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Abstract — We present a fast and robust stereo visual in-
ertial odometry system which is friendly for low cost sensor
and single board computer (SBC). Comparing against other
research which uses tightly coupled algorithms or nonlinear
optimization to increase accuracy in custom powerful hard-
ware or desktop environment, our system adopts the loosely
coupled ESKF to limit the computational complexity in or-
der to fit limited CPU resources and run in real-time on an
ARM based SBC. The experiments demonstrates our method
could be implemented in both indoor and outdoor scenarios
with competitive accuracy. Furthermore, the usage of forward
facing stereo cameras also provides the ability of obstacles
avoidance. The result are released as an open sourced Robot
Operation System (ROS1) package.

I INTRODUCTION

In order to make a micro aerial vehicle (MAVs) achieve
fully autonomous navigation in GPS denied environment, the
one of fundamental challenge is to obtain fast, robust and
accurate 3D egomotion estimation with others sensors. Re-
cently, the visual inertial odomerty (VIO) attracts significant
attentions in MAV researching field because the algorithm
efficiently integrates the rich representation of a scene cap-
tured in an image, together with the accurate short-term mea-
surements by IMU. In addition, comparing to heavy and ex-
pensive 3D laser scanner or rgbd sensor, the VIO approach
could be able to present similar performance with much less
value in both price and size aspects which may increase the
endurance and maneuverability of MAVs.

In this paper, we propose a loosely coupled stereo iner-
tial odometry based on error state kalman filter (ESKF) algo-
rithm. The main contribution of our method is to limit the
computational loading by using the characteristics of loosely
coupled architecture which uses the fixed dimension of state
space in order to be implemented on low-cost ARM based
SBC (Odroid XU42). The algorithm could run at around
100Hz depending on IMU publishing rate and works with
forward-facing stereo cameras, allowing for fast flight and re-
moving the need for a second camera for collision avoidance.
Apart from this, our approach provides steady metric scale in-
formation from disparity matching to meet the power on and
go requirement without requiring specific initialization.
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Figure 1: The hardware overview of proposed VIO system
composed of ARM based SBC, low cost IMU, and modified
PS4-Eye.

II RELATED WORK

The fusion of Inertial Measurement Units (IMU) with a
visual sensors has become popular in robotics community.
Recent work can be categorized to two approaches: tightly
coupled and loosely coupled system. The former, e.g. [1–3],
jointly estimates the image features information with IMU
data. The latter, [4–6], take the visual odometry(VO) as a
independent black box. By means of the characteristics of
loosely coupled architecture, we could divide our algorithm
into two main sections: VO and ESKF part.

II.1 VO part
There is a vast amount of existing visual algorithms to

estimate the locomotion from traditional feature extraction
and matching method, for instance PTAM [7] and ORB-
SLAM [8], to semi dense approaches, which uses features to
locate small patches, then operates directly on pixel intensi-
ties. The representative of this method is SVO [9] and LSD-
SLAM [10]. In addition, thanks to the significant improve-
ment on CPU/GPU computing power, the current state-of-art
method avoid feature detection process instead using all pixel
information directly from image stream. The famous achieve-
ments are [11, 12]. However, these two approaches generally
rely on powerful or custom hardware. Hence, this is the main
reason that we choose the traditional features based method
for our stereo visual odometry developing.

II.2 ESKF part
The one common way to fuse IMU with odometry or

other types of sensor data is EKF (Extended Kalman Filter).
Although, recently, some researches adopts other nonlinear
optimizer to get more accuracy and robust performance, the
computing cost of the method is too larger to be implemented
on ARM-based SBC. As a result, in our system, we apply
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ESKF algorithm to overcome the limited CPU issue and also
the main drawbacks of traditional EKF architecture. Accord-
ing to the experiments and explanation from [13, 14], ESKF
has following remarkable assets: the orientation error-state is
minimal to avoid over-parametrization issue, the error-state
system is always operating close to the origin to guarantee the
linearization validity and the error dynamics are slow, hence
the rate of correction could be lower than prediction rate.

The rest of the paper is organized as follows. Section III
shows the definition of the notations. Section IV describes
the core algorithm of VO and statical way to remove outliers.
The architecture of ESKF is fully explained in section V, fol-
lowed by section VI, which describes the detail of practical
implementation. Finally, section VII presents the experimen-
tal result and concludes the paper as well as future research
directions.

Figure 2: Visualization of the different coordinate frames.
Blue lines denote the transformation obtained by VO, red
lines stand for the prediction part of ESKF and green lines
depict the update part

III NOTATION AND DEFINITIONS

We employ the following notation throughout this work
and are illustrated in Figure 2. For the Frame definitions:
W is the world frame, Fi is the i-th keyframe frame, I is
IMU frame and C is camera frame. A translation vector from
frame A to frame B expressed in frame A is denoted as bold
pab. A rotation matrix from A to B is expressed as Rab ∈ SO3
which can also be denoted as a quaternion q̄ab. In this pa-
per, we adhere the Hamilton convention [15], which is right-
handed and widespread used in robotics, to define a quater-
nion by q = [qw + qx + qy + qz] = [qw,q]. We adopt the
notation introduced in [1] to handle the quaternion multipli-
cation as qac = qab ⊗ qbc.

IV STEREO VISUAL ODOMETRY

Take the limits of CPU resources into account, our VO
approach adopt ORB [16] for both feature detection and de-
scription instead of robust but slow descriptors like SURF or
SIFT. We also apply the concept of keyframe to decrease the
drift effect. In the other hand, unlike other VO researches
[8, 17] emphasis on back-end optimization process, e.g. bun-
dle adjustment or graphic based loop closure, to tackle the

Figure 3: The system overview of proposed VO algorithm.

long-term global localization issue, we are more focusing on
the short-term accuracy and robustness because the VO out-
come will be used as the local correction inputs for the ESKF
based on the previous keyframe pose rather than global cor-
rection referred to the initial VO frame. Especially speak-
ing, the continuity of VO does not hugely affect the system
performance, hence the back-end optimization process is not
mandatory. This decision also descends the demands of CPU
resource.

IV.1 Disparity Computing
The system overview of our VO approach is illustrated

in Figure 3. Starting from disparity block, the scale metric
information can be calculated immediately and continuously
from the initial phase due to known camera calibration ma-
trix. The matching method in this block is mainly depends on
the brutal force matcher with additional epipolar constraints.
Then the succeeded matching pairs will be sent into tracking
block. The tracking part is composed of two procedures: the
Temporal Features Matching and Pose Recovery.

IV.2 Temporal Features Matching
The state-of-art method to handle the issue is using the

circular searching pattern strategy, e.g. [1, 8], which searches
similar features pairs from both temporal and disparity corre-
spondences to reduce the outlier probability, however, since
the stereo camera in our system is hardware synchronizes and
its baseline is very short, the effect is not significant compared
to other system configuration. Therefore, our system only re-
lies on left side images to search correspondences between
two sets of descriptors. In order to minimize the dissimilarity
score between each pair of descriptors pij and increase the
matching robustness, we adopt exhaustive searching strategy,
also called brutal force, to find all possible pairs. The main
defect of this strategy is the bad correspondences, especially
for indoor environments with many repetitive patterns. To
solve this issue, we introduced a statistics model to determine
which pair is outlier. Every time when the exhaustive search-
ing strategy generates a list of matching pairs, the system will
compute the mean µ and standard deviation σ based on Ham-
ming distance (HD(pij)) of ORB descriptors. Then the sys-
tem would decide the outlier by the following equation:

if HD(pij) > µ+ aσ, then pij ∈ Outlier (1)
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Figure 4: Left: temporal image pair for features tracking
matches. Right: histogram to show distribution of matched
pair Hamming distance.

where a is a custom defined weighted factor. The outcome of
this approach is quite competitive to the circular strategy. Fig-
ure 4 demonstrates the performance of our strategy from both
raw images and histogram graphic views. The green lines of
raw images stands for original brutal force matching result.
The blue lines represents the remaining pairs after statistics
based outliers removing. The red line is the inlier of PnP
RANSAC outputs, which will be explained in the following
section.

IV.3 Pose Recovery
There are three types of standard approaches for motion

estimation: 2D-2D, 2D-3D and 3D-3D. The first method is
based on specified 2D features correspondences in a image
pair. The popular related algorithms are 5 and 8 points solu-
tion [18]. The main issue of 2D-2D is observability of scale
information. The final method also called the point cloud
registration which is widely implemented on RGBD or 3D
laser scanner since the depth data is highly reliable and ac-
curacy. The popular algorithms include ICP [19] and Bundle
Adjustment [20]. None of both methods satisfy our scenario,
thus, we choose the 2D-3D approach in our VO system. Cur-
rently, there are 3 existing algorithms supported by OpenCV3

library, they are: Iterative PnP, EPNP and P3P [21, 22]. The
main concept of the algorithm is to find the minimal repro-
jected error by Equation 2 from 3D structure and 2D image
correspondences.

T kk−1 = arg min
Tk
k−1

∑

i

∥∥∥qik − q̂ik−1

∥∥∥
2

(2)

where T kk−1 is a transformation matrix from k-1 to k, qik is
a 2D description vector of i-th feature in k frame. q̂ik−1 is a
projected corresponding 2D descriptor from k-1 matched 3D
point.

Because of various characteristics among these options,
we let the users to select the one satisfied their demands. In
addition, to tackle the bad corresponding matching pair gen-

3http://opencv.org/

erated by previous block, all three algorithms are accompa-
nied by RANSAC process in order to remove outliers.

IV.4 Keyframe Selection and Initialization
The accumulated drift issue is the most common problem

among different types of odometry. For the VO system, the
most efficient way to decrease the rate of drift accumulation
is to introduce the keyframe concept like [1–3, 7–12]. There-
fore, we apply the keyframe architecture into our system. The
first keyframe will be selected during the initialization pro-
cess. The VO system will continuously re-initialize until the
first keyframe is selected successfully based on the quality of
disparity and tracking matching. When the re-initialization
occurs, which will be triggered as system detects the lose
tracking phenomenon, system will drop current keyframe and
try to set up a new one.

IV.5 Practical Aspect
Although our system allows the users to modify param-

eters to meet their requirements, to get the optimal perfor-
mance on limited CPU resources SBC, we suggest the resolu-
tion of input video stream should not be higher than 320*240.
The maximum number of extracted feature points from an im-
age extremely affects the realtime performance.

Moreover, as mentioned above, the primary purpose of
our VO system is to provide reliable and accuracy short-
term odometry based on the current keyframe pose. Hence,
we raise the threshold for tracking matching constraints and
re-initialize whole VO system right away when encounter-
ing lose tracking scenario. The outcomes largely decrease
the CPU loading. The format of output data is a transfor-
mation matrix TKC , consists of qKiC and pKiC , from lat-
est Keyframe (Ki) to Camera frame (C) expressed in the
Keyframe.

V ERROR STATE KALMAN FILTER

The most well-known papers to illustrate the detail of
ESKF formula derivation are [13, 14]. This section mainly
adheres the concepts shown in both papers, but we replace
the JPL’s convention with Hamilton’s for quaternion defini-
tion, in addition, with the benefits of loosely coupled system
property, the size of state space and related matrix dimension
are all fixed.

In the following subsections, the state of the filter is de-
noted as a 16-elements state vector x:

x =
[
pWI vWI qWI ba bω

]T
(3)

where pWI is the position of IMU frame’s origin (I) in the
inertial world frame (W ). vWI is a velocity vector of IMU.
qWI describes a rotation from IMU frame to world frame. ba
and bω are bias vector of gyro and acceleration respectively.
The measurements of the IMU are known to be subject to dif-
ferent error terms, such as a process noise and a bias. Thus,
for the real angular velocities ω and the real accelerations a,
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which is expressed in sensor frame, we have following rela-
tions:

ω = ωm − bω − nω, a = am − ba − na (4)

where the subscript m denotes the measured value. na and
nω are zero mean white Gaussian noise processes. The bias is
non-static and simulated as a random walk process: ḃω = nω
, ḃa = na.

In order to make the filter more robust and converges
faster, we assume the calibrated transformation between IMU
frame (I) and Camera frame (C) are fixed. The calibration
states are denoted as qIC for rotation from camera to IMU
frame and pIC for translation of camera frame expressed in
IMU frame.

Because of limited space and considering the practical
implementation issue of numerical integration on embedded
system, the following subsections only depicts formulas in
discrete time domain. For more information of continuous
time model, the reader is referred to [13, 14].

V.1 Prediction
The main concept of the error-state filter is to treat the

true state (xt) as a composition of the nominal state ( x: the
state is integrated by high-frequency IMU data without con-
sidering noise terms and other possible model imperfections)
and the error state ( δx: the state is in charge of collecting all
the noise and perturbations ). The relation is expressed as:
xt = x ⊕ δx, where the operator ⊕ indicates a generic com-
position. For all vectors in state space are equal to the typical
addition symbol (+), except for the quaternion, it is equiv-
alent to the quaternion multiplication symbol (⊗) Addition-
ally, ESKF also continuously predicts a Gaussian estimate of
the error-state.

The following differential equations govern the nominal
state kinematics:

pk+1 ← p + v∆t+ 0.5(Ω(q)(am − ab) + g)∆t2 (5)
vk+1 ← v + (Ω(q)(am − ab) + g)∆t (6)
qk+1 ← q ⊗ q[(ωm − ωb)∆t] (7)

ab,ωb, g are constant (8)

where Ω(q) is the quaternion multiplication matrix of nominal
quaternion q and q[ω] is a quaternion converted by a rotation
vector ω. Becasue the rate of prediction depends on IMU
publishing rate which is usually higher than 100 Hz and al-
most constant, we assume the angular velocity over the period
∆t is also invariant. Therefore, q[ω] could be interpreted as
the Taylor series ofω∆t by midward zeroth order integration:

qk+1 ← q ⊗ (1 +
1

2
ω̄∆t+

1

2!
(ω̄∆t)2 + ...) (9)

where ω̄k = 0.5(ωk+1 + ωk). In real-time implementation,
the system calculates the Taylor series up to 4th order.

To increases numerical stability and handles the minimal
representation of quaternion computing, we defined the error
quaternions as δq = q ⊗ q̂ ≈ [1, 12δθ

T ]T . Thus, we define a
15-elements error state vector:

δx =
[
δp δv δθ δba δbω

]T
(10)

There are several ways to illustrate the compact form of the
error-state kinematics, we modify the form listed in [5] which
is expressed as following:

δx← Fd(x,um)δx + GcQdGT
c n (11)

where um = [ba bω]T is the input vector, and n = [na nω]T

is the noise vector (n ∼ N{0,Qd}). Fd ∈ IR15x15 and
Qd = diag(σ2

ba
∆t2, σ2

bω
∆t2, σ2

na
∆t, σ2

nω
∆t) are the dis-

crete state transition matrix and noise covariance matrix re-
spectively. Gc = [zeros(3, 12); identity(12)]. To find the
ESKF prediction equation, we calculate the expectation of
Equation (11) and its state covariance matrix P:

δ̂x← Fd(x,um)δ̂x (12)

Pk+1|k = FdPk|kFTd + GcQdGT
c (13)

Generally, the error-state δx is set to zero during initial-
ization phase, so Equation (12) always returns zero. For the
structure of matrix Fd, we adopt the compact form defined in
[realtime metric], with the small angle approximation when
|ω| → 0. We now proceed the ESKF prediction as follows:

1. Propagate the nominal state variables according to
Equation from (4) to (9)

2. Calculate the matrix Fd and Qd
3. Compute the state covariance matrix by Equation (13)

V.2 Updates
The update procedure will be triggered whenever a val-

idate visual measurement is generated by the stereo odom-
etry algorithm. As described above, the VO system adopts
the keyframe concept to reduce the effect of accumulated
drift, hence, the odometry used in update phase represents
the transformation from the state at keyframe to the present.
Unlike other loosely coupled approaches, e.g. [6], used globe
pose of visual measurements to update EKF states, we choose
the local odometry to correct the ESKF error states. The main
advantage of this approach is the computational delay or los-
ing track scenario will not hugely affect the stability and per-
formance of ESKF.

The measurement model in our case is quite straightfor-
ward since the transformation between IMU frame and Cam-
era frame is assumed to be constant and known by means
of the system extrinsic calibration. The measurement vector
(zvo) is expressed as follows:

zvo =

[
pvoWI

qvoWI

]
=

[
Ω(qWKi)(Ω(qCI)pKiC + pCI) + pWKi

+ np
qWKi ⊗ (qCI ⊗ qKiC ⊗ q−1CI )⊗ δqnq

]

(14)
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where pvoWI represents the translation from world to imu
frame observed by VO system, qvoWI is for rotation. np and
nq are zero mean, white Gaussian noise of the visual mea-
surement. qKiC and pKiC are the odometry output generated
by VO algorithm.

Then we calculate the update residual between propa-
gated state and measurement state:

z̃ = z	 ẑ =

[
pvoWI − pimuWI

qvoWI ⊗ qimuWI
−1

]
(15)

Then we approximates the qvoWI ⊗ qimuWI
−1 ≈ [1,−0.5θ̃T ]T ,

and linearise the Equation (15) with respect to the error-state:

z̃ = Hx̃ =

[
I3x3 03x6 03x6
03x6 I3x3 03x6

]
x̃ (16)

where x̃ ∈ IR15x1. Now we can apply the standard EKF up-
date procedure:

1. Compute the residual from Equation (15)
2. Compute the innovation matrix: S = HPHT + V
3. Compute the Kalman gain: K = PHTS−1
4. Compute the correction: ˆ̃x = Kz̃
5. Compute the state covariance matrix:

Pk+1|k+1 = (I−KH)Pk+1|k(I−KH)T + KVKT

where V is the covariance matrix of visual measurement
Gaussian noise. After obtaining the correction vector ˆ̃x, the
nominal state of ESKF gets updated with the particular com-
positions with the correction state: x← x⊕ ˆ̃x.

V.3 Delay Handler
In practical, the computational loading of VO algorithm

is much heaver than ESKF core, therefore, it is a common sit-
uation that the time-stamp of odometry output is slower than
current ESKF state. Hence, we introduce the sliding window
method, proposed in [1, 3, 6], to handle the measurement de-
lay issue. The concept of the method is to store the past states
in a fixed size buffer. Once the delayed measurement is avail-
able, the update procedure will try to find the past state which
has most similar time-stamp among buffer, then re-propagate
all stored states after the one used for update.

VI IMPLEMENTATION

We take the ideas and concepts of [6, 23] as references
to develop the software architecture of our VIO system. The
whole package is developed by C++ under ARM based Linux
environment. We adopt OpenCV library for image processing
functions, especially the PnP solver with RANSAC iteration.
For the matrix, vector and quaternion computing, the Eigen
library is used for the reasons of numerical efficiency and its
cross platform stability. We also employ the Boost library for
multi-thread CPU computing for ESKF updates. The system
provides the ROS wrapper for easily integration with other
ROS packages. The result is fully open source with detail

comments on core section in order to help other developer
to understand quickly and be able to modify the codes de-
pending on their demands. The package has been released
on github link4. To get the best performance, the user has to
run both camera intrinsic and camera-IMU extrinstic calibra-
tion as accurate as possible. The recommended package to
execute this nonlinear optimization

The hardware overview is shown in Figure 1. We hacked
a PS4-Eye5, which is a low-cost, hardware synchronized,
high resolution and FPS stereo camera, to be able to con-
nect with Odroid XU4 through USB 3.0 port with modified
firmware. The accelerometer and gyroscope data is obtained
from mpu6050 (a type of low-cost MEMS IMU) which is
installed on Pixhawk autopilot micro-controller. The total
weight of overall system is lower than 250 grams, and the
price of whole system is not higher than 150 dollars.

VII EXPERIMENTS AND CONCLUSION

VII.1 Experimental result

At present, the proposed VIO system has only been tested
on hand-held scenario and EuRoC MAV Dataset. For the
hand-held experiments, the performance highly depends on
the quality of both intrinsic and extrinsic calibration, the com-
plexity of texture and the motion behaviour. The ESKF prop-
agation rate on Odroid XU4 could achieve 100Hz associated
to Pixhawk IMU data publishing frequency.

For the MAV dataset, because the resolution of the image
stream is too high for Odroid, the testing is executed on the
desktop. The system performance is related to the parameter
settings of VO algorithm.

VII.2 Conclusion and future direction

We propose a low-cost and lightweight loosely coupled
visual inertial odomtery. The result is open source and easily
to be implemented on any kinds of unmanned vehicle. Due
to the benefits of forward facing stereo camera configuration,
the platform which carries our approach could achieve obsta-
cles avoidance without adding extra camera and be able to
accomplish power-on-and-go scenario with no needs of par-
ticular initialization process.

Currently, the two most time consuming procedures
among our VIO system are feature extraction and PnP prob-
lem solving. To improve the performance, the former task,
from image processing view, could be divided into several
cells. Then assigns each CPU thread to handle a subset of
cells parallel. For the latter, if we could guarantee the correct
rate of inputs feature matching pairs, the number of iteration
and criteria of RANSAC procedure would be relaxed, thus,
the VIO correction rate will increase.

4https://github.com/jim1993/StereoVIO
5https://www.playstation.com/en-us/explore/accessories/playstation-

camera-ps4/
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