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ABSTRACT

A modified Next Best View (NBV) approach is
presented to improve the 3D reconstruction of
complex symmetric structures. Two new stages
are introduced to the NBV approach; A profiling
stage quickly scans the structure of interest and
builds a rough model called the ”profile”. The
profile is relatively sparse but captures the major
geometric features of the structure. A symme-
try detection stage then determines major lines of
symmetry in the profile and labels points of inter-
est. If a point exists in known space but its mirror
image lies in unknown space, the mirrored point
becomes a point of interest.

The reconstruction is performed by a sensor
mounted on an Unmanned Aerial Vehicle by us-
ing a utility function that incorporates the de-
tected symmetry points. We compare the pro-
posed method with the classical information gain
utility function in terms of coverage complete-
ness, total iterations, and travel distance.

1 INTRODUCTION

Once restricted to controlled industrial environments,
robots have become increasingly autonomous in the past
decade. One task being delegated to robots is the automatic
3D reconstruction of objects and structures where there is a
need for high density reconstructions that ensure complete
coverage of the structure. This technology has applications
in inspection, model scanning and in preservation of archae-
ological artefacts in digital form. Performing the inspection
task manually is time-consuming with no guarantees on re-
construction density, coverage completeness or repeatability.

In some cases, a model or blueprint of the structure is pro-
vided which can be used to pre-compute paths for the robot to
follow as it reconstructs the structure [1, 2]. However, these
models are not available or provided in many cases.

To overcome this problem, the robot iteratively constructs
a map as it navigates around the object of interest. One such
method is the so-called Next Best View (NBV) approach [3,
4, 5] which attempts to determine where to place the sensor
next in order to obtain the most new information about the
structure.
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The basic NBV methodology works as follows: Starting
from an initial position, the robot senses its surroundings and
creates an initial map of the structure. The robot then gen-
erates a set of candidate viewpoints to move to next, evalu-
ates each of these viewpoints, and finally moves to the view
that maximizes the information gained about the structure. A
utility function is usually used to evaluate these viewpoints
by weighing factors such as information gain and effort re-
quired to reach that viewpoint. This process is repeated over
and over, selecting new viewpoints at each iteration until the
structure is fully modelled, or a termination criteria has been
met.

2 BACKGROUND

Model-less based approaches incrementally build the map
as they explore. Typically, these make use of a Next Best
View (NBV) approach as described in the introduction. The
method is often broken down into stages, with the two main
components being Viewpoint Sampling and Viewpoint Eval-
uation.

2.1 Viewpoint Sampling

Some techniques that have been explored to generate can-
didate viewpoints are frontier approaches, Rapidly Exploring
Trees (RRT) and discretized state space approaches.

A frontier is a boundary between explored and unex-
plored space [6]. The frontier is determined by constructing
an occupancy grid which marks whether a cell is free, occu-
pied or unexplored. Unexplored cells which are adjacent to
free cells are frontier cells, and the chain of adjacent frontier
cells is a frontier.

Frontier methods perform well indoors and in constrained
areas. In these environments, the frontier exists only at the
end of a corridor or start of a room. However in an outdoor
setting, the sky represents a large unexplored space and, if
there are no obstructions, the frontier can potentially reach the
horizon and become enormous. Bircher et al. [5] shows that
frontier approaches stall in outdoors environments, with most
of this time spent on evaluating the multitude of viewpoints.

A related technique for reconstruction is the boundary
search method [7]. Rather than finding the edge of explored
space, it locates the edge of the explored object. Poses near
the boundary are sampled, and the quality of the poses can
be improved by estimating the shape of the unseen surface at
the boundary [7]. A similar method locates ”barely visible”
surfaces whose normals exceed a defined visibility angle [8].
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Rapidly-exploring Random Trees (RRT) sample view-
points randomly and connects these viewpoints in a tree-like
structure, expanding throughout the explored space. Each
branch represents a set of viewpoints to be visited in se-
quence, and the branch which maps the most unmapped space
is selected. These trees can be grown using RRT or the RRT*
variant [9].

Rather than executing an entire branch at once, Bircher et
al. [5] determines the best branch and executes only its first
edge. The remainder of the branch is used to initialize a new
tree, preserving the original path while allowing for new paths
to grow as the world map is updated. This method prefers
to yaw in place to minimize cost penalty while the frontier
method always moves to edges of known space. In Bircher’s
tests, RRT performed similar to frontier in indoor environ-
ments but vastly outperforms it outdoors. This is because the
number of voxels in the frontier representation grows expo-
nentially with size so it takes longer evaluate all the possible
frontiers.

The discretized state space —also known as state lattice,
configuration space or discretized joint space— takes each
degree of freedom (DOF) and divides its range into a number
of discrete steps. The possible poses that an n-DOF robot
can take are thus visualized as points lying in a discretized n-
dimensional space. While this technique is usually applied to
manipulators with fixed joint range [10], it can also be used on
a mobile robot if an estimated volume for the workspace can
be obtained. Those working with UGVs may use 2-D position
and yaw while UAVs may use 3-D position and yaw [11].
Additional DOFs may be added if a pan-tilt camera is used to
alter the pitch of the camera as well.

With each additional DOF, the number of points in the
discretized space increases exponentially. Similarly, large
scenarios and fine resolution increase the number of view-
points drastically, making it unsuitable for large-scale high
precision applications. In these cases, a method must be used
to limit the selection before evaluating the next best view.

2.2 Utility Functions
A common strategy is to simply move to the closest view-

point. This has been found to reduce movement time, pro-
cessing time and effort but it results in reduced information
gained per viewpoint [12]. Traditionally the robot would sim-
ply move to the closest frontier, but a variety of utility func-
tions have been employed to achieve improved results [3].

A utility function is any function that attempts to rank
the sampled viewpoints. Factors included in utility functions
may include distance to viewpoint, view angle with respect to
surface normal [7], and distance to hazards [13].

3 PROPOSED METHOD

Rather than attempting to tackle the NBV problem
blindly, we propose a quick profiling stage. Before applying
NBV, an unmanned aerial vehicle (UAV) scans the structure
to obtain a rough initial model of the structure. The initial

model will henceforth be referred to as the profile, as it shows
the general shape of the structure and captures its significant
geometric features. The process of obtaining the profile is
called profiling.

After the profiling step, the main steps of the standard
NBV method are executed as shown in Figure 1. The method
samples a finite number of viewpoints, evaluates them and
determines the next best viewpoint. The UAV then moves
to the selected viewpoint and updates the map and structure
representations. The termination condition is evaluated, and
if the criteria is not satisfied, the process is repeated.

Start

Profiling

Update world map

Terminate? Stop

Sample viewpoints

Evaluate viewpoints

Navigate to selected viewpoint

yes

no

Figure 1: The basic components of the proposed NBV
method

3.1 Structure Representation
As new point data is acquired by the sensors, two repre-

sentations of the structure are updated: a point cloud and an
occupancy grid. The occupancy grid divides space into a grid
and stores a probability of occupancy in each cell. A prob-
ability of 1 means the cell is fully occupied, 0 is completely
free and 0.5 is unknown as it is equally likely to be occupied
or free. By using the notion of entropy from information the-
ory, the amount of new information remaining in the scene
can be computed. The entropy ei of the cell i with occupancy
probability pi can be found by:

ei = (pi) log (pi) + (1− pi) log (1− pi) (1)

The graph of ei has a peak at pi = 0.5, meaning unknown
cells have the most information while completely free and
completely occupied cells have no new information.

The occupancy grid is unsuitable for reconstructing the
final structure due to its large spacial resolution. Instead, the
final mesh of the structure is generated from a point cloud,
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which is denser and more precise. Since the point cloud does
not differentiate between free and unexplored space, it is nec-
essary to make use of both occupancy grids and point clouds.

3.2 Profiling
The profiling stage initializes both the occupancy grid and

the point cloud to guide further exploration.
To capture the profile, we have opted to use laser range

data. While it is possible to obtain the profile using visual
data, these tend to have poorer distance estimation at longer
ranges and require multiple viewpoints to establish spatial po-
sitioning of an observed point. Visual sensors also rely on
having a feature-rich environment to obtain features, so a re-
flective or plain surface would be captured with a relatively
low point density.

On the other hand, range data has the benefit of collecting
reliable 3D points from a single reading. LIDARs can take
readings in nearly 360 degrees at distances up to 100 meters.
The combined angular and distance capabilities allow the sys-
tem to gather data about a large structure quickly.

Laser spatial resolution degrades with distance due to in-
creasing distance between the radial rays, so point density
will be lower at farther regions of the structure. Some areas
may also be occluded, so it is necessary to explore the struc-
ture up close with a higher density sensor.

3.2.1 Adaptive Circular Profiling

Figure 2: Example of profiling from top view. Dotted lines
represent virtual cylinders that encapsulate all point data seen
until that time instance. At each of numbered dot, the UAV
scans vertically, updates the profile, and recomputes the ra-
dius and center of the bounding cylinder. The UAV then trav-
els to the next waypoint and repeats.

We propose an adaptive method of obtaining a profile by
moving in a circle around the structure whose radius expands

to encapsulate the structure. The vehicle travels around a cir-
cle that fully encapsulates the points observed thus far. As the
vehicle travels around the circle, the profile is updated and the
centroid and bounding radius of the cylinder is adjusted. The
procedure is illustrated in Figure 2 and described more for-
mally in Algorithm 1.

Algorithm 1 Profiling: Adaptive Circular
Input:
• N — Number of viewpoints around structure for pro-
filing
• d — Minimum distance for obstacle avoidance

Output:
• rocc — an occupancy grid
• rcloud — a point cloud

1: θs ← Angle between the global x axis and the vector
from the UAV’s starting position to the center of the
workspace

2: θ ← θs
3: φ← 2π/N
4: while (θ − θs) < 2π do
5: Scan by moving vertically between zmin and zmax
6: UpdateProfileMaps(rocc, rcloud)
7: proj ← ProjectOntoXYPlane(rcloud)
8: c← ComputeCentroid(proj)
9: r ← GetBoundingRadius(proj, c)

10: r ← r + d
11: MoveToCircleCircumference(c, r, θ)
12: θ ← θ + φ
13: MoveAlongCircleCircumference(c, r, θ)
14: end while

3.2.2 Symmetric Prediction

The profile is likely to contain holes due to occlusion or lim-
ited sensor range. Many structures have symmetry, whether
it is rotational, translational, intrinsic, extrinsic or otherwise.
We can extract additional information about the structure by
exploiting this property. In our application, we focus on re-
flectional symmetry.

In order to detect the line of symmetry, the following ap-
proach was taken:

1. Compute keypoints in the profile point cloud using Fast
Point Feature Histograms (FPFH) [14]. By focusing on
these keypoints, the number of points under considera-
tion is reduced significantly.

2. Compute features for each keypoint using a variant of
the Scale Invariant Feature Transform (SIFT) that op-
erates on 3D point clouds. This variant has been imple-
mented by Michael Dixon for the Point Cloud Library
[15].
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(a) (b) (c) (d) (e)

Figure 3: The symmetry-detection process for prediction. (a) The profile obtained by the simulated UAV. Some gaps exist in
the model. (b) The detected line of symmetry shown in blue. (c) The profile is mirrored across the line of symmetry and shown
in green. (d) The mirrored image is aligned with the original using ICP and merged to create the final prediction. (e) The
additional points obtained from the symmetry process. These are visualized by subtracting the point cloud in (d) from (a)

3. Match each keypoint with the keypoint that has the
most similar features (ie. Euclidean distance between
features is minimum)

4. Fit a plane between each pair of points

5. Determine the plane of symmetry by performing mean
shift clustering on all plane parameters computed in the
previous step. Seen in Figure 3(b).

6. Create a copy of the profile point cloud and reflect it
across the line of symmetry, as shown in Figure 3(c).
This copy is called the prediction.

7. The predicted point cloud can be corrected by applying
Iterative Closest Point (ICP) [16] between it and the
profile, as shown in Figure 3(d).

Once we have obtained the predicted symmetric point
cloud, we use it to modify the occupancy grid. Cells that
are unknown but have a predicted point within them are up-
dated to an occupancy value of 0.6. This update indicates that
we have some confidence that the cell is occupied, but not as
confident as a cell that has been directly observed.

3.3 Viewpoint Sampling
As there are an infinite number of poses to consider, at-

tempting to determine the absolute best possible position in
continuous space is intractable [12]. Instead, only a few se-
lected viewpoints are sampled. To generate those viewpoints,
we use a technique called constant grid viewpoint sampling
(CGVS).

The CGVS approach samples a few points in the vehicle’s
nearby vicinity in both linear and anglar space, as shown in
Figure 4. While this method is not globally optimal, it ensures
viewpoints in the nearby vicinity are sampled first to reduce
travel cost.

This method can be generalized so that the sampling dis-
tance can vary. This may be done by multiplying linear dis-
tances with a scale factor of σα, where σ > 1 and α ≥ 0. This

scaling approach extends CGVS and can be performed dy-
namically, giving rise to adaptive grid viewpoint sampling
(AGVS). The set of sampled viewpoints is given by Equation
2 with respect to the vehicle’s local frame.

If the value of σ is fixed, the value of αmust vary in order
to change the scaling. Scaling occurs when the method fails
to obtain sufficient entropy reduction after a given number of
iterations. The criteria for ”sufficient entropy reduction” is
explained in Section 3.5. If Equation 6 is satisfied for N = 3
and ∆Ev,threshold = 0.005, then α is incremented by one,
otherwise it is reset to zero.

Finally, a viewpoint is considered invalid and discarded
if it touches an occupied or unknown cell, collides with the
structure or lies outside the workspace limits. If the method
is unable to generate any valid viewpoints, the NBV process
terminates.

Figure 4: Constant grid viewpoint sampling method. Blue
arrows represent valid viewpoints while red ones are rejected
due to collision with the structure. Magenta lines represent
the sensor’s viewpoint at the selected viewpoint. Green vox-
els represent occupied space, while blue voxels show un-
known space.
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VCGV S =








i×∆d× σα
j ×∆d× σα
k ×∆d× σα
m×∆θ




∣∣∣∣∣∣∣∣

i, j, k,m ∈ {−1, 0, 1},
{i, j, k,m} 6= {0, 0, 0, 0}




(2)

The first three elements of VCGV S represent the spacial
increment (x,y,z), while the last element represents the angu-
lar increment (yaw). The values of ∆d and ∆θ are in meters
and radians, respectively. In our experiments, these values
are set to ∆d = 1.0m and ∆θ = π/4rad as that creates some
overlap between viewpoints while providing the opportunity
to discover new information. The value of σ is a fixed scale
factor, while α is the number of times to apply the scale. We
have used values of σ = 1.5 and α ∈ [0, 5] so the total scale
factor varies from 1 to 7.594.

3.4 Viewpoint Evaluation
To determine which of the sampled viewpoints is the next

best view, we select the viewpoint that maximizes a utility
function. The utility function operates on a section of the
point cloud and/or occupancy grid that is visible at that par-
ticular viewpoint.

3.4.1 Utility Function

The Information Gain (IG) metric is often used in literature
[5, 3, 17], and will thus be used as a benchmark. It measures
the total entropy (see Equation 1) of cells in a given view-
point.

To determine which cells are visible from a given view-
point, rays are cast according to the sensor’s field of view.
The ray passes through free or unknown cells, and stops once
it collides with the first occupied cell in its path. The entropy
of the cells along and at the endpoint of the ray trajectory is
computed as in Equation 3

The total information Hk in a given viewpoint k which is
able to see the set of cells V is given by:

Hk =
∑

i∈V
ei (3)

In the proposed method, we make use of Equation 3 using
our modified occupancy grid with predicted voxels.

3.4.2 Constraints

In the case where profiling is not performed, there is a large
amount of unknown information surrounding the structure.
Left on its own, the vehicle would prefer to select viewpoints
with purely unknown cells and would move away from the
structure. To prevent this, two restrictions are implemented.

First, viewpoints that do not observe at least 1 occupied
cell are rejected. This encourages the vehicle to continue to
observe the structure and overlap with previous observations.

Second, the structure lies within a bounded workspace.
Any measurement outside those bounds is regarded as having
zero utility so that even if the first restriction is removed, the
vehicle would stay within the given bounds.

3.5 Termination
No consensus has been reached for a suitable termina-

tion condition as it varies between applications, and is also
difficult to quantify the desired criteria. Ideally, the process
should terminate once the system has achieved coverage com-
pleteness, but it is difficult to compute coverage without the
original model for reference. The work in [18] terminates if
the percentage difference in total entropy reduction has fallen
below a threshold, while [12] terminates if no view has an IG
above a certain threshold.

Both these methods have variable results. If the total num-
ber of unknown cells is very large, percentage difference in
entropy reduction will be very small. This can happen if the
size of the workspace increases, the occupancy cell size is
reduced or many unknown spaces remain after the profiling
stage. Similarly, it is possible to be temporarily trapped in lo-
cal minima, so it may not be fair to terminate if IG reduction
momentarily stagnates.

3.5.1 Entropy Change Per Viewable Voxel

To tackle the shortcomings of the previous termination con-
ditions, we propose a termination condition based on the en-
tropy reduction normalized by the maximum number of cells
that can be observed from a given view. This gives average
entropy reduction per cell and is given in Equations 4 and 5:

∆Ev =
En−1 − En
Cview

(4)

Cview = Vfrustum/Vcell (5)

where ∆Ev is the entropy change per cell, En is the total
entropy at iteration n, Cview is the number of viewable cells,
Vcell is the volume of a cell, Vfrustum is the volume of the
view frustum which accounts for the camera’s field of view.

In addition to counting the number of complete cells
within a viewpoint, the value of Cview also includes partial
voxels at the boundaries of the frustum. Sensor readings and
raytracing can pass through these cells on the edge of the frus-
tum, so it is necessary to count them as well.

We consider the NBV process has terminated if the con-
dition in Equation 6 is true for more than N consecutive it-
erations. The value of N is selected so that the method does
not terminate prematurely if it is stuck in a local minimum.
The magnitude of ∆Ev is used rather than the raw value to
account for loss of information. Entropy may increase if an
obstacle is introduced or removed, or during raytracing with
large occupancy cells from a variety of angles.

|∆Ev| < ∆Ev,threshold (6)
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By computing the average entropy change in a single
voxel, it is possible to have a single threshold (or tight range
of thresholds) across a variety of scenario sizes and occu-
pancy cell resolutions.

4 EXPERIMENTS

4.1 Environment
Simulation experiments were performed on an

Alienware-X51-R2 desktop (Intel Core i7-4790 @ 8 x
3.60 GHz, 15.6 GB RAM, no GPU acceleration). The
NBV framework was implemented on Ubuntu 14.04 using
the Robot Operating System (ROS-indigo) and simulated
with Gazebo. The occupancy grid was represented with the
OctoMap library [19] while point cloud data was processed
using the Point Cloud Library (PCL) [15].

Figure 5: The aircraft used as the object of interest, chosen
for its complex geometry

An aircraft was used as the object of interest, as shown
in Figure 5 (Dimensions: 35 × 30 × 7 m3). The aircraft’s
complex geometry makes it an interesting case study; it has
numerous curved surfaces, overhangs, occlusions and is large
enough to demonstrate the scale of the problem being tackled.
The aircraft also exhibits numerous symmetries that can be
exploited.

The vehicle used is a UAV with two sensors, namely a
laser scanner and RGB-D camera with specifications as in
Table 1. The laser scanner covers a wide angle with a large
range, making it suitable for obtaining many points during
the large sweeping motions of the profiling stage. The laser
scanner is mounted with a slight downwards pitch to ensure it
can capture any skyward-facing surfaces. The RGB-D cam-
era is used to obtain dense points at a closer range to create
the highly detailed final reconstruction.

A circular collision box is constructed around the UAV
to check for collisions with the structure, and its motion is
constrained within a workspace of size 40× 40× 10 m3.

4.2 Procedure
Three main tests are performed; first, the classical NBV

approach is performed without any profiling or predictive
stage (Scenario 1). Second, profiling is performed, but no
symmetry prediction is employed. The NBV approach is run

Specification Laser Scanner RGB-D camera

Horizontal FOV 180◦ 60◦

Vertical FOV N/A (single layer) 45◦

Resolution 0.25◦ 640×480 px
Range 0.1–30 m 0.5–8.0 m
Mounting orientation

(Roll, Pitch, Yaw) (0◦, 10◦, 0◦) (0◦, 0◦, 0◦)

Table 1: Sensor specifications

using the profile as the initial map (Scenarios 2 & 3). Finally,
both profiling and symmetry are performed before starting
NBV (Scenarios 4 & 5).

To further enhance the coverage completeness, the CGVS
and AGVS approaches are compared. In this context, CGVS
means the value of α is fixed to zero in Equation 2. The value
of α increments by one whenever the condition in Equation 6
is met for N = 3 and ∆Ev,threshold = 0.005. Similarly, the
termination condition is met if the Equation 6 is satisfied for
N = 5 and ∆Ev,threshold = 0.001.

For each scenario, the sensor begins in 5 predefined start-
ing locations and the entire process runs until termination.
The result of the 5 runs is averaged to give an indication of
the average performance for each scenario.

5 RESULTS

The final reconstructions are shown in Figure 6 and the
results are plotted in Table 2, where the distance travelled,
entropy reduction and coverage are compared. Coverage is
evaluated by initializing two new occupancy grids: one con-
structed from the final point data and another from points
sampled from the original mesh. The percentage of matching
cells between the two grids is used to determine the coverage.

By changing the size of cells in the two grid, it is possible
to measure two different types of coverage. Performing the
matching with large voxels (eg. 0.5m) determines how much
of the overall shape has been captured. On the other hand,
matching smaller voxels (eg. 0.05m) gives an indication of
how detailed the final model is.

Table 2 shows that compared to the full NBV approach
(Scenario 1), the profile alone is able to capture the general
shape of the structure (86.7% vs 86.9%) with lower travel-
ling cost. However, since the profiling is performed from far
away, the resolution is low and hence the density of the re-
constructed structure is low (15.1% vs 73.3%).

When the NBV method uses the profile, we see that mid-
and large-scale overage improve despite travelling roughly
half the distance. While dense coverage did fall, it is mostly
due to the lower number of iterations and distance travelled.

The dense coverage (resolution of 0.05m) of the adaptive
method consistently exceeds that of the constant grid method.
This is mainly due to the vehicle being able to escape lo-
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Scenario Profiling Symmetry
Prediction

Viewpoint
Sampling Iterations Distance (m) Total Entropy

Reduction
Coverage

(Res=0.05m)
Coverage

(Res=0.10m)
Coverage

(Res=0.50m)

Profile — — — — 320.0 927,405 15.1% 61.6% 86.7%
1 No No CGVS 859 1,039.9 289,439 73.3% 78.7% 86.9%

2 Yes No CGVS 301 538.7 929,483 62.7% 89.0% 89.7%
3 Yes No AGVS 301 714.5 929,509 71.8% 88.0% 97.7%
4 Yes Yes CGVS 217 526.6 928,323 61.5% 87.7% 97.4%
5 Yes Yes AGVS 257 665.2 928,744 86.5% 94.9% 99.5%

Table 2: Results of the experiment

cal minima by being able to take larger steps. However, this
caused travel distance to increase by approximately 30%.

Looking at entropy reduction, we can see that the profile
alone is more effective at reducing entropy than the classical
NBV method (Scenario 1). Since the LIDAR has long range
and most of the space around the structure is empty, it con-
verts most of the unknown cells to free cells. There are ad-
ditional entropy reductions in Scenarios 2–5, but the value is
much smaller as the methods are mainly observing occupied
cells with a few scattered unknown cells.

Figure 6: Final representation of the structure. Top: The
profiled point cloud, representing the partial model obtained
at the start of the process. Center: The final point cloud after
NBV. Note the tail has not be visited during NBV¿ Bottom:
The final occupancy grid, where green represents an occupied
cell and blue represents unknown.

Figure 7: The trajectory taken by the drone during Scenario 4

6 CONCLUSIONS AND FUTURE WORK

We have proposed a method of improving the Next Best
View approach for the reconstruction of large, complex struc-
tures. A rough scan of the structure is performed to obtain
its profile, which is then checked for mirror symmetry. The
symmetry is used to make predictions about the shape of the
structure to guide the NBV approach. We have also proposed
a termination condition based on the average entropy change
per cell, and an adaptive viewpoint sampling method based
on the same principle.

The introduction of the profiling step shows improvement
in coverage completeness with slightly reduced distance. The
symmetry prediction performs similar to the classic method
and occasionally outperforms it. Finally, the adaptive sam-
pling method is able to escape local minima and brings the
coverage completeness closer to 100% while given relatively
dense reconstruction.

To further improve this method, we plan to develop a
more holistic utility function by incorporating distance and/or
density measures. Including the distance may help reduce the
total distance travelled while targeting areas with low point
density to improve the reconstruction density.

Another possible improvement is the inclusion of fron-
tier methods. Be focusing directly on frontiers and creating
viewpoints towards them, it may be possible to obtain a more
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globally optimal solution.
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