
IMAV2018-5

Safe corridor based task interface for quadrotors
Lai Shupeng∗, Lan Menglu, and Ben M. Chen

National University of Singapore, 21 Lower Kent Ridge Rd, Singapore

ABSTRACT

Most of the task management interface of
quadrotors is based on waypoints. While it
is natural for the human to visualize the tasks
and easy for quadrotors to execute, there lacks
support for functions such as the geo-fencing.
In many applications, it is desired to limit the
quadrotors’ operation area in the safe region. In
this paper, we propose an approach that guides
the vehicle in a predefined safe corridor without
solving the entire trajectory beforehand. It also
guarantees the feasibility by limiting the trajec-
tory’s velocity, acceleration, and jerk to a prede-
fined range. The effectiveness of the proposed
approach is demonstrated with real flight experi-
ment.

1 INTRODUCTION

Quadrotors are used more and more frequently in indus-
trial applications such as inspection, monitoring, and surveil-
lance due to its agility and easy-to-maintain mechanical struc-
ture. The quadrotor’s mission is usually described by a se-
ries of waypoints where it is expected to travel in sequence.
Though the waypoint based missions are easy for the human
to visualize and edit, it is a non-trivial task to ensure the re-
sulting trajectory is still suitable. As in these applications,
the quadrotor is usually required to be operated in a safe area
with no apparent obstacles such as tall buildings, and its pos-
sible crash will have limited damage. Methods in [1] and [2]
achieved this by building a safe-flying corridor connecting the
waypoints. The size of the corridor can be adjusted, and the
trajectory is restricted inside the corridor through constrained
quadratic programming. This approach requires a more pow-
erful on-board computer, especially in the case where a re-
planning is needed, and the data link is not reliable enough
thus planning on a remote computer is not an option. In this
paper, we propose a safe corridor based task interface where
the user could edit the mission quickly, and the safe trajec-
tory could be generated efficiently which benefits the vehi-
cles with weaker onboard computers. The rest of this paper
is organized as the following. In Section 2, the safe-flying
corridor used in our interface is introduced. In Section 3, we
present an incremental approach to generate jerk, acceleration
and velocity limited trajectory that stays inside the safe-flying
corridor. And in Section 4, experimental results are analyzed
and discussed. Finally, a conclusion is made in Section 5.

∗Email address(es): elelais@nus.edu.sg

P1

P2 P3

P4

P2

P3

xc2

yc2

zc2

w2
x+

w2
x-

w2
y+

w2
y-

w2
z+

w2
z-

zG

xG

yG

Figure 1: Nominal plan and flight corridors

2 SAFE-FLYING CORRIDOR

Given a list of waypoints, we call the line-segments con-
structed by connecting the waypoints in sequence as the nom-
inal plan. And the safe-flying corridor is built around such a
nominal plan. As shown in Figure 1, the nominal plan is de-
fined by the waypoints P1 to P4 in the global frame G. For
each line segment defined by Pi and Pi+1, a local frame Ci is
defined where its xCi axis is aligned to the vector

−−−−→
PiPi+1 and

its yCi axis is perpendicular to the gravity direction. A safe
bounding box (the green cuboid in Figure 1) aligned with the
local frame is then adapted to enclose the line-segment. In
this way, a safe region could be constructed around the nomi-
nal plan, and its size can be adjusted by setting the dimension
of each safe bounding box. Given a trajectory T, t ∈ [t0, tf]
in the 3 dimensional space as

T(t) =




fx(t)
fy(t)
fz(t)

we can check whether it is inside a safe bounding box by:

• Project the trajectory T into the local frame Ci of the
safe bounding box as

TC(t) =




fxC (t)
fyC (t)
fzC (t)

• Find the minimum and maximum value of
fxC , fyC , fzC .

• Check whether all of the minimum and maximum val-
ues are inside the safe bounding box. If so, the entire
trajectory T will be enclosed by the safe bounding box.

Using this method, we could decouple the enclosure checking
problem into three extreme value searching problems. And if

1

54

IMAV2018-5
http://www.imavs.org/pdf/imav.2018.5

IMAV2018-5 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

the trajectory is in the form of a polynomial, the searching
could be done efficiently through root finding.

3 INCREMENTAL SAFE TRAJECTORY GENERATION

3.1 Jerk limited trajectory
As a basic tool used in the incremental safe trajectory gen-

eration process, we present an approach based on the jerk lim-
ited trajectory appeared in [3], which is later improved in [4],
and shown effective for quadrotors in [5]. In this paper, we
present an approach that solves the position set-point prob-
lem using a direct bisection search, which does not require
to build decision trees as in [3, 4]. And we also allow to
set asymmetrical constraints on the velocity, acceleration and
jerk.

3.1.1 Problem formulation

Given a triple integrator system

ṗ = v
v̇ = a
ȧ = j

(1)

where p, v, a, j are the position, velocity, acceleration and
jerk respectively and the jerk j also serves as the system’s
input. The presented algorithm aims to bring the system in
Equation 1 from an arbitrary initial state to a position set-
point while satisfying constraints on the velocity, acceleration
and jerk:

p(0) = p0, p(tf) = pf

v(0) = v0, v(tf) = 0

a(0) = a0, a(tf) = 0

vmin 6 v(t) 6 vmax, ∀t ∈ [0, tf]

amin 6 a(t) 6 amax, ∀t ∈ [0, tf]

jmin 6 j(t) 6 jmax, ∀t ∈ [0, tf]

(2)

To make sure an solution does exist, it is assumed

vmin < 0 < vmax

amin < 0 < amax

jmin < 0 < jmax

3.1.2 Velocity set-point problem

Here, we first introduce the velocity set-point problem de-
scribed in [3], the task is to bring the system in Equation 1
from an arbitrary initial state to n velocity set-point:

v(0) = v0, v(tf) = vf

a(0) = a0, a(tf) = 0

amin 6 a(t) 6 amax, ∀t ∈ [0, tf]

jmin 6 j(t) 6 jmax, ∀t ∈ [0, tf]

(3)

Unlike in [3], in our formulation, we allow asymmetrical lim-
its on the acceleration and jerk. Our solution is based on the
one in [3], and it is shown in Algorithm 1. First, we try in-
stantly bring the acceleration to zero, check whether the re-
sulted ve is larger or smaller than the desired velocity vf and
determine the cruise direction of the acceleration profile (line
3 – 8). Then depends on the cruise direction, we try to bring
the acceleration either to its maximum or minimum value,
and check whether the resulted velocity over or undershoots
vf (line 9 – 37). If it undershoots, there will be an cruise
phase with non-negative time endurance (line 36), otherwise
we solve for the switching acceleration (line 43 and 48) de-
pending on the cruise sign. The final result is an parameter
structure holding the desired jerks and their corresponding
endurance. For simplicity, we use the function

P = solveVelocity(v0, a0, amax, amin, jmax, jmin, vf)

to denote the calculation of P in algorithm 1. With the initial
state p0, v0, a0 and P , it is straight forward to reconstruct the
trajectory through the model in Equation 1. The function

(ps, vs, as) = getState(v0, a0, p0,P, ts)

is used to calculate the state of the trajectory (ps, vs, as) at a
specific time-point ts.

3.1.3 Position set-point problem

Now, we extend the solution to cover the position set-point
problem in Equation 2 which has been studied in [3] and [6].
Our method is based on a bisection search to find the solution
rather than using decision trees. The detail of our algorithm
can be seen in Algorithm 2.

To identify the cruise direction, we first solve for the brak-
ing trajectory that immediately brings the velocity and accel-
eration both to zero (line 3). The resulted stopping point psp
is used to determine the cruise velocity by comparing with the
desired target pf (line 3–12). Then we create the zero cruise
profile by steering the system to the cruise velocity and im-
mediately to full stop (line 13–16).

The resulting stop point might over or undershoot the pf .
If it undershoots the desired position, then the non-negative
cruise time can be found as in line 19. And if it overshoots the
desired position, then the cruise velocity cannot be reached,
and we switch the system towards zero speed before reaching
vc. The exact switching time is found through a bi-section
search (line 22–38). With the parameters for the two differ-
ent phases Pa, Pb and the switching time tpb, the trajectory
can be constructed using the triple integrator model. An ex-
ample of such a trajectory with asymmetrical constraints on
its velocity, acceleration and jerk is given in Figure 2.

2

55

IMAV2018-5
http://www.imavs.org/pdf/imav.2018.5

IMAV2018-5 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

Algorithm 1 Velocity target solver
1: Input: v0, a0 ,amax,amin ,jmax, jmin, vf
2: Output: P
3: if a0 ≥ 0 then
4: ve = v0 + a0 |a0/jmin| /2
5: else
6: ve = v0 + a0 |a0/jmax| /2
7: end if
8: da = sign(vf − ve)
9: if da == 1 then

10: ac = amax

11: else if da == −1 then
12: ac = amin

13: else
14: ac = 0
15: end if
16: if ac − a0 ≥ 0 then
17: t1 = (ac − a0)/jmax

18: j1 = jmax

19: else
20: t1 = (ac − a0)/jmin

21: j1 = jmin

22: end if
23: v1 = v0 + a0t1 + t21j1/2
24: if −ac ≥ 0 then
25: t3 = (−ac)/jmax

26: j3 = jmax

27: else
28: t3 = (−ac)/jmin

29: j3 = jmin

30: end if
31: v̄3 = act3 + t23j3/2
32: v̄2 = vf − v1 − v̄3
33: if da == 0 then
34: t2 = 0
35: else
36: t2 = v̄2/ac
37: end if
38: if t2 < 0 then
39: if da == 1 then
40: an =

√
(2(vf − v0) + a20/jmax)/(1/jmax − 1/jmin)

41: t1 = (an − a0)/jmax

42: t2 = 0
43: t3 = −an/jmin

44: else if da == −1 then
45: an = −

√
(2(vf − v0) + a20/jmin)/(1/jmin − 1/jmax)

46: t1 = (an − a0)/jmin

47: t2 = 0
48: t3 = −an/jmax

49: end if
50: end if
51: P.T1 = t1
52: P.T2 = t2 + t1
53: P.T3 = t3 + t2 + t1
54: P.j1 = j1
55: P.j2 = 0
56: P.j3 = j3

0 2 4 6 8 10 12

s

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

p
v
a

Figure 2: Trajectory with asymmetrical constraints. The po-
sition set-point is at zero position.

Algorithm 2 Position target solver
1: Input: p0, v0, a0, vmax, amax, jmax, vmin, amin, jmin, pf
2: Output: Pa,Pb, tpb, vc, tc
3: P = solveVelocity(v0, a0, amax, amin, jmax, jmin, 0)
4: (psp, vsp, asp) = getState(v0, a0, p0,P,P.T3)algorithmic
5: dp = sign(pf − psp)
6: if dp == 1 then
7: vc = vmax

8: else if dp == −1 then
9: vc = vmin

10: else
11: vc = 0
12: end if
13: Pa = solveVelocity(v0, a0, amax, amin, jmax, jmin, vc)
14: (pfa, v, a) = getState(v0, a0, p0,Pa,Pa.T3)
15: Pb = solveVelocity(vc, 0, amax, amin, jmax, jmin, 0)
16: (pfb, v, a) = getState(vc, 0, pfa,Pb,Pb.T3)
17: tc = 0
18: if sign(pfb − pf) · dp ≤ 0 then

19: tc =
(pf − pfb)

vc
20: tpb = Pa.T3

21: else
22: tc = 0
23: tH = Pa.T3

24: tL = 0
25: for counter = 1 : N do
26: tpb = (tH + tL)/2
27: (ppb, vpb, apb) = getState(v0, a0, p0,Pa, tpb)
28: Pb = solveVelocity(vpb, apb, amax, amin, jmax, jmin, 0)
29: (pfb, v, a) = getState(vpb, apb, ppb,Pb,Pb.T3)
30: if sign(pfb − pf) · dp < 0 then
31: tL = tpb
32: else
33: tH = tpb
34: end if
35: if |pfb − pf | < ε then
36: break
37: end if
38: end for
39: end if

3

56

IMAV2018-5
http://www.imavs.org/pdf/imav.2018.5

IMAV2018-5 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

To test the efficiency of the proposed method, the initial
position, velocity and acceleration is set to be in the range
of [−50, 50], [−10, 10] and [−5, 5] with an incremental of
0.05. Without loss of the generality, the position set-point
is always zero. And the vmax, amax, jmax, vmin, amin, jmin is
set as 4, 4, 2,−1,−1,−1 accordingly. A total of 160880400
trajectories are generated and the average computing time is
0.31 microseconds with an i5-3470S CPU at 2.9 GHz.

3.2 Navigation in the safe corridor
Using the proposed jerk limited trajectory generation al-

gorithm, an online and incremental approach is proposed to
generate a safe trajectory that stays fully inside the safe cor-
ridor. As in Figure 1, let Li denotes the line-segment defined
by waypoints Pi and Pi+1, the corresponding local frame is
Ci and the safe bonding box that enclose Li is denoted Bi.

3.2.1 Generate trajectory in the local frame

In the local frame Ci, we can generate a trajectory Ri that
starts from an arbitrary state and stops at waypoint Pi+1 by
solving the position set-point problem on each axis of Ci
(namely xCi , yCi and zCi) independently. Since the origin
of Ci is at waypoint Pi and the target is Pi+1, the position
set-point on the xCi axis is ‖Pi+1 − Pi‖. And the position
set-points on yCi , zCi are 0. Moreover, we have to assign
the velocity, acceleration and jerk limits on each axis of Ci,
namely xCi , yCi , zCi . As shown in [5], the physical limits
of the quadrotor can be satisfied by limiting the trajectory’s
velocity, acceleration and jerk separately. However, these de-
sired limits are usually defined in the global frameG and need
to be projected into Ci. Let vG = [vGx , vGy , vGz] denote the
velocity in the global frame, a common practice is to have

√
v2Gx + v2Gy < vhmax

vvmin
≤ vGz ≤ vvmax

(4)

because the quadrotor have similar dynamics in its horizon-
tal axes compared to the vertical axis. The constraints span
a cylindrical volume shown in Figure 3. However, in the Ci
frame, the velocity constraints need to be decoupled into each
individual axis. Let vCi = [vCix , vCiy , vCiz] represent the ve-
locity in the local frame, the constraint is

vCiλmin
≤ vCiλ ≤ vCiλmax

,∀λ ∈ {x, y, z}

which spans an axis-aligned cuboid Qv,i in Ci. Therefore, it
is necessary to select the limits such that the cuboid is entirely
inside the cylinder (see Figure 3). The same axis-decoupling
criterion also applies to the acceleration and the jerk. Fur-
thermore, the width of the spanned cuboid (Figure 3) needs
to be large enough on all axis, so that the vehicle could move
agilely towards any direction at any moment. It is crucial if
an evasive maneuver is needed which might deviate from the
planned trajectory.

_x
_y

_z

zCi

yCi

vhmax
vvmin

xCi

vvmax

velocity CVQv;i

Figure 3: The volume spanned by constraints at G and Ci.

3.2.2 Continuous navigation

With the capability to reach an arbitrary waypoint in the
desired frame, we now consider navigating the quadrotor
through multiple safe flying corridors. A trivial approach is
to fly along each line-segments and stops at each waypoint.
Here, we propose an approach to guide the vehicle inside
the safe corridor without stopping at each waypoint. Assume
there are total M waypoints and the vehicle is initially inside
B1, the proposed algorithm can be expressed in Algorithm
3. The idea is to repeatedly generate a new trajectory Ri+1

Algorithm 3 Smooth navigation
1: i = 0
2: while Not reaching PM do
3: if i < M then
4: s = get current reference()
5: s̄ = project(s, Ci+1)
6: Ri+1 = generate(s̄, Ci+1, Pi+1)
7: if exam(Ri+1) then
8: Start tracking Ri+1

9: i = i+ 1
10: end if
11: end if
12: end while

that connects the vehicle from its current reference state s
to the new position set-point Pi+1, and then exam whether
this new trajectory is safe. We first get the current reference
state the vehicle is tracking (line 4), then it is projected into
the local frame Ci and the new trajectory is generated from
s̄ to set-point Pi+1 (line 5 – 6). And once Ri+1 is consid-
ered safe, the vehicle could start to track it and proceed to
try the next waypoint (line 7 – 10). While the implemen-
tation of get current reference() and project() is straight for-
ward, the generate() function adopts the method in Section
3.2.1. Finally, the exam() function checks whether the tra-

4

57

IMAV2018-5
http://www.imavs.org/pdf/imav.2018.5

IMAV2018-5 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

Figure 4: Split the trajectory into two segments, then check
whether each individual part is inside a single bounding box.

jectory is fully inside the safe corridor and the satisfaction of
constraints in the global frame G.

3.2.3 Safety check

In [1], the author first samples the trajectory at multiple time
instances, and then check each sample individually. Here, a
continuous checking method is adopted due to the fact the tra-
jectory consists of finite segments of third order polynomials.
The process is illustrated in Figure 4 and can be summarized
as the following:

1. Find split points that are contained within more than
one bounding boxes (the red circle in Figure 4).

2. Split the trajectory into multiple segments (the dotted
line rectangle in Figure 4).

3. Check whether at least one bounding box fully contains
each of the split segment through finding the extreme
values (see Segment 2).

The cylinder-shaped velocity, acceleration and jerk con-
straints (see Figure 3), can also be checked through finding
the extreme values. Taking the velocity constraint from Equa-
tion 4 as an example, its satisfaction can be tested by:

1. Project the trajectory into the global frame G.

2. Calculate the horizontal speed profile vh =√
v2Gx + v2Gy .

3. Find the extreme values of vh and vGz .

4. Check whether the extreme values is inside the con-
straint volume.

For a shorter checking time, it is also possible to only con-
sider the trajectory that crosses at most 2 bounding boxes,
thus limiting the amount of segments to be examined.

4 EXPERIMENTS

To test the proposed algorithm, we perform an real ex-
periment flight using an mini-quadrotor. The task (see
Figure 5) involving reaching three targets (A, B and C)
in sequence inside a pre-generated flying corridor among
multiple obstacles. However, before the vehicle reaches
target A, the task is modified to reach targets B and
C only. The velocity, acceleration and jerk limited tra-
jectory is generated online using the proposed method.
And the video of the flight experiment can be found
at https://www.youtube.com/watch?v=zAbCmOHj1EI. From
Figure 5, our methods respond to the change of targets im-
mediately and generate a trajectory that leads the vehicle to
fly back towards target B. The trajectory is entirely inside the
safe corridor throughout the process.

0

1

3

2

2

1

0

-1 -3
-2

-1-2 0
1

2-3 3

Real flight
Reference
Target

Target A

Target B

Target C

Obstacles

Initial position

Figure 5: Experiment with multiple targets.

5 CONCLUSION

In this paper, we present an efficient algorithm to gen-
erate velocity, acceleration and jerk limited trajectory with
asymmetrical constraints in detail. We then propose an ap-
proach to utilize the trajectory generation algorithm to guide
a quadrotor to fly smoothly through a pre-generated safe fly-
ing corridor without non-necessary stopping. Our approach
is efficient and could handle changes in the tasks with real-
time responses. Compared to methods which require to solve
a constrained quadratic optimization problem, our method is
expected to be more suitable for vehicles with limited com-
putational power.

REFERENCES

[1] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya,
C. J. Taylor, and V. Kumar, “Planning dynamically feasi-
ble trajectories for quadrotors using safe flight corridors

5

58

IMAV2018-5
http://www.imavs.org/pdf/imav.2018.5

IMAV2018-5 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

in 3-d complex environments,” IEEE Robotics and Au-
tomation Letters, vol. 2, no. 3, pp. 1688–1695, July 2017.

[2] J. Chen, T. Liu, and S. Shen, “Online generation of
collision-free trajectories for quadrotor flight in unknown
cluttered environments,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), May
2016, pp. 1476–1483.

[3] R. Haschke, E. Weitnauer, and H. Ritter, “On-line plan-
ning of time-optimal, jerk-limited trajectories,” in 2008
IEEE/RSJ International Conference on Intelligent Robots
and Systems, Sept 2008, pp. 3248–3253.

[4] T. Krger, “Opening the door to new sensor-based robot
applications; the reflexxes motion libraries,” in 2011
IEEE International Conference on Robotics and Automa-
tion, May 2011, pp. 1–4.

[5] M. Hehn, R. Ritz, and R. D’Andrea, “Performance
benchmarking of quadrotor systems using time-optimal
control,” Autonomous Robots, vol. 33, no. 1, pp. 69–88,
Aug 2012.

[6] T. Kröger and F. M. Wahl, “Online trajectory generation:
Basic concepts for instantaneous reactions to unforeseen
events,” IEEE Transactions on Robotics, vol. 26, no. 1,
pp. 94–111, Feb 2010.

6

59

IMAV2018-5
http://www.imavs.org/pdf/imav.2018.5

