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ABSTRACT 

In this paper, we present a novel 

framework that can be applied for the 

obstacle avoidance of unmanned aerial 

vehicles (UAVs) based on deep learning 

methods with supervision from actual 

human flight control data. Through 

imitation learning from human flight 

control data, the UAV is expected to learn 

how to avoid obstacles without any given 

rules, and at the same time learn the 

intuition that humans possess to 

efficiently deal with unexpected 

situations. One critical limitation for UAVs 

is that the number and size of sensors 

that can be attached is restrictive, hence 

a monocular camera will be used as the 

only sensor of the UAV. The simulation is 

conducted within a simulated 

environment using Gazebo and ROS 

(Robot Operating System), where the 

visual input from the camera and human 

control input regarding the direction of 

the UAV are utilized for the training 

process. The trained model is then 

validated in terms of how well it imitates 

a human and how capable it is to avoid 

obstacles. 

1 INTRODUCTION 

The recent upsurge of demand for mobile robots 

with higher levels of autonomy has posed several 

challenges especially when it comes to the ability 

for autonomous navigation within a given 

environment. Among the requirements for fully 

autonomous navigation of an unmanned agent, 

obstacle avoidance is considered one of the most 

fundamental factors, as the agent should be 

capable of avoiding obstacles during its navigation. 

Autonomous navigation is usually implemented 

through path planning methods, where an agent is 

assigned a certain path given that it has 

information on the surrounding environment. In 

general, geometrical constraints such as obstacles 

between the start and goal point are considered 

throughout the path planning stage, facilitating 

obstacle avoidance for the autonomous agent. 

However, real-time path planning may be 

unavailable under certain circumstances where the 

environment is uncertain, or where the path 

cannot be generated due to issues such as the 

inability to obtain a map of the surrounding 

environment. In such cases, local path planning 

methods take place instead of global path planning 

methods [1], where obstacle avoidance is 

considered as the main criterion. Hence, we will 

focus on the investigation of obstacle avoidance 

methodologies as it is one of the most fundamental 

requirements for a mobile agent to exhibit fully 

autonomous behaviours. 

Conventional real-time obstacle avoidance 

techniques employ rule-based methodologies, 

where certain rules are set for the agent according 

to the sensor input. Such researches include 

obstacle avoidance methods with the usage of 

ultrasonic sensors [2, 3], or optical flow-based 

obstacle avoidance methods for monocular 

camera usage [4, 5]. These methods, however, may 

also lose its robustness as the agent can 

undesirably encounter unexpected situations 

which are not considered in the rule-based 

methods. Recent researches include data-driven or 

machine learning-based approaches that use 
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apprenticeship learning methods [6], yet the 

algorithms that are used for the supervision of the 

machine learning model are still developed upon 

human-made rules. Hence, in some occasions, 

learning directly from human demonstrations may 

provide better results depending on the task, 

especially when there are constraints on the usage 

of sensors. In fact, there have been multiple 

attempts regarding imitation learning from human 

experts. One of the most primitive researches was 

proposed by Pomerleau [7], where a single layer of 

a neural network was used to map the images to 

the steering angles, enabling the agent to stay on 

the road. Other work regarding how to teach an 

aircraft to fly using human data [8] has been 

introduced by Sammut, Hurst, Kedzier, and Michie. 

In this work, decision trees were used to train and 

design the autopilot for the aircraft. One 

representative example of imitation learning from 

human data was presented by Ross, Gordon, and 

Bagnell [9], using the DAGGER (Dataset 

Aggregation) algorithm. Here, a policy is 

determined online in an iterative manner, using 

the aggregated data from the algorithm. This 

algorithm was also used for vision-based 

autonomous navigation in forest trails [10]. Kim 

and Chen [11] presented an imitation learning 

framework for drones to track and follow a certain 

target based on neural networks. 

Under the main assumption that there underlies a 

certain relationship or function between visual 

inputs and actions of a human when it comes to 

obstacle avoidance, we focused on teaching an 

agent so that it can map the image inputs to the 

heading directions for obstacle avoidance. Through 

sufficient acquisition of camera data and the 

corresponding control inputs generated from 

human experts, our neural network is likely to 

learn the underlying rule for obstacle avoidance. In 

this paper, we present a framework for obstacle 

avoidance with deep learning-based imitation 

learning methods. 3D-CNN models [12] will be 

utilized for the imitation learning framework, as 

obstacle avoidance with a monocular camera is 

considered a sequential task. 

A general description of the background will be 

given in Section 2. The methodology for the 

proposed imitation learning framework followed 

by details on how the neural network model is 

trained are discussed in Section 3. In Section 4, we 

will discuss the training results of the neural 

network, and validate the performance of the 

obstacle avoidance capabilities by applying the 

trained neural network model to a simulated drone. 

Finally, Section 5 includes the conclusion and 

discussion for this work.  

Figure 1 – Proposed imitation learning framework 
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2 BACKGROUND ON NEURAL NETWORKS 

The advent of deep learning technologies has 

brought about substantial changes throughout 

various fields of technology. Based on multiple 

layers of artificial neural networks, deep learning is 

well known for its ability to approximate complex 

nonlinear functions, performing complicated 

classification or regression tasks.  

Unlike fully connected layers, Convolutional Neural 

Networks (CNN) [13] share weights by using a 

convolution filter among its layers. This enables the 

neural network to not only reduce the number of 

weights, but also automatically extract local 

features from the input. Such characteristics grant 

CNNs a great advantage over other fully connected 

neural networks especially when it comes to image 

classification. 

For conventional CNNs, a convolution operation is 

conducted for each layer with a 2D kernel granting 

CNNs considerable capabilities regarding image 

processing. At the same time, CNNs possess the 

same limitations that other feedforward neural 

networks have; feedforward neural networks are 

unable to consider sequential data. Although 

attempts to combine CNNs with RNNs (Recurrent 

Neural Networks) [14] [15], have proved to be 

efficient tasks such as in video classification and 

scene labelling, 3D-CNNs have also been renowned 

for its capability to extract spatiotemporal features 

from a given sequence of data. 3D-CNNs utilize a 

3D kernel for the convolution operation, 

overcoming the previous limitations of 2D-CNNs. 

As obstacle avoidance is considered a sequential 

task, 3D-CNNs will be utilized in this study. 

3 APPROACH 

3.1 Imitation Learning Framework 

For a drone to avoid obstacles during autonomous 

navigation, we utilize deep learning techniques to 

approximate the function between the visual 

inputs and controls. We first start by aggregating 

image and control input data from human flight 

demonstrations. During the demonstration, a 

human expert steers a simulated drone within the 

Gazebo environment. The accumulated data is 

then processed so that it can be used for the 

training of the neural network. Using this training 

data, the training process of the neural network is 

done offline. After the training process is finished, 

the neural network model is capable of imitating 

human expert decisions. For real-time applicability, 

a Gazebo-Python communication node is 

established using ROS (Robot Operating System). 

Here, the Python node receives images from the 

Gazebo simulator, where each image is fed 

through the neural network producing control 

input predictions for what a human expert may 

have chosen. Hence the drone is able to mimic 

expert behaviours, and consequently avoid 

obstacles. The overall framework is shown in 

Figure 1. 

3.2 Training Data Acquisition and Processing 

The training data for the neural network was 

obtained from the Gazebo simulator, using ROS. A 

human expert demonstration of obstacle 

avoidance within the simulated environment was 

recorded, i.e., control inputs from the human 

expert flight and the corresponding image data 

was aggregated into the training dataset. The 

sampling rate for the images was 15 frames per 

second, which is identical for the sampling rate of 

the control inputs. For each control input data, a 

value of 0, 1, or 2 is saved to indicate whether the 

human expert has commanded the drone to steer 

left, right, or move straight, respectively. The 

drone increases or decreases its heading angle 

upon left or right control inputs, and incrementally 

returns its heading angle to 0 when a ‘go straight’ 

command is given.  A total of two hours of flight 

data from the expert was collected. Considering 

the fact that the environment did not exhibit much 

variance with respect to the colour and that a 

grayscale image contains adequate information for 

the identification of obstacles, each image from 

the training dataset was converted into a grayscale 
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image. After the whole dataset is processed so that 

it can be used for training, we separate the dataset 

into a training and test dataset with a ratio of 7:3. 

We use the training dataset to train the neural 

network model, and the test dataset to verify the 

performance of the neural network. An example of 

the training environment and training image is 

shown in Figure 2. 

 

Figure 2 – Training environment (Left) and 
camera data (Right). 

3.3 Neural Network Architecture and Training 

As we are dealing with sequences of image data, 

we used a 3D-CNN architecture for the experiment. 

A total of 4 convolutional layers and 2 max pooling 

layers were used, and a fully-connected hidden 

layer was added at the end of the network. A 

Softmax output layer is added at the end of the 

network. The illustration of the CNN structure 

utilized in this study is shown below in Figure 3. For 

each layer, the first number indicates the step size 

of the images used for each batch, the next two 

numbers indicate the size of the input for each 

layer, and the last number indicates the number of 

channels or filters used. The size of the convolution 

filter was 3x3x3 and a 2x2x2 kernel was used for 

the pooling layer. 

 

Figure 3 – 3D-CNN architecture for imitation 
learning 

The training process of the 3D-CNN is done offline 

using the training data above. The 3D-CNN was 

trained with an epoch of 6,000, and the learning 

rate was 0.001. We used Adam Optimizer as the 

optimizer and truncated normal initializer for the 

initializer. 

4 SIMULATION RESULTS 

The imitation loss is as shown in Figure 4. The blue 

lines indicate the training loss whereas the red 

lines indicate the test loss. The final training loss 

was 0.006. The test loss was obtained by 

feedforwarding images from the test dataset, 

which were not used during the training process. 

The training accuracy was 96% and the test 

accuracy was 81%. Despite the minor discrepancy 

between the prediction values and labels for the 

test dataset, we can imply that the 3D-CNN is 

capable of mimicking human decisions given a set 

of images.  

 

Figure 4 – Training and Test Loss 

We applied the 3D-CNN to the drone to verify the 

effectiveness of the trained model regarding 

obstacle avoidance, implementing the real-time 

Gazebo-Python communication node using ROS. 

Three unknown environments with randomly 

placed obstacles were used for the validation of 

the obstacle avoidance capability. Unlike the 

rectangle map used for the aggregation of the 

training data, the test map was designed as a long 

rectangular figure so that the drone could be 

tested if it is capable of crossing the entire map 

without crashing into any obstacles. In addition, 

the obstacles were arranged in a manner that the 
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drone has not been able to see during the training 

phase to test the robustness of the obstacle 

avoidance capability. This demonstrates the fact 

that the 3D-CNN has learned a general rule for 

obstacle avoidance using a monocular camera, 

instead of learning how to navigate within the 

training environment only. Figure 5 shows an 

example of one of the maps used for the validation. 

The trajectory of the drone is shown in Figure 6.  

The trajectories show that the drone was able to 

successfully cross the entire maps in all three test 

maps, suggesting that the 3D-CNN has learned how 

to mimic a human expert and avoid obstacles 

during navigation. 

 

Figure 5 – Test environment example 

  

 
Figure 6 – Drone trajectories within the three 

test environments 

5 CONCLUSION 

An imitation learning framework using 3D-CNNs 

for obstacle avoidance has been investigated in 

this paper. Through our experiments with a drone 

in a simulated environment, the 3D-CNN model 

exhibited human-like behaviour, and at the same 

time we were able to achieve acceptable results for 

obstacle avoidance without the utilization of 

complicated neural network structures, proving 

the feasibility of applying imitation learning to 

drones to conduct a certain task.  

Considering the fact that the imitation loss 

dramatically decreased after the first few epochs, 

the obstacle avoidance task can be considered a 

rather simple task to train, and thus the 

applicability to more complicated environments or 

more sophisticated tasks are yet to be explored. 
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