
IMAV2018-13

Predictive Feedback Augmentation for Manual Control
of a UAV with Latency

J. Cox∗, KC Wong
The University of Sydney, Sydney, Australia

ABSTRACT

Teleoperation of unmanned aerial vehicles is
hampered by communication delay, which
causes feedback from command inputs to take
considerable time to be displayed to the oper-
ator. For an international internet connection,
round trip latencies can reach 500ms. The satel-
lite connections used for military UAVs can have
latencies on the order of seconds. This delay
presents a substantial control problem which has
been solved in the past by control abstraction (in-
stead of “roll left” the aircraft might be instructed
“go to these coordinates”). Manual control re-
mains difficult. This study borrows the client-
side prediction concept from multiplayer video
games to attempt to address the control delay to
allow manual control. An estimate of the change
in the vehicle state due to the commands that are
yet to affect the feedback is computed and then
the feedback that the pilot receives is modified
to reflect this predicted change. Because of this
change, the pilot can see immediately the effect
of the control inputs. This study has explored the
concept and built a prototype system functional
in real time for flight testing.

1 INTRODUCTION

Unmanned aerial vehicles (UAVs) are seeing widespread
growth in many existing and new applications. Presently,
UAVs are often operated within Line of Sight (LoS), where
the control delays come primarily from the control radio sys-
tem in use. Entry level hobby transmitters commonly achieve
latencies on the order of 30ms. Advanced hobby radio sys-
tems boast ranges of 60km.

When operating via a local video link, camera latencies
range from 40ms for the fastest analog systems to hundreds
of milliseconds for digital systems.

Recently, hobby grade low latency digital transmission
has been introduced, with latencies below 50ms achiev-
able. Latency of wifi based transmission systems can ex-
ceed 100ms. Adoption has been low, likely due to cost and
fragility.

∗Email address: jeremy.cox@sydney.edu.au

Some military UAVs are operated from thousands of kilo-
metres away via encrypted satellite connection, which im-
poses a round trip delay on the order of seconds. Often the
terminal flight phases are controlled from ground crews near
the runway. Due to the short time scales on which the state
of the vehicle can change during takeoff and landing, the la-
tency presents difficulty in control. Outside of terminal flight
phases, the latency is acceptable as manouevres and distur-
bances occur on timescales much larger than the latency.

1.1 Internet Latency
The latency of packets sent over the internet varies de-

pending on the source and destination. One way latency from
Australia to the US is measured at around 150ms. Two way
communications between an Australian and US location will
double this to find the round trip time, as well as add latency
from networking within each continent.

Control of a UAV over internet has been explored previ-
ously by the aerial international racing of unamnned systems
(AIRUS) student project, of which the first author was a part.
The impact of the latency on the control was found to be very
significant, with even small latencies rendering a quadrotor
UAV barely controllable. Previous work by team members
has discussed the concept of a predictive aid and shown im-
provement in human control of a simulated system [1].

1.2 Teleoperation with Latency
In 1967, Ferrell and Sheridan [2] detailed for the first time

the problem of teleoperation. Three main components of a re-
mote operation system were described: a remote loop which
acts to process tasks remotely (increasing the abstraction of
the control); a supervisory loop which consists of the opera-
tor receiving information about the remote device’s environ-
ment and specifies new commands; and a local loop which
represents the operator’s computer locally assisting (such as
by modelling the remote system to present quasi-feedback).
Increasing the command abstraction by allowing the remote
loop to process the perceived environment and determine sub-
tasks to achieve a higher level goal forms the majority of the
systems proposed by Ferrell and Sheridan.

The operation of a robotic arm with delayed control is in-
vestigated by Bohren [3], who presents an assisted teleopera-
tion architecture. A virtual robotic arm with a control delay is
used to perform part of an assembly task. The visualisation of
the scene is enhanced by displaying the user command over-
layed on the robotic arm, as well as by estimating user intent.
The user intent is estimated from the user inputs and the dis-

106

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

IMAV2018-13 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

played scene that they are in response to, and then the user
input is modified to try to effect the user intent in the real
scene. With the assistance, test subjects showed substantial
improvement in task completion time.

1.3 Latency in Multiplayer Videogames
Online videogames have previously undergone develop-

ment similar to the proposed system. Bernier [4] details the
progression of architectures, from a single server handling a
number of clients that are entirely ignorant of the game me-
chanics to more modern configurations using client-side pre-
diction and other more advanced routines. A number of the
procedures detailed by Bernier are associated with foiling un-
trustworthy clients (cheaters) and it is noted that for military
simulators, the clients are trusted.

The most basic feature discussed by Bernier is client-side
prediction. In a dumb-client system with a network latency,
the inputs from the client are sent to the server, which inter-
prets how they change the game state, which is then sent back
to the client. Movement of a player through an environment
is given as a notable example where client-side prediction can
be used. Instead of waiting for the server to acknowledge a
movement command and update the game state, the client
assumes that the command will be accepted by the server
and processes the expected game state change by itself. The
canonical version of the game state is handled by the server,
so the client prediction may need to be retroactively altered.
This may occur for example when the player input has an un-
expected result due to another player’s input that has not had
time to be transmitted to the client or due to game state in-
formation that is hidden from the client. With client side pre-
diction, the player perceives that their movement commands
are being processed instantly, rather than with the round trip
latency, and so their experience appears consistent regardless
of latency in their connection.

Bernier claims that the success and longevity of a
videogame requires a seamless multiplayer experience.

1.4 Flight Controller Modes
Quadrotor platforms are, in all practical cases, controlled

via a digital control system. In these control systems, the op-
erator commands particular flight variables, rather than con-
trolling the motors and other actuators directly. The actuators
used are the four (other numbers can be used but for sim-
plicity only quadcopters are discussed) propellers, with the
left/right, forward/back and left/right diagonal pairs each be-
ing used to generate roll, pitch and yaw moments respectively.

A review of common control schemes for quadrotors is
presented in Appendix A:. Presently, the only widespread
method of combating latency in UAV control is abstraction
of the pilot’s controls (move to a GPS coordinate instruction
replacing roll/pitch/yaw commands). With UAV technologies
expecting to see substantial growth in both civilian and mili-
tary sectors, the controllability of UAVs at long range (and
hence with control latency) is an important area of devel-

opment. Current systems are either short range and low la-
tency or long range and high latency. The tried and tested
client side prediction concept from multiplayer videogames
is a strong candidate for expanding the operability of UAVs
at long range.

2 PROPOSED SYSTEM OVERVIEW

To combat latency, the client-side prediction concept is
applied to a UAV. The adaptation to a UAV can be sum-
marised as predicting and displaying the vehicle state at the
time when the commands being given currently will arrive at
the vehicle. The eventual goal is to implement the scheme on
a micro (112mm size) quadrotor flown in rate mode using a
video feed from onboard as feedback. The operator receives
information about the vehicle’s state from the video feed, in-
cluding the angular position from the image of the horizon.

Figure 1 shows the flow of commands and feedbacks
around a time tn at the remote station. 2τ is the roundtrip
latency (the one-way latencies have been assumed to be iden-
tical and equal to τ).

tn

tn

Control Station

Vehicle

time

co
mman

d

co
mman

d
Feedback

tn − 2τ

tn − 2τ

Figure 1: Flow of command and feedback.

The origin of the time axis is chosen slightly differently
between the vehicle and the control station. t = 0 when the
arm command is sent or received. This is convenient because
a command occurs at the same time coordinate whether it is
being sent or received.

At the control station at tn, the remote station has the
feedback that is delayed by τ , but it can also see the com-
mands that have already been sent. The commands between
tn − 2τ and tn will arrive at the quad after the feedback at
tn − 2τ , and prior to the command being given at tn and
arriving at tn. This command information is then used to pre-
dict the change in vehicle state, and hence the feedback that
the operator would expect to see if there was no delay.

The mathematics of the problem can be described more
simply as:

Given the system state and command inputs
to be executed, predict the system state after
those command inputs have been applied.

which is a familiar problem from control theory with well
developed means of solution.

Because the system model is likely to not exactly match
the real system, and the delayed feedback is available, it is

2

107

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

IMAV2018-13 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

-
+

+

+

d(s)

θc(s)

θdisplay(s)

P (s)

Gest(s)
s

e−2sτGest(s)
s

+ -

+

+

e−sτ

e−sτ

G(s) 1
s

θ(s)θ̇c(s)

Operator

Latency Compensator

Transmission
Latency

Quadrotor
Dynamics

∆θ(s)

Figure 2: Block diagram with delay and compensator.

proposed to use the difference between two simulated vehi-
cle states that are 2τ apart. One estimation is the state using
all commands until time tn and another only simulating until
tn − 2τ . Taking the difference between these two states and
adding the received feedback should give a more accurate es-
timate of the vehicle position than dead-reckoning simulation
from start time to tn. Errors in the model that accumulate
prior to tn−2τ are contained in both terms, so are subtracted
out.

2.1 System Block Diagram

Figure 2 shows the suggested system. The operator is
modeled as determining a desired attitude, comparing that at-
titude to the feedback they are shown and then applying a
controller to determine a command input. The compensator
compares two simulated flight states, one of which is delayed
by the round trip delay time and then augments the feedback
by this amount. The remainder of the system is formed by the
actual transmission delay and vehicle dynamics.

Because the implementation later in this paper deals with
an angular rate controlled quadrotor, while the attitude feed-
back is an angular position from a video stream, some integra-
tor blocks are included. These terms are shown for complete-
ness and could be modified if a different control arrangement
was used.

The diagram shown is for the one-dimensional case,
where θ is any of the roll pitch or yaw axes. A real imple-
mentation will require propagation of these axes in three di-
mensions.

The compensator can be removed by setting Gest = 0,
which gives the system with only the delay. The delayed sys-
tem can be reduced to the typical system by setting τ = 0,
effectively removing the delay. Using the fact that the com-
pensator and delay can be removed by substituting terms, the
closed loop transfer functions need only be found for the de-
lay and compensator case and the others will be readily found
from those results.

2.1.1 Output and Reported Output Response to Com-
mand Derivation

First the closed loop transfer functions are found for the block
diagram with the compensation system. For convenience, de-
fine

A(s) ≡ P (s)
[
Gest(s) + e−2sτ (G(s) −Gest(s))

]
(1)

≈ P (s)G(s), (2)

which approximately is equal to the latency free open
loop transfer function for the pilot gain-quadrotor system if
Gest(s) ≈ G(s). The displayed feedback and actual response
can then be found:

θdisplay(s)

θc(s)
=

A(s)

s+A(s)
, (3)

θ(s)

θc(s)
=

e−sτP (s)G(s)

s+A(s)
. (4)

The delay term in the numerator is mandatory, as the input
cannot reach the output without being subject to transmission
delay (and a negative delay is infeasible without predicting
c(s) a short time in advance).

The disturbance response can also be found:

θ(s)

d(s)
= 1 − e−2sτP (s)G(s)

s+A(s)
, (5)

which makes intuitive sense as the response is the disturbance
plus a delayed, negative response to the disturbance. Once
again the delay in the numerator is unavoidable as the distur-
bance must travel once around the loop to pass through the
pilot and correct the disturbance.

2.1.2 Interpretation

The transfer functions for the compensated system can be
used to find the delayed system and undelayed system for
comparison. The control response transfer functions are
shown in Table 1 and the disturbance response transfer func-
tions in Table 2. With A(s) highlighted in green and delay
terms highlighted in red.

θ(s)

θc(s)

No Delay
P (s)G(s)

s+ P (s)G(s)

Delay
e−sτP (s)G(s)

s+ e−2sτP (s)G(s)

Delay & Compensator
e−sτP (s)G(s)

s+A(s)

Table 1: Transfer functions for the control response.

3

108

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

IMAV2018-13 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

θ(s)

d(s)

No Delay 1 − P (s)G(s)

s+ P (s)G(s)

Delay 1 − e−2sτP (s)G(s)

s+ e−2sτP (s)G(s)

Delay & Compensator 1 − e−2sτP (s)G(s)

s+A(s)

Table 2: Transfer functions for the disturbance response.

The introduction of the delay causes a delay term in the
numerator of the command response and the counteraction to
the disturbance.

The delay term in the numerator is caused by the forward
latency for the command response and by disturbances need-
ing to be observed and then responded to for the disturbance
response. Addressing these delay terms is beyond the scope
of this paper.

A delay term is also seen in the denominator. This term
is caused by the operator being unable to immediately see the
feedback from their inputs.

The introduction of the delay compensator modifies the
term in the denominator. The termA(s), highlighted in green,
still contains the delay term as the feedback from the vehicle
is incorporated. If a suitably accurate estimate of the vehicle
dynamicsGest(s) is known, then the term in the denominator
becomes approximately equal to the undelayed denominator.
The compensator acts to provide feedback that shows imme-
diately the effect of the command inputs, removing the effect
of the delay from the denominator.

The change that the compensator brings to the denomi-
nator makes the transfer functions much more similar to the
no delay case. The command response is affected only by
the forward latency, which delays the response but otherwise
does not affect its behaviour. The disturbance response is
improved by the compensator, but it will still take at least
the roundtrip latency before the pilot begins to correct distur-
bances.

2.2 Estimation Error
If the vehicle attitude is estimated by integrating a model

which provides the vehicle attitude rate, then

θest(t) =

∫ t

0

θ̇estdt (6)

=

∫ t

0

θ̇ + θ̇est.errordt (7)

= θ(t) +

∫ t

0

+θ̇est.errordt. (8)

Where θ represents an angular position, θ̇est is an estimate
of the angular rate obtained from a model of the dynamics

applied to the recorded inputs and θ̇est.error is the error in
θ̇est. The issue with a dead reckoning approach can be seen
here; the size of the error will tend to grow with flight time. If
the displayed attitude is based on an out of date attitude plus
a prediction of its upcoming changes, then

θdisplay = θest(tn) − θest(tn − 2τ) + θ(tn − 2τ) (9)

= θ(tn) +

∫ tn

0

+θ̇est.errordt

−
[
θ(tn − 2τ) +

∫ tn−2τ

0

+θ̇est.errordt

]

+ θ(tn − 2τ)

(10)

= θ(tn) +

∫ tn

tn−2τ

θ̇est.errordt (11)

Only errors in the model that manifest between tn − 2τ
and tn form part of the displayed system state. Importantly,
the error does not accumulate with time and large errors (such
as from disturbances or rapid motions where model errors are
amplified) will only manifest for the delay time. Also, so long
as the latency 2τ is small, the error in the displayed informa-
tion is minimal. If a dead reckoning approach is used, then
the error will increase by roughly a factor of tn/2τ , and will
hence grow with time.

3 SYSTEM IDENTIFICATION

3.1 Introduction
To predict the motion of the vehicle, a dynamic model is

needed.
For the quadrotor vehicles considered in this paper, the

dynamics of the three rotational axes were assumed to be in-
dependent of each other and the flight condition (speed, alti-
tude, throttle setting). This assumption is valid only in rate
mode.

The development of high rate flight data recording [5] al-
lows system identification by measurement rather than mod-
elling. Quadrotor models do exist, but model measurement
was chosen due to the importance of accuracy to the specific
hardware and software configuration. A large number of ve-
hicle geometry and parameters would also be needed for a
derived model approach, many of which are difficult to mea-
sure or have errors in the manufacturer’s specification.

3.2 Obtaining a Model
Finding a model of each axis from the recorded input and

output data was achieved using the inbuilt tfest function in
MATLAB. This function accepts one or more logs of system
input/output data and returns a transfer function that closely
maps the input data to the output data. The function works
by creating an initial guess and then iterating to minimise the
error in the transfer function.

4

109

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

IMAV2018-13 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

M
ag

ni
tu

de
 (

dB
)

From: rollcommand To: rollgyro

10-1 100 101 102 103
-135

-90

-45

0

45

P
ha

se
 (

de
g)

Bode Diagram

Frequency (Hz)

-60

-50

-40

-30

-20

-10

0

10

20

M
ag

ni
tu

de
 (

dB
)

From: pitchcommand To: pitchgyro

10-1 100 101 102 103
-135

-90

-45

0

45

P
ha

se
 (

de
g)

Bode Diagram

Frequency (Hz)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

M
ag

ni
tu

de
 (

dB
)

From: yawcommand To: yawgyro

10-1 100 101 102 103
-90

-45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (Hz)

Figure 3: The models generated for the 112mm quadrotor.

3.3 Identified System

For the 112mm quadrotor used, eight flight logs were
used to generate a system model. The procedure was vali-
dated by generating eight models with a log each excluded
and verifying that the models remained valid on the excluded
log. Bode plots of the system model generated from all eight
logs are shown in Fig. 3. The models map angular rate com-
mand to angular rate.

4 AUGMENTING THE FEEDBACK

With the change in vehicle attitude predicted, the feed-
back can be augmented to reflect this prediction. The video
is first undistorted to remove fisheye effects from the camera
lens, and then warped so that the horizon (and other objects
far from the camera) appear to move immediately with oper-
ator input.

Figure 4 shows an example of image warping for a pre-
diction of rolling. In this example the feedback shows the
quadrotor in a near inverted attitude, but the command inputs
that are yet to arrive will bring the quadrotor to nearly level,
so the compensator warps the image such that the horizon ap-
pears level. Warping for the yaw and pitch axes is achieved
by shifting the image left and right, with the camera field of
view determining the rate (pixels per degree) of shifting.

5 SIMULATED PREDICTIVE PERFORMANCE

Before implementing the compensator, it is desirable to
estimate the predictive performance and to understand how
the duration of the latency will affect the performance. The
predicted position can be expressed in terms of the actual po-
sition and the error in the modeled system as

θdisplay = θ(tn) +

∫ tn

tn−2τ

θ̇est.errordt, (12)

from equation 11. For efficient calculation the error term is
found in terms of the angular position error accumulated from

Figure 4: Example of image warping. The image is warped
to reflect the compensator predicting a 135 degree roll to the
right.

the beginning of the flight
∫ tn

tn−2τ

θ̇est.errordt =

∫ tn

0

θ̇est.errordt−
∫ tn−2τ

0

θ̇est.errordt.

(13)
The accumulated error from the start of the flight is found by
integrating the difference of the measured output and the out-
put modeled from the measured input. The difference across
a moving window is then taken to find the prediction errors
throughout a flight log. The predictive performance was only
measured on logs not used to generate the model used to as-
sess performance (as a model derived from the flight log after
a flight cannot be used to predict during that flight).

A histogram of the prediction errors was computed to vi-
sualise the performance. A histogram of the typical predic-
tion errors on the roll axis with a 1 second delay is shown in
figure 5. The standard deviation of predictive errors with a
1 second delay for this flight is 1.1o, and most flights show
similar distributions of errors, with no more than a couple of
degrees standard deviation. A more thorough analysis of the
simulated performance, and variation in performance with la-
tency can be found in [6]. With predictive performance within
a few degrees, the concept is now ready for implementation
and proof of concept.

6 IMPLEMENTATION

The latency compensation system was implemented on
the 112mm size quadrotor. The quadrotor was fitted with a
fixed camera with analog transmission. The real time imple-
mentation had three key parts:

• Introduce an artificial latency

• Measure the command inputs and generate the predic-
tion of the feedback’s change

• Receive and augment the video stream

The Node.js environment was chosen for implementation.
Node.js is a javascript runtime, designed for internet con-
nected applications and has event based features. The event

5

110

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

IMAV2018-13 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

-5 -4 -3 -2 -1 0 1 2 3 4

Error (deg)

0

20

40

60

80

100

120

140

160

C
ou

nt

Distribution of prediction errors

Figure 5: Histogram of predictive errors on the roll axis
throughout a flight, for a delay time of 1 second.

based features are useful for running the simulation in real
time, I/O in real time and introducing delays. There is a large
ecosystem of pre-existing libraries for a variety of tasks, in-
cluding mathematical tasks, image processing and I/O. The
Node.js environment will also be ideal for future work imple-
menting on a real source of latency. Node.js is fast, but being
an interpreted javascript environment it is not fast enough to
run the image warping in real time.

OpenCV was used to perform the image undistortion and
warping, which was faster than Node.js because it runs as
precompiled C code.

The architecture for testing the compensator is shown
in Fig. 6. Regular flight uses Node.js as a passthrough to
display video, to give a baseline. Flying with latency uses
the Node.js environment to introduce latency to the system,
and latency compensated flight uses Node.js to introduce la-
tency and augment the feedback. All command and feedback
passes through the Node.js environment.

Vehicle

Operator

Command Video
Feedback

Regular Flight

Command

Operator

Latency

Vehicle
Delayed

Command

Video
Feedback

Flight with Latency

Command

Operator

Latency

Compensator

Augmented
Video Feedback

Vehicle
Delayed

Command

Video
Feedback

Latency Compensated Flight

Figure 6: The flight test architectures.

Figure 7 shows the simulation arrangement used. The
simulation is indicated in blue, beginning from the start of
the flight. The vehicle states in red are simulated and still in
memory at tn. The simulated vehicle states at tn and tn − 2τ
are compared to find the expected change in the feedback. A
single propagation of the flight was used as it is difficult to
guarantee that two simulations running side by side but sep-
arated in time will run with identical inputs, and hence may
be prone to drift apart. In future work, input to the simu-
lation from telemetry feedback may be necessary to ensure
that the simulation does not drift from the true vehicle state.
Because the quadrotor’s angular response does not vary with
flight condition, this architecture is sufficient.

Compare

Compare

tn

Control Station

Vehicle

time

co
mman

d

co
mman

d
Feedback

tn − 2τ

(a) Implemented

(b) Prone to Drift

Figure 7: Simulation and computation of the predicted feed-
back.

7 FLIGHT TESTING AND RESULTS

The 112mm quadrotor was flown without any latency,
with latency and with compensated latency.

The test pilot did not have any remarks about abnormal
flight behaviors when flown without latency. The size of
the quadrotor meant that its position was quite susceptible to
gusts.

Latencies of 500ms and 1000ms were tested. With a
500ms latency, the test pilot struggled to maintain control.
Early flights resulted in crashes. Later flights the test pilot
was able to maintain flight, but only achieving the most basic
maneuvers and tasks. Control was achieved by giving brief
inputs and then waiting to observe the effect of those inputs
before determining the next input. Controlled flight was not
achieved with a 1000ms delay.

Compensated latencies of 500ms and 1000ms were
tested. The test pilot remarked immediately when flying with
500ms of compensated latency that the aid allowed smooth
control of the vehicle. With both 500 and 1000ms of com-

6

111

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

IMAV2018-13 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

pensated latency, tasks such as following a fence line were
achieved. Controlled flips in the roll and pitch axis were
achieved. Figure 8 shows the pilot’s view at various points
through a flip at 1000ms latency. The flips highlighted that
not accounting for the delays in the various command and
feedback interfaces had an effect on the prediction. The com-
pensator expected the video to show the vehicle rolling briefly
before it did, so the horizon dipped from level as the quad was
“catching up” to the pilot. This bug will be addressed in fu-
ture flight testing.

Figure 8: Frames displayed by the compensator during a flip
flown with 1000ms latency. The issue introduced by the
latency not accounted for can be seen in frames f) and g).
Frames are labeled a)-h) chronologically. Frames on the left
are taken from when the flip is commanded (vehicle remains
level) while frames on the right are taken from when the ve-
hicle executes the flip (horizon should appear to remain level,
but doesn’t because the compensated latency is slightly less
than the true latency). The total time between the first and
last frame is approximately 2 seconds.

8 CONCLUSION

The problem of teleoperation has been explored, and the
client side prediction model has been borrowed from multi-
player videogames to address the control latency problem in

UAVs. The mathematical basis for the concepts viability has
been explored and a scheme that does not suffer from drift has
been found. The concept has been implemented and proof of
concept achieved in flight testing. Future work may refine
the system, explore systems where drift of intermediate states
like airspeed could affect the system response or explore im-
plementation with a real latency source (such as an internet
connection).

REFERENCES

[1] Tara Bartlett. Delay compensation for international un-
manned aerial vehicle control “unpublished”. AERO3711
Final Report, 2017.

[2] W.R. Ferrell and T.B. Sheridan. Supervisory control
of remote manipulation. pp 16-17 of NEREM Record.
Northeast Electronics Research and Engineering Meet-
ing, Boston, November 2–4, 1966. Volume VIII. Newton,
Mass., Ernest E. Witschi, Jr., 1966., Oct 1967.

[3] Jonathan Bohren, Chris Paxton, Ryan Howarth, Gre-
gory D. Hager, and Louis L. Whitcomb. Semi-
autonomous telerobotic assembly over high-latency net-
works. In The Eleventh ACM/IEEE International Confer-
ence on Human Robot Interaction, HRI ’16, pages 149–
156, Piscataway, NJ, USA, 2016. IEEE Press.

[4] Yahn Bernier. Latency compensating methods in
client/server in-game protocol design and optimization.
Game Developers Conference, 98033(425), 2001.

[5] Boris B. Betaflight. https://github.com/
betaflight/betaflight, 2013-2018.

[6] Jeremy Cox. Adapting uav control for latency “unpub-
lished”. Undergraduate Thesis, 2017.

[7] GitHub Contributors. ArduPilot. https://github.
com/ArduPilot/ardupilot, 2011-2018.

[8] GitHub Contributors. PX4 Pro Drone Autopilot.
https://github.com/PX4/Firmware, 2011-
2018.

APPENDIX A: QUADROTOR CONTROL MODES

The following review of control modes is based on mate-
rial from the ArduPilot [7], PX4 [8] and BetaFlight [5] open
source flight control codes and their associated user guides.

A.1 Basic Control Modes
The most basic control systems use the attitude or attitude

rates as the process variables, as well as an overall throttle
setting (which is not subject to a closed loop control system).
The three angular inputs typically use a self-centring gimbal
for input, and an axis which holds its position for throttle.

The inexpensive ’toy’ grade models typically implement
these control schemes. These control systems require only a

7

112

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

IMAV2018-13 10th International Micro-Air Vehicles Conference
22nd-23rd November 2018. Melbourne, Australia.

gyro, as well as an accelerometer for attitude control modes,
which are easily and inexpensively surface mounted aboard a
flight computer board.

A.2 Rate Mode
Also referred to as: acro mode.
The most basic controllers use a gyro only to control the

attitude rates, requiring three axes of input for the attitude
rates and one for the throttle setting. The relative thrust set-
ting of the opposite pairs of motors is used as the actuator for
each axis. The throttle input determines the overall sum of
all of the motor throttle settings. A basic block diagram for
this arrangement is shown in Fig. 9. While this mode is quite
basic and simple to understand, it is one of the trickiest to fly
(though it allows the largest set of possible maneuvers and
most direct control) due to its lack of self-leveling.

C1(s) G1(s)
θ̇c(s) θ̇(s)

-
+

+

+

d1(s)

Figure 9: Rate mode controller typical block diagram.

A.3 Angle Mode
Also referred to as: stabilise, self-level mode.
Angle mode is fairly similar to rate mode, except that in-

stead of controlling the angular rates, the pitch and roll angu-
lar position is determined by the stick inputs. The stick inputs
are mapped to angular positions such that a zero input puts the
quadcopter in a level, hovering attitude. Pitch/roll inputs are
used to place the vehicle at an angle, which accelerates the
quadcopter horizontally. This control is achieved using a new
control loop, with the rate control loop from the rate mode as
the plant, shown in Fig. 10.

C1(s) G1(s)
θ̇(s)

--
++

+

+

d1(s)

1

s
C2(s)

θc(s) θ(s)

Figure 10: Angle mode controller typical block diagram.

The yaw axis remains an angular rate controller rather
than angular position controller (so that a zero stick input
gives a steady heading, rather than moving the quadcopter
to a particular heading angle).

A.4 Advanced Control Modes
More advanced systems build on the basic control modes,

providing as setpoints to basic control modes inputs based on
other sensors, so that setpoints may be set for other variables.

Commonly available sensors include:

• barometer, which can be inexpensively surface
mounted on a flight computer board

• GPS, which is often an external module connected to
the flight computer via a serial connection

• optical flow, which typically requires a substantial pro-
cessor alongside the flight computer

• ultrasonic sensor, which allows sensing proximity to
obstacles in a particular direction

With these additional sensors, the vehicle position and po-
sition rate (on some or all axes, depending on sensor) can be
used as a process variable. This allows flight modes such as
position or altitude hold. Other control modes allow prepro-
grammed setpoints to be used, such as orbiting a point at a
constant rate or following waypoints.

Abstraction of operator control means changing the op-
erator’s control from things like “roll left” to “move to these
coordinates” and can be an effective means of combating la-
tency.

8

113

IMAV2018-13
http://www.imavs.org/pdf/imav.2018.13

