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ABSTRACT 

Deep reinforcement learning has achieved recent 
successes in solving games and learning robotics 
tasks from scratch, and has shown early promise for 
the guidance, navigation, and control of MAVs. 
Though MAV control is well-established, many 
complex tasks still require human oversight, and 
techniques for reducing the level of human 
involvement are still nascent. In this paper, we 
present ongoing work in applying continuous-action 
deep reinforcement learning to autonomous aircraft in 
simulation, in order to learn such complex tasks 
autonomously. We provide a brief overview of our 
simulation environment and tasks of interest, and 
present preliminary results using model-free methods 
to learn simple flight tasks. We conclude with 
remarks on potential directions of research that we 
believe will have an impact on the future of 
unmanned systems. 

1 INTRODUCTION 

Deep reinforcement learning is a framework for 
training controllers in a manner that mimics 
learning in biological organisms [1,2]. It has 
recently achieved critical successes in playing 
computer Go [3,4], computer games [5,6], and 
learning nonlinear controllers for tasks such as 
robot locomotion and grasping [7,8]. Preliminary 
results have also shown that reinforcement 
learning can be used to train MAV flight 
controllers capable of complex flight tasks such as 
aircraft recovery [9] and collision avoidance [10]. 
Given RL’s ability to learn complex we might hope 
to use it to learn robust flight controllers from 
scratch that enable greater levels of autonomy. 

One of the primary impediments to this goal is the 
lack of a framework for training aircraft 
controllers. Deep reinforcement learning relies on 
the existence of simulated environments to train 

policies; applications of RL to the MAV domain in 
the literature are split on the use of the Robot 
Operating System (ROS) with Gazebo (typically 
RotorS [11]), and custom flight simulations. This is 
at odds with much of RL research, for which the 
primary benchmark is the OpenAI Gym 
framework. For our research, we are interested in 
learning individual flight tasks, and utilizing 
existing RL implementations. Whilst frameworks 
like RotorS are excellent for standard robotics 
research, they are unsuitable for RL, for which we 
might want to trial many thousands of episodes 
across a range of environments, in order to learn 
a policy. 

In this paper, we present on-going work in 
building such a framework for learning nonlinear 
quadrotor flight controllers. Our framework 
extends OpenAI Gym, and includes flight control 
tasks such hovering, random waypoint navigation, 
landing, and target following. We hope that by 
sharing it, we can spur further innovation and 
development of intelligent flight controllers for 
small unmanned systems.   

2 BACKGROUND 

2.1 Deep Learning 

Deep learning is a function approximation method 
loosely based on neural networks in the brains of 
biological organisms [1,2]. An artificial neuron 
takes input from surrounding neurons, performs a 
nonlinear transformation (known as an activation 
function), and then passes this output as input to 
a group of connected neurons [2]. The typical 
structure of a neural net is given in Figure 1, and  
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Figure 1 – Typical Multi-layer Perceptron 

consists of a series of sequentially connected 
layers known as a Multilayer Perceptron (MLP). 
Neurons are connected to one another via a 
group of weights 𝜃 ∈ Θ, with the process of 
learning strengthening important weight 
connections and weakening detrimental ones. At 
a simple level, a neural network can approximate 
basic functions such as polynomials, but their real 
strength lies in being able to approximate 
functions that cannot be represented in any other 
way – for example, a function that detects cats in 
images, or estimates the value of an action – by 
learning them. The network is trained by 
minimizing a cost function or maximizing a score 
function. Gradients for each weight are pushed 
backwards through the network using the 
backpropagation algorithm – a variant of the 
chain rule from differential calculus – and an 
optimizer is used to step the weights in the given 
direction. 

Specialist architectures such as Convolutional 
Neural Networks (CNNs) can learn filters that aid 
in the detection and classification of objects, and 
Recurrent Neural Networks (RNNs) are able to 
model dependencies through time [2]. CNNs see 
use in image classification, and have been applied 
to reinforcement learning for games. RNNs are 
used in cases where information is relevant over 
long time scales, and maintain a short term 
memory that aids in learning temporal 

dependencies [2]. Recent work has seen the 
development of generative models that learn to 
synthesize new examples of their training data 
[12,13], and memory networks that extend the 
functionality of RNNs through the use of an 
external long-term memory module [14,15]. 
These newer techniques are now finding their way 
into natural language processing and deep 
reinforcement learning, where they are learned to 
'imagine' new scenarios and remember 
information over long very time scales [16,17]. 

2.2 Reinforcement Learning 

Reinforcement learning (RL) deals with the 
problem of training an agent to act intelligently in 
an environment using an external reward signal 
[18]. The agent begins in an initial state 𝑠%, and 
takes an action 𝑎' according to a policy 𝜋 that 
determines how actions should be selected. The 
agent receives a reward 𝑟% from the environment, 
and arrives in a new state 𝑠* that is governed by a 
transition probability 𝑃(𝑠-.*|𝑠-, 𝑎-). We refer to a 
sequence of such events as a trajectory (denoted 
𝜏) where 𝜏 = {𝑠%, 𝑎%, 𝑟%, 𝑠*, … , 𝑠-6*, 𝑎-6*, 𝑟-6*, 𝑠7}. 
The goal of an agent acting in an environment is 
take a trajectory that maximizes the total 
expected reward [18]: 

𝑅- = 𝔼; <= 𝛾?𝑟-.?.*

7

?@%

A (1) 

Where 𝛾 ∈ [0,1] is a discount factor that more 
heavily weights immediate rewards, and ensures 
that the sum converges for the horizon 𝑇 = ¥.  

RL assumes a Markov Decision Process (MDP), 
meaning that the past and present are 
conditionally independent of one another given 
the present. More concretely, all information 
necessary for taking the best action is assumed to 
be included in the present state of the agent. As 
an example, a robot with a battery can take two 
trajectories, and end up in the same state 𝑠-  at 
the same time 𝑡, with different levels of remaining 
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charge. If the battery’s charge is not included in 
the robot’s state, the Markov property is violated, 
and learning becomes more difficult (for example, 
the robot may not have enough remaining charge 
to reach the goal). In this case, the Markov 
property can be preserved by ensuring the robot 
can “see” its current level of charge.  

RL problems are typically solved by learning a 
value function 𝑉:	𝑆 → ℝ, that maps the relative 
value of each state (known as the state value 
function for 𝜋, 𝑉;(𝑠-)), or each state-action pair 
𝑄: 𝑆 × 𝐴 → ℝ (known as the state-action value 
function for 𝜋, 𝑄;(𝑠-, 𝑎-)). Actions are selected 
according to the policy 𝜋; for example, our policy 
might be to take the highest value action with 
probability 𝑃, and choose a random action with 
probability 1 − 𝑃. Similarly, if we know the true 
value of every state, we can always choose the 
highest value actions (known as the greedy 
action). Our policy can also be a function 𝜋: 𝑆 → 𝐴 
that maps states directly to actions. This function 
is often a probability distribution over actions 
𝜋R(𝑎-|𝑠-) with arbitrary parameters 𝜃, with 
learning being the task of optimizing 𝜃. This can 
be done by sampling actions from 𝜋R(𝑎-|𝑠-), 
evaluating their quality, and then adjusting 𝜃 
accordingly. 

Since – in continuous state-and-action spaces – 
there are infinite possible values, modern 
applications use function approximation to learn 
𝑉;(𝑠-) and 𝜋R(𝑎-|𝑠-). For 𝑉;(𝑠-), this is done 
using supervised learning, by first rolling out an 
episode, and then calculating the return at each 
state using Equation 1. A cost function is 
minimised using these values as a target. The 
policy can be trained in multiple ways, but one of 
the more common techniques – known as Monte-
Carlo Policy Gradient – uses a score function 
estimator of the form: 

∇R𝐽(𝜃) = 𝔼; <=∇R log 𝜋R(𝑎-|𝑠-)Φ-

76*

-@%

A (2) 

 

Figure 2 – Aircraft axis system 

Where 𝜋 is parameterized by weights 𝜃, and  Φ- 
can take multiple forms, but is typically some 
variant of Equation 1 (see [18,19,20] for 
derivation and exposition of the Policy Gradient 
Theorem). By stepping the policy weights in the 
direction that maximizes the value function, it can 
progressively be trained to take better actions. 
The expressive power of neural networks makes 
them a popular choice for representing both the 
value function and the policy; when deep learning 
is combined with reinforcement learning, the 
combination is known as deep reinforcement 
learning. 

3 SIMULATION AND ENVIRONMENTS 

We model a plus-configuration aircraft in an East-
North-Up axis system, and assume a flat Earth 
with constant air density. A diagram of our 
aircraft’s axis system is given in Figure 2. Our 
equations of motion are: 

Y0�̇�\ = <
0

𝑭7 + 𝑭_
𝑚

A + 𝒒 b 0𝑮d
e 𝒒6𝟏 − Y 0

𝝎 × 𝒗\ (3) 

�̇� = 𝑱6*(𝑴7 +𝑴_ −𝝎 × 𝑱𝝎) (4) 

�̇� = 𝒒6𝟏 Y𝟎𝒗\𝒒 (5) 

�̇� = −
1
2 Y
𝟎
𝝎\𝒒 (6) 
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Where 𝒙 is the position vector in the inertial 
frame, 𝒗 and 𝝎 are the linear and angular velocity 
vectors in the body frame, 𝑭𝑻 and 𝑭𝑨 denote the 
thrust and aerodynamic forces in the body frame, 
𝑴𝑻 and 𝑴𝑨 denote the thrust and aerodynamic 
moments in the body frame, 𝑮𝒊 is the gravity 
vector in the inertial frame, 𝑚 is the mass of the 
aircraft, 𝑱 is the inertia tensor, and 𝒒 is a 
quaternion encoding the attitude of the aircraft. 𝒒 
is converted to Euler angles 𝜻, which are used by 
the RL environments. We use dot notation to 
denote the time derivative.  

Thrust and torques are modelled as: 

q
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For scalar thrust and moment coefficients 𝑘7 and 
𝑘y, and arm length 𝑙. Aerodynamic forces and 
moments are: 

𝑭_ = −𝑘�𝒗𝑻𝒗𝒗� (8) 

𝑴_ = −𝑘�𝝎𝑻𝝎𝝎�  
 

(9) 

For scalar drag and aerodynamic moment 
coefficients 𝑘�  and 𝑘�. Rotor speeds are 
modelled as a first order linear differential 
equation: 

�̇� = −𝑘�(𝛀 −𝛀𝒄) (10) 

that ensures the RPM adjusts smoothly over time 
with policy commands. We step the simulation 
forward using a standard RK4 integrator. We do 
not currently include more advanced effects such 
as ground effect, blade flapping, vortex ring state, 
or wind, though some of these are planned for 
future work. 

Current environments include: 

1. Hover, for which the aim is to hover on a 
static waypoint for the duration of an 
episode; 

2. Static waypoint navigation, for which the 
goal is to sequentially navigate to a 
waypoint and then hover there for the 
remainder of the episode; 

3. Random waypoint navigation, for which 
the goal is to navigate to a randomly 
generated waypoint within a given 
distance to the aircraft; 

4. Flying straight and level, for which the 
aircraft must fly in a constant direction for 
as long as possible, whilst maintaining 
constant altitude; 

5. Landing, for which the aircraft must 
smoothly land without crashing, and 
without descending through its own rotor 
wash; and. 

6. Target following, for which the aircraft 
must keep to a constant distance from a 
target as it moves through the 
environment. 

Our reward function provides the aircraft with a 
positive reward for getting closer to a given goal, 
and a negative reward for moving away from it.  

Our environments are episodic and terminate 
when the time limit has been reached or a 
termination condition has been met. These 
typically include flying beyond a given distance 
from the goal, though in the case of landing we 
also check for crashes. We ensure that the aircraft 
doesn’t descend through its own rotor wash by 
checking the velocity in the aircraft’s z-axis, and 
terminating the episode if it goes below -2m/s. 

The observation space that is provided as input to 
the policy is often task dependent, but at a 
minimum it includes the position vector 𝒙, sin	(𝜻) 
and cos	(𝜻), linear and angular velocities in the 
body frame 𝒗 and 𝝎, and – in goal-conditioned 
cases – the vector pointing towards the goal, 𝒈. 
The target following case also includes the  
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Figure 3 – Learning curves for the Hover task 

velocity vector of the target. Per the MDP 
assumption, this information needs to be included 
in the observation space, and is realistically 
attainable for an aircraft. As our simulation does 
not currently include wind, we don’t differentiate 
between the ground speed and airspeed of the 
aircraft. This is expected to change in future 
updates. 

4 EXPERIMENTS 

We applied three state-of-the-art Monte-Carlo 
policy gradient algorithms to learning hover, static 
waypoint navigation, and landing tasks. The 
algorithms we use are Generalized Advantage 
Estimation (GAE), Proximal Policy Optimization 
(PPO) and Trust Region Policy Optimization 
(TRPO), respectively. For further insight into these 
methods, we refer the reader to [21,22,23]. 

Our policies are standard MLPs with 128 neurons 
in a single hidden layer, and learn a delta from the 
hover RPM. The networks output the mean and 
log-variance of the action, and we use this to 
construct and sample from a normal distribution 
over actions. 

5 RESULTS 

We show learning curves in Figures 3, 4 and 5, and 
trajectory plots are given in Figures 6 and 7.  

 

 

Figure 4 – Learning curves for the Static 
Waypoint task 

 

Figure 5 – Learning curves for the Landing task 

We found that PPO and TRPO produced the most 
consistent overall performance, and provide video 
footage of our controllers at [address withheld]. In 
general, stochastic policies don’t produce 
analogous performance to a modern controller, 
since they sample from a distribution. A stochastic 
policy will always produce a slight wobble due to 
its probabilistic nature. An advantage of this is 
that such policies should be robust to additional 
disturbances such as wind, and can produce 
smoother behaviour by taking the mean action, 
rather than sampling from the distribution.  

In practice, we found that we were able to learn 
policies capable of achieving most goals. We  
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Figure 6 – Static Waypoint trajectory plot 

found PPO to be the most consistent algorithm, 
though TRPO learned to flight behaviour that was 
visually smoother and more controlled. This is 
likely due to the difference in optimization 
methods – TRPO is a second order algorithm, 
whereas PPO is a first order method that 
approximates TRPO. PPO uses an optimizer known 
as ADAM that has been shown to find sharper 
local minima than other methods. We believe this 
is a potential underlying cause for the difference 
in flight behaviour. 

Whilst GAE was able to learn most tasks, we 
found its performance to be higher variance than 
the other algorithms, and prone to collapse during 
training. This indicates that GAE might be less 
suitable for MAV flight control applications. 

6 FUTURE WORK 

Future work will involve expanding on the current 
environments to include navigation through 
unknown domains, perching, and the inclusion of 
stochastic wind. We aim to standardize the 
observation space across tasks so that we can use 
our current framework for multi-task learning 
(that is, a single controller that is capable of 
performing all tasks given some task parameter). 

 

Figure 7 – Landing trajectory plot 

 Our goal is to fly a learned policy on an aircraft 
sometime towards the end of 2018.  

6 CONCLUSION 

The future of autonomous systems likely involves 
creating context-aware AI that is able to operate 
intelligently across a broad range of situations and 
tasks. The tools to build such systems might 
include recurrent neural networks that are able to 
make use of short term memory, memory-
augmented networks that are able to write-to and 
read-from an external memory module, 
variational autoencoders that automatically learn 
a compressed representation of their input, and 
generative adversarial networks that can 
“imagine” new scenarios. Though such techniques 
are still difficult to train, research is ongoing and 
much preliminary work has already been done.  

Training such agents is contingent on the 
existence of adequate simulation environments. 
We have presented ongoing work on such a 
framework that allows us to train up simple flight 
control policies, and we hope that our efforts may 
spur further effort in developing more intelligent 
flight controllers for MAVs. 
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