂(I3×3 + b δφ c×). The matrix
Π is a projection matrix. It can be set to a constant value,

e.g. Πs =

[
1 0 0
0 1 0

]
, which maps the angular error δφ

to the x-y-plane of the polarization camera. If the deviation
between the sun vector and the z-axis of the camera is suf-
ficiently small, the performance will be satisfactory. Given
the dynamics of the system and the fact, that the sun vector
changes during the day, improvements can be expected by
adapting Πd dynamically. By projecting the error between
the predicted and measured sun vector onto the tangent space
on the sphere at the predicted sun vector, the measurement er-
ror is invariant with respect to the estimated orientation [15].
The tangent space to the unit sphere is spanned by the column
vectors of the matrix

Πd = N (pp̄s
>) =

[
s1⊥ s2⊥

]>
, (8)

where N (pp̄>s ) denotes the left null space of the vector pp̄s.
The matrix Πd has to fulfill the property ΠdΠ

>
d = I2. One

possible solution is given by

s1⊥ =
1√

p̄2s,x + p̄2s,y

[
−p̄s,y p̄s,x 0

]>
,

s2⊥ =
1√

p̄2s,x + p̄2s,y

[
−p̄s,xp̄s,z −p̄s,yp̄s,z p̄2s,x + p̄2s,y

]>
.

(9)

In the case of a static projection matrix, the covariance esti-
mate Σs can be projected to the subspace by the equation

Σs,r = ΠsΣsΠ
>
s . (10)

In the case of a dynamic projection matrix, the static projec-
tion matrix Πs has to be replaced with the matrix Πd defined
in Equation 8 and Equation 9. The reduced covariance matrix
Σs,r ∈ R2×2 is non-singular and can be used in the filter
update equations.

4 EXPERIMENTS
Several experiments were carried out to test the different

components of the system under varying conditions. The set
of indoor experiments was done in a lab where high frequency
ground truth data was available, but readings of the polariza-
tion sensor had to be simulated. For the set of outdoor exper-
iments ground truth data was only available occasionally but
real readings from the polarization sensor could be used.

The set of indoor experiments consists of a trajec-
tory of ARDEA, which was augmented with simulated
readings of the polarization compass to evaluate the in-
fluence of the polarization compass. The set of outdoor
experiments consists of one experiment to evaluate the
performance of the polarization compass itself and a second
experiment to evaluate the performance of the overall system.

4.1 Test of the polarization compass
As an initial test, we placed the multicopter on a leveled

turntable and recorded the estimated sun azimuth and eleva-
tion angles while turning the multicopter in steps of 30◦. As
illustrated in Figure 5, the sun position can be determined
quite accurately with a standard deviation below 1◦ for az-
imuth and below 3◦ for elevation angle.

4.2 Indoor test of pose estimation with simulated measure-
ments from the polarization compass

In the second experiment a trajectory of an indoor experi-
ment in the lab was augmented with simulated measurements
of the polarization compass. The measurements of the po-
larization compass were artificially corrupted by zero mean,
white Gaussian noise. The noise levels were empirically de-
termined. For the indoor datasets at each time stamp the
ground truth pose of ARDEA is available with high precision.
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Figure 5: Test of the sun position estimation by turning the
multicopter in 30◦ steps. Shown are the azimuth angle with
respect to the initial orientation (green ’x’) and the sun eleva-
tion angles (red ’x’) as estimated by the polarization compass.
The dashed line shows the true sun elevation angle (≈ 32◦).

Therefore, Euler angle errors can be calculated. They are de-
picted in Figure 6. Roll and pitch errors stay limited for all
three cases, while the yaw angle error grows unbounded with
time if the polarisation compass is not used. Due to the use of
the polarization compass its steady increase can be compen-
sated.

4.3 Outdoor test of pose estimation with real measurements
from the polarization compass

In Figure 7 the estimated position of ARDEA during an
outdoor experiment is given. The start and final positions are
at the origin. The polarization compass improves the esti-
mates in the case of the dynamic projection matrix Πd and
also in the case of the static projection matrix Πs. Slight dif-
ferences between the static and dynamic projection approach
can be seen for the z-direction, where the dynamic projection
results in a lower error.

An often used error metrics for translational errors is the
norm of the distance of the estimated final position to the
true final position with respect to trajectory length. Given the
length of the trajectory of approx. 132 m, the relative errors
are 2.7%, 0.6% and 0.5% for the approach without the polar-
ization compass, with the polarization compass and a static
projection matrix and with the polarization compass and dy-
namic projection matrices.

Roll and pitch angles are globally observable when fusing
accelerometer and gyroscope readings with the delta poses
of a VO. Therefore, the polarization compass only slightly
improves their estimation. But the slight improvement of roll
and pitch estimation results in a lower vertical position error.
Without the polarization compass, the yaw angle error grows
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Figure 6: Roll, pitch and yaw error for a single run with sim-
ulated sun vector measurements. Blue: without polarization
compass, red: with polarization compass using static projec-
tion, yellow: with polarization compass using dynamic pro-
jection.

unbounded with time. Due to the polarization compass this
drift can be compensated, which results in improvements of
x and y position estimates.

Multiple runs with different trajectories resulted in similar
system behavior and similar values of the error metrics.

5 CONCLUSIONS
It was shown in the experiments that fusing the polariza-

tion compass with the data from an inertial measurement unit
and a VO in an indirect EKF improves the accuracy of pose
estimation. The differences are small between the approach
with a static projection matrix and a dynamic projection ma-
trix. While a polarization compass can obviously provide
orientation estimations only outdoors, it is likely to improve
state estimation also in mixed indoor/outdoor flights. Fur-
thermore, using a polarization compass in conjunction with a
VINS could also be beneficial in other applications, e.g. when
matching maps from multiple robots.
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[8] D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and
R. Wehner. A mobile robot employing insect strate-
gies for navigation. Robotics and Autonomous Systems,
30:39–64, 2000.

[9] J. Chahl and A. Mizutani. Biomimetic attitude and ori-
entation sensors. IEEE Sensors Journal, 12:289–297,
2012.

[10] K. H. Strobl, W. Sepp, S. Fuchs, C. Paredes,
M. Smisek, and K. Arbter. DLR CalDe and CalLab,
www.robotic.dlr.de/callab/. Institute of
Robotics and Mechatronics, German Aerospace Center
(DLR).

[11] W. J. MacLean. Removal of translation bias when using
subspace methods. In ICCV, pages 753–758, 1999.

[12] K. Schmid, F. Ruess, M. Suppa, and D. Burschka. State
estimation for highly dynamic flying systems using key
frame odometry with varying time delays. In IROS,
pages 2997–3004, 2012.

[13] K. Schmid, F. Ruess, and D. Burschka. Local reference
filter for life-long vision aided inertial navigation. In
Fusion, 2014.

[14] N. Trawny and S. Roumeliotis. Sun sensor model. Uni-
versity of Minnesota, Dept. of Comp. Sci. & Eng., Tech.
Rep, 1, 2005.

[15] W. Förstner. Minimal representations for uncertainty
and estimation in projective spaces. In ACCV, pages
619–632, 2010.

SEPTEMBER 29th TO OCTOBER 4th 2019, MADRID, SPAIN 88

http://www.imavs.org/pdf/imav.2019.11


