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ABSTRACT

In this paper, we consider the problem of con-
trolling multiple quadrotors fastened to a pay-
load and cooperatively transport it in 3 dimen-
sions. We model the quadrotors as a group
rigidly attached to a payload. Then we de-
velop the equations of motion of this rigid sys-
tem. We propose a rigid-body formation sys-
tem controller based on LQR method as well
as a Paparazzi-based guidance scheme for the
payload mission trajectory. Also a PD con-
troller is developed and its results are compared
with the main controller’s results. A simulation
study with two quadrotors cooperatively stabiliz-
ing, and transporting a payload along two differ-
ent desired three-dimensional trajectories is pre-
sented.

1 INTRODUCTION

Safe co-operative transportation of possibly large and
bulky payloads is extremely important in various missions
such as military operations, Search and Rescue and personal
assistant. With recent advancements in relevant technologies
and commercially available micro aerial vehicles (MAVs), the
problem of autonomous grasping, manipulation, and trans-
portation is advancing to the aerial domain in both theory and
experiments. The problem is addressed and formulated ei-
ther in a way that the payload is connected to the aerial ve-
hicles via flexible cables or gripped to the agents in multiple
locations, forming a rigid body in total, the latter of which
is the subject of the current job. However these results are
based on the common and restricting assumption that the Dy-
namics of the cable and payloads are ignored and they are
considered as a bounded disturbance in the transforming ve-
hicle. Therefore it is challenging to incorporate the effects of
a payload fixed to a group of quadrotors which prompts a dis-
tributed control policy for each agent while the whole system
exhibits a rigid body dynamics. We approach the problem by
first developing a model for a single quadrotor and a team of
quadrotors rigidly attached to a payload ’Sec. 3’. In ’Sec.
4’, we propose a LQR control law for an individual quadro-
tor. Guidance scheme which consists of a reference generator
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and a PD controller is issued in ’Sec. 5’. A MATLAB-based
simulation is conducted for this problem with figures and dis-
cussions found in ’Sec. 6’. The final edition of this paper
may contain results from an experimental study which is to
be performed in the next step.

2 LITERATURE REVIEW

Modeling and control of a quadrotor with a payload which
is connected via a flexible cable is addressed in [1]. The work
is then extended for multiple quadrotors each carrying a ca-
ble which is attached to a single payload [2]. The system
modeling is based on Lagrangian mechanics and the flexible
cables are modeled as systems of serially-connected links and
has been considered in the full dynamic model. We address
a different problem as the robots have grasped the payload
via rigid connections at multiple locations. The modeling of
contact constraints is considerably simpler as issues of form
or force closure are not relevant. Additionally, contact condi-
tions do not change in our case. However, the system is stati-
cally indeterminate and the coordination of multiple robots is
significantly more complex than in the case when the payload
is suspended from aerial robots. In particular, as the prob-
lem is over-constrained the robots must control to move in
directions that are consistent with kinematic constraints. The
problem of aerial manipulation using rigid cables (rods and
ball joints) is analyzed in [3] with the focus on finding robot
configurations that ensure static equilibrium of the payload at
a desired pose while respecting constraints on the tension. In
the sense that we have access to many rotors to generate the
thrust necessary to manipulate payloads, our work is similar
to [4], where the authors propose control laws that drive a dis-
tributed flight array consisting of many rotors along a desired
trajectory. In [5] quadrotors are attached to a flexible net. The
fleet is capable of throwing and catching balls with the net.
Based on a first-principles model of the net forces, algorithms
that generate open-loop trajectories for throwing and catching
a ball are introduced. A swarm of quadrotors termed as a fly-
ing hand is proposed in [6] which is able to grasp an object
where each UAV contributes to the grasping task with a single
contact point at the tool-tip and is tele-operated by a human
hand whose fingertip motions are tracked. A classification
on how the object is carried or grasped is offered in [7] with
an elaboration on Aerial Grasp and Manipulation proposing
virtual linkage as a new paradigm. According to the offered
terminology, our work is termed Aerial Transportation, where
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a static aerial object is grabbed by magnetic or gripper-type
mechanism. Then, the object is rigidly attached to the main-
frame of the UAV. When two or more UAVs are involved, a
new UAV arises because the two original mainframes are now
rigidly connected to the object. A novel aerial manipulation
system is proposed in [8], where a mechanical structure en-
joys a number of thrusters and their geometry will be derived
from technical optimization problems. The aforementioned
problems are defined by taking into consideration the desired
actuation forces and torques applied to the end-effector of the
system. But the most inspiring work in which the main re-
sults of the current research are mostly utilized from is the
one proposed in [9] that makes use of a PD controller to
stabilize the system. We employed the main results of that
work to formulate our control input (force and moments) dis-
tribution algorithm for each quadrotor with slight modifica-
tions in case of non-symmetrical payload mass distribution,
while differing significantly in terms of autopilot controller
and guidance scheme.

3 SYSTEM MODELING

3.1 Generalities
In modeling the rigid-body system following assumptions

are made :

• The system is made of two quadrotors that are rigidly
attached to a beam shaped payload.

• The center of mass of the whole system coincides the
origin of the rigid-body coordinate system.

• Quadrotors and the payload are rigid.

• Propellers are assumed rigid.

• Thrust and drag forces are proportional to the square of
propellers speed.

• The system is symmetric in its X axis.

3.2 System Configuration and Coordinate
The NED coordinate system is taken as default coordi-

nate system and it’s shown in ’Fig. 1’. The World Frame
axes are X,Y and Z pointing downward. We presume the
body frame axes are the primary axis of the whole system.
Agents have their own coordinate frames and their relative
yaw angles which are assumed zero by default.
To derive the rotation matrix from body to the Inertia frame
we choose zyx Euler angles rotation. Final matrix is shown
as follows:

R(φ, θ, ψ) = R(x, φ)R(y, θ)R(z, ψ) (1)

Which will be:

RIB =



cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ ψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ


 (2)

where c = cos and s = sin.

Figure 1: Coordinate Systems.

3.3 Physical Specifications
As the system is composed of 3 separate objects with their

own specific physical characteristics, we need to calculate
system’s overall specifications including mass and moments
of inertia. Considering that the agents are identical quadrotors
with known physical and geometrical specifications the pay-
load is a rectangular-section beam with a mass of mp, width
of w, height of h and length of L, following data are calcu-
lated as:

• Payload’s moments of inertia:

IXp =
1

12
mp(h

2 + w2)

IYp
=

1

12
mp(L

2 + h2) (3)

IZp
=

1

12
mp(L

2 + w2)

• Position of total center of mass:

X̄ =

∑3
i=1mixi∑3
i=1mi

Ȳ =

∑3
i=1miyi∑3
i=1mi

(4)

Z̄ =

∑3
i=1mizi∑3
i=1mi

• System’s mass and moments of inertia:

M = m1 +m2 +mp

IX =
3∑

i=1

(Ixi
+m(ȳi

2 + z̄i
2))

IY =

3∑

i=1

(Iyi +m(x̄i
2 + z̄i

2)) (5)

IZ =
3∑

i=1

(Izi +m(ȳi
2 + x̄i

2))

In which x̄i = xi − X̄ , ȳi = yi − Ȳ and z̄i = zi − Z̄ .
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3.4 Equations of Motion

3.4.1 Single Quad:

First we derive the equations for a single quadrotor. Then
these equations will be developed for a multi agent system.

• Rotational Kinematics:

Since the angular rates are related to the body, they should be
transformed to Inertia World Frame. Using Euler angles we
have: 


p
q
r


 = Rr



φ̇

θ̇

ψ̇


 (6)

Rr =




1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ


 (7)

• Rotational Dynamics:

Using the rotation matrix and Coriolis Effect, rotational dy-
namic equation takes the form of:



Ix,j 0 0
0 Iy,j 0
0 0 Iz,j





φ̈

θ̈

ψ̈


+



φ̇

θ̇

ψ̇


×



Ix,j 0 0
0 Iy,j 0
0 0 Iz,j





φ̇

θ̇

ψ̇




= Mq,j +MGq,j (8)

where:

Mq,j =




lb(Ω2
j,4 − Ω2

j,2)
lb(Ω2

j,3 − Ω2
j,1)

d(−Ω2
j,1 + Ω2

j,2 − Ω2
j,3 + Ω2

j,4)


 (9)

MGq,j = JrΩj



θ̇

−φ̇
0


 (10)

Ωj = (Ωj,1 − Ωj,2 + Ωj,3 − Ωj,4) (11)

• Translational Dynamics:

Applying the rotation matrix we have:

mj



ẍ
ÿ
z̈


 =




0
0

mjg


+RIBFq,j (12)

Fq,j =




0
0

−b(Ω2
j,1 + Ω2

j,2 + Ω2
j,3 + Ω2

j,4)


 (13)

3.4.2 The Rigid-body System:

As the whole system is supposed rigid its dynamic model is
simpler than a system with cable-suspended load. Consider-
ing each agent produces forces and moments in its own frame,
we need to develop a relationship between the behavior of the
system and the agents. Depending on the configuration, the
following formulation was developed in which j, xj , yj and
ψj are the number, location and relative heading of each agent
in rigid-body coordinate system.

[
FB
MB

]
=

2∑

j=1




1 0 0 0
yj cosψj −sinψj 0
−xj sinψj cosψj 0

0 0 0 1



[
Fq,j
Mq,j

]
(14)

Applying the new formulation for the systems force and
moments, dynamic of the system will be achieved as follows:

Ẍ = (sinφsinψ + cosφsinθcosψ)
−U1

M

Ÿ = (−sinφcosψ + cosφsinθsinψ)
−U1

M
(15)

Z̈ = g + (cosφcosθ)
−U1

M

φ̈ =
IY − IZ
IX

θ̇ψ̇ − JrΩθ̇

IX
+
U2

IX

θ̈ =
IZ − IX
IY

φ̇ψ̇ +
JrΩφ̇

IY
+
U3

IY
(16)

ψ̈ =
IX − IY
IZ

θ̇φ̇+
U4

IZ

4 CONTROLLER DESIGN

4.1 Cooperative Control Law:
As the Agents are rigidly attached to the payload, design

of the controller will become a challenge. The first step is
to assume the rigid-body system as a single quadrotor with
specification of the system. Then we calculate the necessary
control commands and try to control this quadrotor. For con-
trolling the attitude of the system two techniques were used,
PD and Tracking LQR. In order to distribute controller
commands between agents a comprehensive cooperative con-
trol law is developed. Defining [9]:

uF =
1

M

[
(m1 +mp1), 0, 0, 0, (m2 +mp2), 0, 0, 0

]T

uMx =
1

ωMxy

ωF

∑2
j=1 y

2
j + 2




ωMxy

ωF
y1

cψ1

sψ1

0
ωMxy

ωF
y2

cψ2

sψ2

0




(17)
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uMy
=

1
ωMxy

ωF

∑2
j=1 x

2
j + 2




−ωMxy

ωF
x1

−sψ1

cψ1

0
−ωMxy

ωF
x2

−sψ2

cψ2

0




uMz
=

1

2

[
0, 0, 0, 1, 0, 0, 0, 1

]T

where mpj = mp(1−
∣∣∣ xj

x̄1−x̄2

∣∣∣), is the share of payload mass
applied on each agent that rises when the asymmetric distri-
bution of payload’s CG is applied. ωMxy

ωF
indicates the re-

lationship between the moment and the force generated by
the agents to produce a system moment. The bigger amount
of ωMxy

ωF
means the effect of agents forces is bigger than the

effect of their moments in creating systems moment. x and
y are the locations of the CG of each agent in body frame.
Final control commands applying to each agent will be:

U =
[
uF , uMx

, uMy
, uMz

] [
UF , UMx

, UMy
, UMz

]T
(18)

This U is an 8 × 1 matrix which its first half elements are
allocated to the first agent and the second half are allocated to
the second agent.

4.2 Control Techniques
In order to control the attitude and altitude of the system

we made use of two classic control laws which are PD and
LQR methods. The control block of the system is described
as:

Figure 2: Control Logic

Reference path and controllers of X and Y positions will
be described. Since the control laws are linear, the equations
of motion of the system need to be linearized. Final linear
equations are as follows :

Ẍ =
−U1θ

M

Ÿ =
U1φ

M
(19)

Z̈ = g − U1

M

φ̈ =
U2

IX

θ̈ =
U3

IY
(20)

ψ̈ =
U4

IZ

The control command inputs to each agent are as follows:

Uj,F = b(Ω2
j,1 + Ω2

j,2 + Ω2
j,3 + Ω2

j,4)

Uj,Mx
= lb(Ω2

j,4 − Ω2
j,2) (21)

Uj,My
= lb(Ω2

j,3 − Ω2
j,1)

Uj,Mz
= d(−Ω2

j,1 + Ω2
j,2 − Ω2

j,3 + Ω2
j,4)

4.2.1 PD Controller Design:

PD method is carried out for comparison with LQR method
to see differences in performance of these two methods. The
control command calculated by PD method is obtained as
follows:

U = K(x)(ex) +Kd(ẋ)(e(ẋ)) (22)

Attitude control commands take the form of:

U2,3,4 = Kp(φ,θ,ψ)(e(φ,θ,ψ)) +Kd(φ̇,θ̇,ψ̇)(e(φ̇,θ̇,ψ̇)
) (23)

Altitude control output calculation is as explained above:

U1 = K(z)(ez) +Kd(ż)(e(ż)) (24)

The PD gains are determined through Ziegler-Nichols
method. The scheme of this controller is as shown in ’Fig.
3’:

Figure 3: PD Controller Diagram
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4.2.2 LQR Controller Design:

• LQR

Attitude Control:
First, we define the attitude state vectors as below:

X =




x1

x2

x3

x4

x5

x6




=




φ

φ̇
θ

θ̇
ψ

ψ̇




(25)

Then the attitude system can be written in state space form
as:

Ẋ = AX +BU (26)

Which will be:



φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈




=




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0







φ

φ̇
θ

θ̇
ψ

ψ̇




+




0 0 0
1
IX

0 0

0 0 0
0 1

IY
0

0 0 0
0 0 1

IZ






U2

U3

U4


 (27)

The goal is to find the stabilizing feedback control law:

U = −KX (28)

Which minimizes the cost function:

J =

∫ ∞

0

(XTQ X + UTR U)dt (29)

where Q ≥ 0 and R > 0 are weighting matrices of a appro-
priate dimensions. Q is related to the energy of the controlled
output, while R is related to the energy of the control signal.
So the choice of Q and R is a trade-off between the desired
performance and the available capacities. Here we decided Q
to be an identity matrix of appropriate dimension and R will
be accomplished by a trial-and-error process until the best
answer is obtained. Afterward, K is defined as:

K = R−1BTP (30)

Where P is the solution of linear algebraic Riccati equation:

ATP + PA− PBR−1BTP +Q = 0 (31)

After calculating K controlling of the states will be accom-
plished.

Altitude Control:
For altitude the state vector is written as:

X =

[
x1

x2

]
=

[
z
ż

]
(32)

Then the state space form of the system is as:
[
ż
z̈

]
=

[
0 1
0 0

] [
z
ż

]
+

[
0
− 1
M

]
U1 (33)

All discussed about attitude control is applicable here too.

• Tracking LQR

Since the desired states of the system are not supposed to be
always zero and the LQR control law is only applicable to
the linear time-invariant systems, we needed to make use of
Tracking LQR controller. All discussed about LQR is ap-
plicable to TLQR too but the control law will be different as
follows [10]:

U = −K(X −Xd) (34)

Xd is the desired state and can be either time-variant or time-
invariant none-zero. Defining:

Xd att =
[
φd, φ̇d, θd, θ̇d, ψd, ψ̇d

]T
, Xd alt

=
[
zd, żd

]T

Calculation of desired rates will be discussed in ’Sec. 5’. For
attitude and altitude control, after applying the iterative trial-
and-error design procedure the following form for the Q and
R matrices is reached:

Attitude:

Q =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(35)

R =




1× 10−3 0 0
0 1× 10−4 0
0 0 1× 10−3


 (36)

Altitude:

Q =

[
1 0
0 1

]
(37)

R = 6× 10−5 (38)

5 TRAJECTORY GENERATION

In addition to set point trajectory, a circular path was im-
plemented and the stability and the performance of the sys-
tem were analyzed. For both trajectories we made use of a
PD controller which transforms the desired position to de-
sired angle. This process is carried out by using Paparazzi
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algorithm which consists of a reference generator and a PD
controller and an attitude generator in order to convert the de-
sired position to desired angle and desired angle to desired
states which are the inputs of the control system. These algo-
rithms are available at Paparazzi’s website. In both paths its
assumed that ψ(t) = ψ(0) = 0 .

5.1 Paparazzi Set Point Reference Generator
The generator receives the desired position in X or Y

direction as input signal and converts it to 3 output signals
which are position, velocity and acceleration related to the
desired point respectively. The scheme of the set point R.G.
is shown below:

Figure 4: Set Point Reference Generator

5.2 Reference Controller and States Reference Generator
This module takes signals generated by ’Subsec. 5.1’ as

inputs and produces the desired attitude using a PD con-
troller as follows:

(θd) = Kp(X −Xref ) +Kd(Ẋ − Ẋref ) (39)

(φd) = Kp(Y − Yref ) +Kd(Ẏ − Ẏref ) (40)

As the control laws developed in ’Sec. 4’ need desired states
and considering that reference PD controller only generates
the angle and not its rate, and noting that using the perfect
derivation of this angle is not a scientific solution, we need to
calculate the real attitude rate. This calculation is carried out
by using Paparazzi attitude R.G. This module does the same
as ’Subsec. 5.1’ but the input is an angle not a position. This
module is shown as:

Figure 5: Attitude Reference Generator

It should be mentioned that ’Subsec. 5.1’ is used in alti-
tude controller too.

6 RESULTS

In this section the behavior of the system’s states in track-
ing two different trajectories will be analyzed and the perfor-
mance of the controllers will be compared.

6.1 Set Point Trajectory
To make the simulation similar to what IMAV 2017 out-

door cooperative mission requires, the value of 50 meters is
set as desired position. In order to see system’s behavior in
both lateral and longitudinal axes, the desired position is set
in bothX and Y directions and the results are as follows (fig.:
6-9):

Figure 6: Euler Angles

Figure 7: Euler Rates

6.2 Circular Trajectory
A circular path with a radius of 50 meters in an altitude of

3 meters is designed and is given to the system as the desired
trajectory. The results are as follows (fig.: 10-13):

7 CONCLUSION AND FUTURE WORKS

Due to asymmetry in the geometry of the rigid-body sys-
tem, for maneuvers in the asymmetry axis more control effort
is needed to achieve the desired state and the stabilization in
this axis is more challenging.
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Figure 8: Control Inputs (UF , UMx,y,z )

Figure 9: 3D Trajectory

We defined the subject of transporting a payload by 2
quadrotors rigidly attached to it and made use of two con-
trol techniques to reach the desired states of the system. An-
alyzing the achieved results in defined scenarios we can see
that the behaviors of these two controllers are close to each
other. We are currently planning to implement this simula-
tion and carry out the experimental phase of this article using
Paparazzi autopilot. Experimental results may be available in
the final edition of this paper. Also a visualized simulation of
this job is in progress.
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Figure 10: Euler Angles

Figure 11: Euler Rates
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