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ABSTRACT

Formation control in multi-UAV systems can be
obtained through different strategies, each one
with its own advantages and disadvantages. In
order to minimize the weaknesses of each tech-
nique, this paper proposes a combined approach
to drive a group of three quadrotor UAVs in a
time varying formation, using a virtual struc-
ture, a leader-follower strategy and two behav-
ioral rules. To each UAV is assigned a position in
a formation that is represented by a virtual struc-
ture. The UAVs then have to compute their de-
sired positions in order to achieve the formation.
This is done using one of two possible meth-
ods, one based on a leader-follower approach
and another based on waypoints received from
a ground station. Two behavioral rules are then
used to move the UAVs towards their goal while
avoiding collisions with each other. The algo-
rithm was implemented in C++ using the ROS
platform and was tested in simulations using the
Pixhawk SITL simulator. Results show that the
UAVs are able to move in formation and also to
change the formation without colliding with each
other.

1 INTRODUCTION

Recently there have being a growing interest in the use of
UAVs (Unmanned Aerial Vehicles) in a wide range of appli-
cations. This is due to the development of inexpensive and
easy to build UAV models that can carry powerful sensors
and even miniature computers. The number of proposed ap-
plications is large, ranging from civil uses such as forest fire
monitoring and fighting [1][2], buildings and bridges inspec-
tion [3], crop dusting [4] and search and rescue of survivors
after a disaster [5], to millitary uses including surveillance
and monitoring of an area [6] or even air strikes [7]. One of
the most popular model both in commercial use and in aca-
demic research is the quadrotor, thanks to its simplicity and
great mobility.

Since the control of one UAV is already well understood,
a new problem that is attracting attention is the use of a group
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of UAVs to perform missions. There are many advantages
that come from this approach: a group carries more sensors
and so is able to acquire more information about the environ-
ment; the number of UAVs in the swarm can be altered to
tackle missions of different levels of difficulty; if one UAV
fails the remaining ones can continue the mission without it.
All these advantages however come with the drawback of be-
ing more difficult to control a swarm correctly than a single
unit.

There are many examples of successful attempts in con-
trolling groups of UAVs, using techniques proposed in the
swarm robotics field. Kushleyev et al. developed an im-
pressive flock of 20 minature quadrotors capable of assum-
ing many different formations, using a centralized control
strategy [8]. Bürkle et al. created an outdoor quadcopter
swarm also using central processing at a ground station [9].
Vásárhelyi et al. used flocking rules to fly a remarkable
swarm of 10 quadrotors in an outdoor environment [10]. And
in [11] a group of simulated UAVs is used to monitor an area.

Most of the control algorithms proposed in the literature
can be classified as three types: leader-follower [12][13], vir-
tual structure [14][15] or behavior based [16][17]. In the
leader-follower strategy, one of the UAVs in the group is cho-
sen as the leader. The others have to follow it and position
themselves according to its position. This approach has the
advantage of being easier for a human operator to drive the
group, having to control only the leader. However one disad-
vantage is that if the leader stops working, the whole group
also stop. The virtual structure strategy consists in treating
the whole group as a single fixed structure, with each UAV
representing one point that composes it. The controller is de-
signed such as each UAV is moved to create the structure’s
desired behavior. Finally, in the behavior-based strategy the
UAVs are programmed to follow some desired behavior, such
as avoiding collisions or move closer to one another. In most
of the cases, these kind of strategy is based in real phenomena
observed in nature, and so is classified as bio-inspired.

To control a group of three UAVs while avoiding colli-
sions with each other and keeping track of a time varying
formation, we propose an approach that combines elements
from the three mentioned strategies. The formation is treated
as a rigid structure, composed by an array of poses that will
be assigned to each UAV in the group. The leader is the only
robot that can move freely, being controlled by an operator
at a ground station or navigating autonomously. All the other
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UAVs will try to move autonomously to their assigned poses
in the formation, relative to the leader. The position control is
behavior based, using two behavioral rules to move the UAVs:
formation and separation.

The rest of this paper is structured as follow. Section 2
presents our multi-UAV system and describes our hardware
and software platforms. Section 3 describes the design of the
formation control strategy and the pseudocode implementa-
tion of the behavioral rules. Finally, Section 4 presents the
simulation environment and the obtained results.

2 MATERIALS AND METHODS

2.1 Multi-UAV System
Our system consists of a group of robots that fly over

an area and a ground station with which they communicate
through a telemetry link. The ground station is responsible
for collecting flight data from each robot and sending infor-
mation about the desired formation, but not controlling them.
The control algorithm is distributed and runs in each UAV.
The objective is to move the group to a desired point, avoid-
ing collisions between the UAVs and keeping a formation that
can be changed over time.

The quadrotor is a simple machine, capable of vertical
take-off and landing (VTOL) and moving with six Degrees of
Freedom (DoF). It consists of a center body with four individ-
ual rotors attached, as illustrated in Figure 1. By controlling
the thrust generated by each rotor, we can lift the quadrotor
and move it in the air. As shown in Figure 1, rotor i rotates
anticlockwise if i is even and clockwise if i is odd. By adjust-
ing the speed of the clockwise and anticlockwise rotors we
can control the Yaw angle.

Figure 1: Degrees of freedom achieved by the quadrotor and
rotation direction of the rotors

2.2 UAV Hardware
The robots we are developing the algorithm to control are

small quadrotors with 250mm diameter, each one using a Pix-
hawk as a flight controller board. The Pixhawk is an open-
source device [18] equipped with many sensors such as gyro-
scope, accelerometers, magnetometer and barometer and can
also be connected to a external GPS module. It runs a pow-
erful software that implements the basic controller routines

of the quadrotor, along with many other useful functions. In
our application, the main function of the Pixhawk is to pro-
vide the low-level stabilization and height control of the UAV.
Figure 2 shows a photo of one of the UAVs used in our labo-
ratory.

Figure 2: UAV used in the laboratory

Originally the Pixhawk is intended to be controlled by
a human operator via radio controller or receive commands
from a ground station. However, it is also able to communi-
cate with other devices via a protocol called MAVLink. We
use this protocol to send commands from an embedded Linux
computer (Raspberry Pi) which is also carried by the UAV. in
this way we can program the UAV to fly autonomously, while
still being able to regain manual control at any time. Figure 3
shows a schematic view of the UAV components.

Figure 3: UAV components

2.3 Robot Operating System
Our algorithm was implemented in C++ and runs on the

ROS platform. ROS (Robot Operating System) is an open
source framework created to aid researchers in developing
robotic applications [19]. ROS provides us with many tools
and facilities that were very useful in our work.

A ROS application is a network of independent programs,
called nodes, that communicate with each other. This net-
work is managed by another program called ROS Master. The
communication works in a message passing way. Nodes that
generate data publish this information in topics in the form
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of messages, while nodes that need that data subscribe to
the corresponding topics and receive the published messages.
The types of messages represent common data structures used
in robotics, such as sensor readings or velocity commands.

In our application, the ROS system, containing all the
control algorithms, runs on the Raspberry Pi. We used a node
called mavros which connects to the Pixhawk via a serial con-
nection and is able to translate MAVLink messages into ROS
messages and vice versa. In this way the control node can
get data from the Pixhawk and send commands to it. This
architecture is represented in Figure 4.

Figure 4: System architecture overview

3 DEVELOPMENT

3.1 Formation Control Strategy
We define a global reference frame SG with X, Y and Z

Cartesian coordinates, fixed on the ground. The position of
each UAV i in the SG frame is given by:

pGi = (XG
i , Y

G
i , Z

G
i ) (1)

Each robot uses its embedded sensors to locate itself in
the global frame. Considering the Earth’s geometry and the
origin of the SG frame, the latitude and longitude information
from the GPS sensor can be converted to values in meters in
the X and Y coordinates. This gives us the robot’s initial posi-
tion. From this moment on, the position will be obtained from
the Pixhawk’s internal state estimator, which uses an Extend
Kalman Filter to fuse the measurements from its embedded
sensors, including gyroscope and accelerometers. The Z co-
ordinate is obtained from the GPS and the barometer infor-
mation fused together.

Each UAV receives an unique ID, which is a positive in-
teger number starting at 0 and increasing in increments of 1.
The formation is defined as an array of positions relative to a
formation reference frame, SF. The assigned position to each
UAV is the one whose index in the formation array is equal
to the UAV’s ID. In our experiments we defined three forma-
tions: a horizontal line, a vertical column and a triangle.

Each UAV has to compute its desired position relative to
the formation frame. We defined two methods to make this
calculation:

• Leader-follower method: In this method, one UAV
is considered the leader of the group (the one with ID

0). The leader ignores its position in the formation and
instead is able to move freely, being controlled by an
operator or following a sequence of waypoints. The
other UAVs calculate their desired position relative to
the leader, considering it the origin of the formation
frame.

• Waypoint method: In this method, all UAVs receive
a waypoint to follow and treat it as the origin of the
formation frame. There is no leader in this method.
As such, this approach is more tolerant to UAV failure
than the first one, however is more difficult for a human
operator to drive the group.

The position of each UAV i in the SF frame is represented
by pFi . In the first position calculation method, the origin of
the SF frame is the position of the leader, and then the desired
position of each UAV i in the global frame is given by:

pGiD = pG0 + pFi (2)

where pGiD is the desired position of UAV i in the SG frame
and pG0 is the leader’s current position in the SG frame. In
the second method, the SF frame is centralized at the next
waypoint, so the desired position of UAV i in the global frame
is given by:

pGiD = pGw + pFi (3)

where pGw is the position of the next waypoint.

3.2 The ROS Application
Two nodes are executed by each UAV: mavros and the

control node, called formation controller node, which is our
main control program. This node subscribes to some of
the topics where mavros publishes data received from the
Pixhawk. Using information from the GPS sensor and
the internal state estimator of the Pixhawk, the forma-
tion controller node determines the position of the UAV in
the global reference frame. It then publishes this information
in a topic called /uav positions. The node also subscribes to
this same topic, but since all UAVs are publishing their posi-
tions in this topic, the node receives the position information
of all other UAVs. This data will be used by the behavioral
rules to move the UAV.

The formation controller node also subscribes to a topic
called /formation, where the ground station publishes mes-
sages of type geometry msgs/PoseArray. These messages
contain an array of positions representing the formation vir-
tual structure. Each time a new message arrives, the forma-
tion controller node updates an internal formation array vari-
able, which means that the formation can be changed during
the flight.

Using all the information obtained, the forma-
tion controller node then uses the behavioural rules to
drive the UAV by publishing a geometry msgs/TwistStamped
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message in the mavros/setpoint velocity/cmd vel topic. The
mavros node receives this message, creates the corresponding
MAVLink message and then sends it to the Pixhawk, which
will follow that command accordingly.

Since each UAV runs instances of the same nodes, it is
necessary to run them under different namespaces to avoid
causing conflicts. To each UAV is assigned a namespace in
the form of /uavn where n is that UAV’s ID. A simplified
diagram of the resulting system is shown in figure 5.

Figure 5: Simplified diagram of the ROS application gener-
ated by the program rqt graph.

3.3 Algorithm Implementation

In this section we will describe how we implemented the
two behavioral rules that move the UAVs together in a forma-
tion.

In each loop of the control algorithm, it follows the fol-
lowing steps: i. Obtain the UAV’s own pose from the Pix-
hawk’s internal state estimator; ii. Determine the position of
the neighbors based on the position messages received from
the other UAVs; iii. Obtain the formation array from the /for-
mation topic; iv. Use the behavioural rules for Cohesion and
Separation to determine the direction which the UAV should
move. The main loop of the algorithm is given in Algorithm
1.

First the program calls the function getPose() which cal-
culates the pose of the UAV and sets the variable this.position
representing the UAV’s position in the global frame. Then,
the program calls another function getNeighbors() that gets
the positions of the nearby robots from the received messages
and stores this data in an array called neighbors.

Then the program starts calling the functions where the
actual behavioral rules are implemented. Each function re-
turns a vector that represent the direction that rule tells the
UAV to go. For example, the Separation rule urges the UAV

Algorithm 1 Main loop of the formation control algorithm

1: procedure SWARM
2: getPose()
3: getNeighbors()
4: getFormation()
5: v1← separation()
6: v2← cohesion()
7: vres← r1 ∗ v1 + r2 ∗ v2
8: move(vres)
9: end procedure

to move away from its neighbors, so the separation() function
will return a vector pointing to the opposite direction of the
other UAVs. Each function will be explained in detail ahead.

In line 7 the two vectors are combined trough a weighted
sum to generate the final resulting direction the robot should
move. The weight applied to each rule determines how much
that rule influences the final result. The values of the weights
can be changed to obtain different results. Rules can be even
completely removed from the calculation by setting its weight
to zero.

In line 8 the calculated resulting direction is passed to an-
other function that moves the UAV. This function publishes
velocity commands to the mavros package, which in turn send
MAVLink messages to the flight controller board, instructing
it to move the UAV.

The implementation of each rule and its corresponding
function will be explained in detail:

Separation Rule: This rule urges the robot to move away
from other robots to avoid collisions. This is done creating a
vector for each one of the detected neighbors pointing to the
exactly opposite direction of that neighbor. These vectors are
then combined into a resulting vector and returned to the main
program. The implementation is shown in Algorithm 2.

Algorithm 2 Separation Rule

1: procedure SEPARATION
2: Vector v← 0
3: for all neighbors n do
4: vn← this.position− n.position
5: vn.normalize()
6: vn← vn ∗ distance(this, n)
7: v← v− n
8: end for
9: return v

10: end procedure

We also want the robot to move faster the closer it is from
its neighbor. We do this by adjusting the vector’s magnitude.
First we normalize it so it becomes a unit vector. Then we
divide it by the distance between the two robots. As the dis-
tance between two robots gets smaller, the magnitude of the
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resulting vector becomes bigger.
Formation Rule: This rule tries to move the robot to its

desired position in order to maintain the formation. The im-
plementation is shown in Algorithm 3. Fist we test which
method is being used to determine the desired position. Then
we check if the UAV is the leader by testing if its ID is 0. If
the method being used is the leader-follower, the leader fol-
lows the waypoint and the followers determine their desired
position according to Equation 2. If the waypoint method is
being used, all UAVs use Equation 3 to determine their de-
sired position. The function then generates a vector pointing
to the calculated position.

Algorithm 3 Formation Rule

1: procedure FORMATION
2: Vector v← 0
3: Vector DesiredPosition← 0
4: if leader-follower then
5: if ID == 0 then
6: DesiredPosition← waypoint
7: else
8: DesiredPosition ← leader.position +

Formation[ID]
9: end if

10: else
11: DesiredPosition← waypoint + Formation[ID]
12: end if
13: v← DesiredPosition− this.position
14: return v
15: end procedure

3.4 Computational Complexity and Communication issues

One important concern when designing a multi-robot con-
trol application is the elevation of the computational com-
plexity with the increase in the number of robots. In spe-
cial, in a behavior based approach such as the one we used,
each individual has to iterate through all other individuals to
compute its behavioral rules. If a centralized control is used,
this represent a O(n2) computational complexity, where n is
the number of robots. However, in a decentralized approach,
each robot runs its own control algorithm with a computa-
tional complexity of O(n). This means that a decentralized
approach can make the system more scalable, with the addi-
tion of more robots bringing a smaller burden to the process.

Another concern is the influence of delayed communica-
tions. In our application the robots must communicate with
one another to be able to locate their neighbors. Since we
performed our tests in simulation, the communication delay
was not a problem. However, in real life implementations the
system would be negatively influenced by this delay. In Sec-
tion 5 we discuss how this problem could be tackled in future
works.

4 RESULTS AND DISCUSSION

We decided to run our program in simulation first as a
proof-of-concept and also as a way to evaluate its perfor-
mance. We used the Pixhawk SITL (Software In The Loop)
simulator, a software that is provided as part of the Ardupilot
project. With it we were able to interact with a simulated Pix-
hawk running its original firmware and generating accelerom-
eter, gyroscope, GPS and other sensors data. Three instances
of the simulator were executed simultaneously, each one us-
ing a different GPS starting position, effectively simulating
three UAVs that were able to be controlled individually by
our ROS application.

We defined a scenario where the three UAVs, with IDs of
0, 1, and 2, have to move together maintaining a formation.
The UAVs were commanded to take off to an altitude of 2
meters. As soon as they are stabilized in this altitude, we
started the control node and they start moving. Since the SITL
does not generate a graphical representation of the simulation,
we used the program RViz, which is a standard ROS tool to
create a visual representation of the UAVs. Figure 6 shows
the three UAVs in RViz screen.

Figure 6: Visualization of simulated UAVs in RViz.

To evaluate the performance of our algorithm we defined
two main tests.

4.1 Moving in Formation

The first test aims to evaluate the capability of the UAVs
to maintain a formation while moving together. The robots
are commanded to assume a formation and then move to two
waypoints. We repeated this test for each position calculation
method and for three different formations: a horizontal line,
a vertical column and a triangle. In all experiments the UAVs
were capable of maintaining the formation and no collision
occurred. In Figure 7 we show the trajectory developed by
the UAVs in the test with the triangle formation and leader-
follower position calculation method.
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Figure 7: UAVs trajectory over time.

Another interesting feature of our solution is the possibil-
ity of formation control in three dimensions. In figure 8 the
three UAVs are keeping a vertical formation, assuming differ-
ent positions in the Z axis.

Figure 8: UAVs performing a vertical formation.

4.2 Changing Formations

In this test we tried to see if the UAVs were capable of
changing from one formation to another without colliding
with each other. The UAVs started at the line formation, then
changed to other formations following this sequence: col-
umn, triangle, line, triangle, column and then line. Table 1
shows the time spent in each formation change. Thanks to
the separation behavior, no collision was observed.

It is interesting to note that the longer times appear in the
transitions to the column formation. This is caused by the
fact that this formation is actually vertical, so the UAVs have
to gain height in order to assume their desired positions.

Transition Time [s]
line→ column 7.16
line→ triangle 3.66
column→ triangle 4.90
column→ line 4.70
triangle→ line 3.53
triangle→ column 7.17

Table 1: Time spent in each formation transition.

5 CONCLUSION

This paper presented the design of a combined approach
to the formation control problem in a group of UAV vehi-
cles. Our algorithm combined elements from three different
multi-UAV control strategies: leader-follower, virtual struc-
ture and behaviour-based. The implementation was tested in
simulations and presented good results. The UAVs were able
to move in different formations and change from one forma-
tion to another without colliding with each other.

In future works some improvements can be studied, such
as the use of cameras or range sensors to detect nearby robots.
This would eliminate the need of communication between the
robots, avoiding the negative influence that delayed commu-
nications would have in real systems, and enable the possibil-
ity to detect obstacles in the path.
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