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ABSTRACT

This paper tackles a problem of UAV safe path
planning in an urban environment in which UAV
is at risks of GPS signal occlusion and obstacle
collision. The key idea is to perform the UAV
path planning along with its navigation and guid-
ance mode planning, where each of these modes
uses different sensors whose availability and per-
formance are environment-dependent. A partial
knowledge on the environment is supposed to be
available in the form of probability maps of ob-
stacles and sensor availabilities. This paper pro-
poses a planner model based on Mixed Observ-
ability Markov Decision Process (MOMDP). It
allows the planner to propagate such probability
map information to the future path for choosing
the best action. This paper provides a MOMDP
model for the planner with an approximation of
the belief states by Mixture of Gaussians.

1 INTRODUCTION

These last years there has been a growing need of UAVs
(Unmanned Aerial Vehicles) to accomplish distant missions
in urban environments. The feasibility and success of these
missions are directly linked to the UAV navigation capac-
ity which relies on onboard sensors (e.g., GPS, vision, . . . ).
Availability and performance of these navigation sensors may
depend on the environment. For example, GPS precision can
be degraded due to signal occlusion or multi-path effect in a
cluttered environment. Applicability and accuracy of vision-
based approaches depend on textures of an image. All of
these environment-dependent sensor availabilities and preci-
sion affect the navigation performance and thus the safety of
the path.

The community has proposed different frameworks and
algorithms to solve vehicle safe path planning problem in a
cluttered and continuous environment. A method suggested
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in [1] computes an efficient collision-free path for MAV (Mi-
cro Aerial Vehicles) while taking into account uncertainty is-
sued by an onboard camera-based localization. It applies the
RRBT (Rapidly-exploring Random Belief Trees, [2]) algo-
rithm. A method proposed by [3] estimates the probability of
collision under Gaussian motion and sensor uncertainty. The
developed algorithm truncates a state distribution in function
of the environment and propagates this truncated state dis-
tribution along a path. Other frameworks consider dynamic
path being able to self-adapt in function of the events. One
could cite the work of [4] that proposes a method based on
POMDP (Partially Observable Markov Decision Process) for
autonomous vehicles in real situations.

Most of these works do not take into account the variance
of sensor availability and precision in function of the envi-
ronment. Furthermore, the navigation system and its associ-
ated uncertainty are often treated in a deterministic manner
in the path planner, and a choice of navigation sensors is not
included in the elements to be planned.

This paper proposes a planner model which enables the
planner to incorporate a priori partial information of the
environment-related elements (obstacles, sensor availabili-
ties) in the probabilistic state transition. In this work, such
information is given in a form of probability grids which are
overlaid on the continuous environment space (Figure 1). De-
pending on the availability of the sensors, different navigation
and guidance modes can be selected, resulting in different lo-
calization and path execution error propagation. The planner
will be designed to compute a policy which will allow, at each
instant, the UAV to choose the best motion-direction and the
adapted sensors (i.e. navigation and guidance modes), with
regard to the mission efficiency (minimum flight time/length)
and safety (minimum collision risk).
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Figure 1: Continuous state space with discretized sensor availabilities maps
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The main contribution of this paper is providing a model
which combines the state transition function of the decision
process to the localization and path execution error propaga-
tion function. Furthermore, the proposed model enables the
planner to propagate a priori knowledge on the availability
of the navigation sensors on the future path. Considering an
uncertainty model propagation, we have chosen to lean our
planning model on the Markov Decision Process [5] and more
precisely on its extension: Mixed Observability Markov De-
cision Processes (MOMDP)[6]. The paper also proposes to
apply Machine Learning technique to approximate the belief
states by a Gaussian mixture.

2 PROBLEM STATEMENT

2.1 System architecture and time differentiation

The architecture of the overall system considered in this
problem combines the vehicle Guidance, Navigation and
Control (GNC) transition model and the MOMDP planning
model (Figure 2). The GNC transition model includes the ve-
hicle motion model, onboard sensor models, and flight con-
trol system. The policy given by the MOMDP planner takes
as inputs the probability distribution over the current state
(called belief state) bsc and a vector of boolean on sensor
availabilities sv . And it will return an action a which selects
the motion direction, and the navigation and guidance modes
to realize it. The belief state update is performed with an ob-
servation s′v after GNC state transition. Then this new belief
state is used by the policy to define the next action. The MDP

Policy Navigation
mode

Guidance
mode

Sensors

Vehicule
motion
model

Belief state
update

Maps

bsc
sv

Observation
s′v

b
′s′v
a

a

GNC

sv

bs′c

p(s′v|s′c)

Figure 2: Architecture diagram

formalisms, in their majority and most of the variants, sup-
pose that actions are accomplished instantly. However, in this
problem, the actions are durative and the state space is con-
tinuous implies that the real state (such as sensor availability)
changes during the actions. Therefore, the unit of time of
the GNC transition model will be distinguished from that of
the MOMDP planning model named epoch. The MOMDP
planning model works at a lower frequency than the GNC
system. Thus an epoch is equivalent to several units of time
of the GNC transition model. It is for lowering the complex-
ity of the planning algorithm by reducing the total number
of actions to complete the task. The GNC transition unit of
time is denoted by k and the planning epoch by t in this paper
(Figure 3).

∆ t . . . ∆ t+m

k k+1 k+2 . . . . . . . . . k+n
| | | |

Time

Figure 3: Difference between the units of time

2.2 GNC transition model
This section presents the vehicle GNC model which con-

structs a state transition model in the planning model.

2.2.1 State transition model

The UAV state x =
[
X T VT bTa

]T
is defined respectively

by its positon, velocity and the accelerometer bias. Then the
state transition can be defined such as :

xk+1 = Φxk +Bak + vk+1 (1)

where ak is the acceleration, vk+1 ∼ N(0, Q) is the dis-
cretized process noise and

Φ =



I ∆tI 0
0 I 0
0 0 I


 , B =




∆t2

2 I
∆tI

0




2.2.2 State estimator

x is estimated by sensor measurements available onboard
(Figure 2). The state estimator is based on an EKF (Extended
Kalman Filter, [7]) which proceeds in two steps, firstly with
the INS prediction then the correction by the sensor measure-
ments, if available. The INS measurement integration enables
a high-frequency state estimation, but it suffers from the drift
in the estimate. In order to correct such drift, other sensors
(e.g. GPS, Vision) are fused with INS through the second
correction step.

INS Prediction : The accelerometer measurement aIMUk

is used to propagate the estimated state.

aIMUk
= RBIk(ak − g) + bak + ξIMUk

(2)

where RBIk is a rotation matrix from the inertial to the UAV
body frames provided by the INS, g is the gravity vector and
ξIMU ∼ N(0, RIMU) is the IMU measurement noise. Ac-
cording to the process model (1), the estimated state x̂k is
propagated to :

x̂−k+1 = Φx̂k +B
(
RTBIk

(
aIMUk

− b̂ak
)

+ g
)

(3)

Then the state prediction error is given by :

x̃−k+1 = xk+1−x̂−k+1 = (Φ−∆Φak) x̃k+vk+1−BRTBIkξIMUk

(4)
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where ∆Φak = BRTBIk
[
0 0 I

]
. The associated error co-

variance is given by :

P−k+1 = (Φ−∆Φak)Pk (Φ−∆Φak)
T

+Q+ R̃IMUk
(5)

where R̃IMUk
= BRTBIkRIMURBIkB

T . For simplicity, we
can consider the case of RIMU = σ2

IMUI and hence R̃IMU =
BRIMUB

T remains constant for all k.

GPS correction : When GPS is available at tk+1, the pre-
dicted state (1) can be corrected by using its position and ve-
locity measurement zGPSk+1

.

zGPSk+1
=

[
I 0 0
0 I 0

]
xk+1+ξGPSk+1

= HGPSxk+1+ξGPSk+1

where ξGPS ∼ N(0, RGPS) is the GPS measurement error.
Then, the estimated state is corrected such as :

x̂k+1 = x̂−k+1 +KGPSk+1
HGPS

(
zGPSk+1

−HGPSx̂
−
k+1

)

(6)
whereKGPSk+1

= P−k+1H
T
GPS

(
HGPSP

−
k+1H

T
GPS +RGPS

)−1

is a Kalman gain. Then the error estimate and its covariance
are given by :

x̃k+1 =
(
I −KGPSk+1

HGPS

)
x̃k+1 −KGPSk+1

ξGPSk+1

Pk+1 =
(
I −KGPSk+1

HGPS

)
P−k+1

(7)

Landmark by an onboard camera : By image proces-
sor, a landmark with a known position XLM is visible and
detectable at tk+1, it can be used to correct the predicted
state (1). By assuming a pin-hole camera model, the pixel-
coordinates measurement is given by :

zLMk+1
= C

XCLMk+1

eT3 XCLMk+1

+ ξLMk+1
= hLM(xk+1) + ξLMk+1

(8)
where C is a known camera matrix, XCLMk+1

=

RCBRBIk+1
(XLM − Xk+1) and ξLM ∼ N(0, RLM) is the

landmark image-detection error in pixels. RCB is a camera
orientation with respect to the UAV body. An EKF can be ap-
plied, and similarly to (7), the resulting estimation error and
its covariance matrix are given by :

x̃k+1 =
(
I −KLMk+1

HLMk+1

)
x̃k+1 −KLMk+1

ξLMk+1

Pk+1 =
(
I −KLMk+1

HLMk+1

)
P−k+1

(9)
where HLMk+1

is a Jacobian matrix of the nonlinear mea-
surement function hLM(xk+1) evaluated at xk+1 = x̂−k+1. It
should be noted that HLMk+1

thus depends on the predicted
state x̂−k+1, while HGPS does not.

INS-only solution : If no correction is made with neither
sensors, then state estimate at tk+1 is given by:

x̃k+1 = x̃−k+1

Pk+1 = P−k+1

(10)

2.2.3 Guidance laws

Given a desired velocity Vref , the following linear guidance
law can be applied to realize it :

ak = K̂pVref −Kd(V̂k − Vref) = KpVref −KdV̂k (11)

where Kp,Kd > O are some control gains and V̂k is the esti-
mated UAV velocity at instant tk.

This paper considers two different guidance modes for
V̂k in (11). The first mode uses the state estimation result
from the navigation module (Section 2.2.2), while the second
mode uses some sensor measurements directly. The former
mode corresponds to a conventional absolute guidance ap-
proach such as waypoint tracking, and the latter to a sensor-
based relative guidance method such as visual servoing.

Absolute guidance : V̂k =
[
0 I 0

]
x̂k, where x̂k is

the estimated state from Section 2.2.2. Then, xk+1 can be
obtained by substituing this guidance law (11) into the dis-
cretized process model (1) :

xk+1 = (Φ−∆ΦV)xk +BKpVref + ∆ΦV x̃k + vk+1 (12)

where ∆ΦV = BKd

[
0 I 0

]
. Hence, the state xk+1 fol-

lows the normal distribution as below.

xk+1 ∼ N((Φ−∆ΦV)xk +BKpVref ,∆ΦVPk∆ΦV
T

+Q)

= N(x̄k+1|k, Q̃
a
k+1)

(13)
where the covariance Q̃ak+1 becomes a function of the esti-
mation error covariance Pk.

Sensor-based relative guidance : In the sensor-based rel-
ative guidance mode, V̂k in (11) is directly given from some
onboard sensors such as optical flow. Let us assume the mea-
surement error Ṽk = (Vk − V̂k) ∼ N(0, RVk). Then, simi-
larly to (12),

xk+1 = (Φ−∆ΦV)xk +BKpVref +BKdṼk + vk+1

∼ N(x̄k+1|k, BKdRVkK
T
d B

T +Q) = N(x̄k+1|k, Q̃
s
k+1)

(14)
where the covariance Q̃sk+1 is now independent from Pk.

2.2.4 State probability density function

Given an initial state x(t0) = x0 and initial estimation error
covariance P0 such as x̃0 ∼ N(0, P0). As defined later in
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Section 3.3.2, an action a in the planner model corresponds
to a combination of the direction of desired motion Vref , the
navigation mode and the guidance mode. For a given action
a, it is possible to obtain the distribution of the next state
x1 = x(t1) = x(t0 + ∆t) knowing x0.

fX(x1|x0) ∼ N
(
x̄1|0, Q̃1

)
(15)

where Q̃1 is either Q̃a1 in (13) or Q̃s1 in (14) depending on the
selected guidance mode. At the same time, the state estima-
tion error covariance is updated to P1 by using the selected
navigation mode (7, 9 or 10).

Now recall from Section 2.1 that the system’s transition
model and the planning model do not have the same time unit.
It means that a single state transition s = s0 to s′ = s1 with
an action a in the planner corresponds to several state tran-
sitions x0 to xn in the system’s transition model. Thus, the
state transition must continue further up to n > 1 with the
same action a. The conditional state distribution at tk know-
ing x0 can be obtained sequentially as follows.

fX(xk|x0) ∼
∫
fX(xk|xk−1)fX(xk−1|x0)dxk−1

where fX(xk|xk−1) ∼ N(x̄k|k−1, Q̃k). In parallel, the
Kalman filtering process is repeated k times to obtain Pk.
When Q̃k and Pk do not depend on the state xk−1, the in-
tegration above will result in a normal distribution:

fX(xk|x0) = N(x̄k|0, Σ̃k), k > 1 (16)

The derivation of the state distribution (16) becomes more
complex in a case of having a dependency of Q̃k and Pk on
the state xk−1. To avoid this complication, Q̃k and Pk can be
approximated by those evaluated at the expected state x̄k−1|0.
Then, the state transition function in the planning model can
be given by (16) when k = n.

Besides, it is hard to know a priori if a selected sensor
will be available for the entire action. To simplify we will
suppose that if the sensor is available at the end of the action,
the sensor was available during the entire action.

In result, the state transition function from the state s =
s0 to s′ = s1 can be re-wtitten with a notation from the plan-
ning model as below.

fS(s′ = s1|s = s0) = fX(xn|x0) ∼ N(x̄n|0, Σ̃n) = N(s̄′,Σ′)
(17)

It is worth emphasizing here that this equation will be the
only link to the GNC’s transition model with the MOMDP
planning model (Section 3.3).

2.3 Environment Maps
The planner will use a priori partial knowledge on the

environment. This 3D environment map is discretized into
cells. Let us denote the ci, the i-th cell of the map, then a
probability that the cell ci is occupied, i.e., obstacle, is given

as p(Collision|ci). Similarly, sensor availability maps are
provided as a set of probabilities that a sensor is available
at each cell ci. They can be generated by considering the
corresponding sensor characteristics in relation with the en-
vironment (given by the occupancy map). For example, GPS
performance suffers from its signal occlusion or multi-path
effect due to surrounding obstacles. It is common to measure
the performance of GPS by metrics called DOPs (Dilutions
of Precision) which corresponds to a standard deviation of the
measured position error X̃GPS. Figure 4 shows an example of
3D Position DOP (PDOP) map at a given altitude created by a
GNSS simulator on an obstacle map of San Diego city. In this
paper, this PDOP map is transformed to GPS availability map
by setting a maximum allowable position error threshold ε. A
probability of GPS availability at each cell ci is calculated by
p(GPS|ci) = p(εXGPS

(ci) < ε).

Figure 4: Example of GPS PDOP map

Availability of the navigation mode using landmark detec-
tion p(LM |ci) is obtained in function of a camera’s field-of-
view and detection performance of an image processor. Like-
wise, availability of the sensor-based relative guidance (e.g.,
wall following) is conditioned by a sensing range concerning
an object-of-interest (wall). Its availability map as a set of
probabilities p(Wall|ci) is supposed to be given.

3 PLANNING MODEL

The objective of this paper is to propose a decision frame-
work for computing the safest and shortest path. To achieve
this goal, the transition model must be accurate. That is why
the GNC transition model is integrated in the planning model.

3.1 Why MOMDP ?

This work is about computing a policy which gives a UAV
at each epoch the best action to execute. Therefore, planning
can be associated with decision-making which is the cogni-
tive process of choosing an action to perform confronted to
a situation. In real life problem, the result of an action is of-
ten synonymous of uncertainty that must be considered in the
problem. POMDPs and variants provide several frameworks
to model sequential decision problem under uncertainty and
partial observability. The idea behind the POMDPs is that the
state is not known, but several observations are possible for
each state with a distinct probability. Then these observations
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are used to update its belief state. The Mixed Observabil-
ity Markov Decision Process (MOMDP) proposed by [8] and
[6] is a variant of the POMDPs. The state is not partially
observable, but a part of the state is known at each epoch.
In this problem, the UAV always knows the current sensor
availabilities which can be considered as a part of the state.
Consequently, MOMDP can be used in this problem.

3.2 Recall on MOMDPs
The MOMDP explores a particular structure where cer-

tain state variables are fully observable. This factored model
leads to a significant time gain in policy computation, improv-
ing the efficiency of a point-based algorithms. A MOMDP is
a tuple (Sv,Sc, A,O, T,R, b0, γ), where:

• Sv and Sc are respectively the bounded set of fully ob-
servable state variables and the bounded set of partially
observable state variables;

• A is a finite set of actions;

• Ω is a finite set of observation;

• T (sv, sc, a, s
′
v, s
′
c)→ [0; 1] is a transition function;

• O(s′, a, o) → [0; 1] is an observation function such as
p(ov, oc|a, s′v, s′c)

• R : Sv × Sc × A→ R is a reward function associated
with a state-action pair

• b0 = (s0
v, bc,0) an initial belief state, where bc,0 is the

initial probability distribution over the partially observ-
able states, conditionned by s0

v , the fully observable
initial states.

• γ ∈ [0, 1[ is the discount factor.

The belief state b is noted by (sv, bc), and Bc is the
belief state space of sc conditioned by sv : Bc(sv) =
{(sv, bc), bc ∈ Bc}. Bc(sv) is a sub-space of B, such that
B =

⋃
sv∈Sv Bc(sv).

Solving MOMDPs consists in finding a set of policies
πsv : Bc → A, which maximize the criterion :

π∗sv ← argmax
πsv∈Π

Eπsv

[ ∞∑

t=0

γtr((stv, b
t
c), π((s

t
v, b

t
c)))

∣∣∣∣∣b0 = (s0
v, bc,0)

]

(18)

For more details about MOMDP, please see [8].

3.3 MOMDP planning model
Considering the differences between the problem pre-

sented in this paper and a standard MOMDP prob-
lem from the litterature, some modifications are made
to the MOMDP formalism. Our MOMDP is a tuple
(Sv,Sc,A,Ω, T ,O, C, b0) :

• Sv and Sc are respectively bounded set of fully observ-
able states and non observable states.

• T : The state transition function composed of two func-
tions:

– TSc : Sc×Sv×A×Sc → [0; 1] a transition func-
tion such as : TSc(sc, sv, a, s

′
c) = p(s′c|sc, sv, a).

– TSv : Sv × Sc → [0; 1] a transition function such
as : TSv (s′c, s

′
v) = p(s′v|s′c);

• O : Ω× Sc → [0; 1] : observation function such as :

O(o, a, s′c, s
′
v) = p(o|s′c, s′v, a) =

{
1 o = s′v
0 otherwise

(19)

• C : B ×B ×A→ R : the cost function, where B is the
belief state space defined on S = Sv × Sc.

The set of observations Ω is equal to Sv and consequently
the observation function O is deterministic since o = s′v
in (19). Moreover, the Bayesian dependancy in our model
changes from a MOMDP proposed in [8], s′v depends on s′c
and s′c depends on sv and sc, therefore it depends on the po-
sition of the vehicle in the environment (Figure: 5).

at r(st, at)

st

svt

sct

st+1

svt+1

sct+1

ovt ovt+1

oct oct+1

(a) Transition model for a MOMDP

at

state space
S : Sv ×
Sc

st

stv

stc

st+1

st+1
v

st+1
c

belief state
space B bt bt+1

C(bt, bt+1, at)

(b) MOMDP model modified with the
complete belief state space B.

Figure 5: Difference between the transition model

3.3.1 State space of the decisional problem

A state s is composed of two sets : sv ∈ Sv and sc ∈ Sc. The
state space |S| = |Sv|×|Sc| represents all the possible states.
It must be noted that for our model it is the entire state space
S that is partially observable. More specifically, we define
sc = x (as defined in section 2.2.1), which is defined on a
non observable continuous bounded space.

sv is a vector containing the fully observable booleans of
sensor availability [0; 1], a boolean on the collision, and P
the localization error covariance matrix. In our example, sv
becomes as follows.

sv =




FlagGPS
F lagLandmark

F lagWallFollowing
F lagColision

P
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P is needed by the state probability density function (15).
Then, it is necessary to keep P in the state.

3.3.2 Action space of the decisional problem

In contrary to the vehicle state space, the action space is dis-
crete and the action a is defined as a tuple (d,mn,mg) com-
posed by three action variables : d, mn and mg . d ∈ D
is the desired directions of motion which specifies Vref in
(11), mn ∈ Mn designates the navigation mode available
on the vehicle and mg ∈ Mg designates the guidance mode.
In our problem, we define the navigation modes Mn =
{INS − only,GPS,Landmark} and the guidance modes
Mg = {Waypoint tracking,Wall following} which cor-
responds to (10, 7, 9) and (13, 14) respectively.

3.3.3 Observation space and observation function of the
decision problem

As explained, a set of observation Ω is considered equal to
Sv and consequently the observation function is determinis-
tic since p(o|s′c, s′v, a) = 1. In contrary to the standard case
of POMDP, the agent does not receive any observation in the
classical meaning in our problem. Considering the navigation
error propagation, the UAV state sc is estimated by noisy (and
biased for INS) sensor measurements. These measurements
are used to estimate the non observable state variables. Un-
fortunately, we cannot consider these measurements as obser-
vations, because it is hard to approach a probabilistic function
allowing to anticipate the future measurements. In this sense,
sc is considered as a non observable state variable in the de-
cision problem.

3.3.4 Transition function

The transition function from one state to other is composed
of two functions :

• TSc a transition function such as :

TSc(sc, sv, a, s
′
c) = fs′c(s′c|sc, sv, a) ∼ N(s̄′c, Σ̃

′(sv))

As previously developed in (17), the probability distri-
bution of a predicted state s′c follows a normal distribu-
tion N(s̄′c, Σ̃

′(sv)) which is a function of the previous
state sc, the action a. Figure 6a illustrates this function.

• TSv is a transition function such as TSv (s′c, s
′
v) =

p(s′v|s′c). It represents the transition to s′v and depends
on the sensor availability map and therefore depends
only on the next state s′c. Concretely

p(s′v|s′c) =

|Sv\P |∏

i=1

p(s′v(i)|s′c) (20)

where |Sv \ P | is the number of sensors onboard and
s′v(i) is the i-th sensor. Figure 6b illustrates this func-
tion.

Then, we define the transition function :

T (sv, s
′
v, a, s

′
c, sc) = TSc(sc, sv, a, s

′
c)× TSv (s′c, s

′
v)

= p(s′v|s′c)fs′c(s′c|sc, sv, a)
(21)

sc

fs′c
s̄c
′

Σ̃′

(a) Propagation of s′c from sc with an
action a : TSc

sc

fs′c

p(s′v, s
′
c|sv, sc, a)

s′v

(b) Reduction of the next reachable
states in function of s′v : TSv

Figure 6: Illustration of the two transition functions : TSc and TSv

3.3.5 Belief state

The belief state condenses all the accumulated information
along the path of length N , which is the complete informa-
tion history h defined by : h = {a0, o1, a1, o1, ..., aN−1, oN}
A belief state b is a probability density function over the pos-
sible states at each time step t,

b(st) = fs(s = st),∀st ∈ S (22)

computed from the state transition model with selected navi-
gation and guidance modes. This belief state is updated sup-
posing the Bayes rule after each action a done and at each ob-
servation o perceived. By factoring the state space according
to our model we obtain b = (sv, bsc), with bsc = fsc(sc|sv).

3.3.6 Belief state update

As explained, the belief state must be updated after each ac-
tion associated with the transition function in Section 3.3.4.
The update is done by three sub-functions. The first function
corresponds to the system’s dynamic model which propagates
the current belief state bsc to the futur belief state named bs′c
with a chosen action a :

bs′c(s′c) =

∫
fs′c(s′c|sc, sv, a)bsc(sc)dsc (23)

The second is the probability of s′v that is computed based on
bs′c :

p(s′v|b, a) =

|G|∑

i=0

p(s′v|s′c ∈ ci)p(s′c ∈ ci|b, a) (24)

70 International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017

IMAV2017-10
http://www.imavs.org/pdf/imav.2017.10

IMAV 2017, Toulouse, France, 18-22 September 2017



where ci corresponding to the ith cell of the sensor availablity
map and |G| is the number of cells in the map. The third step
corresponds to the ”Belief state update” of Figure 2. b′s

′
v

s′c,a
is

computed in function of s′v , the completely observable state.

b
′s′v
s′c,a

(s′c) =
p(s′v|s′c)

∫
fs′c|sc,sv,a(s′c|sc, sv, a)bsc(sc)dsc

|G|∑
i=0

p(s′v|s′c ∈ ci)p(s′c ∈ ci|b, a)

(25)
Therefore the updated belief state is defined as b′s

′
v

a and is
derived as b′s

′
v

a = (s′v, b
′s′v
s′c,a

).

3.3.7 Gaussian Mixtures Learning

The representation of a belief state as a Gaussian mixture
could simplify the calculation in the planning model. If we
consider b0 as a Gaussian (or a Gaussian mixture), the update
of a belief state in Section 3.3.6 raises a problem. Indeed, in
(25), the conditional probability p(s′v|s′c) (given by the prob-
ability grid) make the belief non Gaussian and prevent us to
use the initial Gaussian distribution given by (23) (consider-
ing bsc as a gaussian mixture).

A solution proposed in this paper to overcome the prob-
lem is to use a machine learning algorithm to approximate
the non-Gaussian belief state by a Gaussian mixture model
(GMM). More precisely, an ”Expectation-Minimization”
(EM) algorithm [10] is used to learn the GMM. The idea of
the belief state update is unchanged, but the new probability
distribution function of the belief state results in GMM learnt
with the EM algorithm instead of (25).

Figure 7 illustrates this idea on a given path, the transi-
tion between two belief states in this example is just a simple
propagation of the Gaussian (or the Gaussian mixture). The
belief state update is done by an observation that the GPS is
always available. Figure 7a is the GPS availability map used
in this example. The graphic on the top of Figure 7b repre-
sents the belief states propagated along a given path without
any update. The second represents the propagation of each
belief states with the update by the observation, approximated
by the Gaussian mixture learning.

The effect of the Gaussian mixture learning is more vis-
ible nearby an obstacle. The probability on the GPS avail-
ability is low, and the original belief states without update
are partially in a collision. After using the Gaussian mixture
learning, the belief states are updated supposing that an ob-
servation, GPS available, is received at each decision step.
The belief state is intersected with the GPS availability map,
and it results having a smaller state distribution.

3.3.8 Cost function of the model

Our objective is to find the safest and shortest path. To
achieve this goal without prioritizing neither the uncertainty
nor the length in an artificial way, the cost function is defined

based on uncertainty corridor [9]. The corridor is created by
a sequence of confidence ellipses, and its volume depends
directly on the length of the path and on the dispersion of
the uncertainty. Our cost function will be based on this cor-
ridor between the two consecutive states s = (sv, sc) and
s′ = (s′v, s

′
c) knowing that the uncertainty is characterized

by P which is contained in sv . Moreover, the cost function
includes a direct cost K in case of collisions between states.
This cost is needed for the safety of the path planned. If there
is an obstacle that intersects the corridor on between two be-
lief states, the second belief state is considered unreachable.

The cost function in MOMDPs needs to be defined over
B instead of S such as :

C(b, b′s
′
v

a ) =
1

p(s′v |b, a)
∑

i

p(s′v |s′c ∈ ci)

∫
bsc

∫

ci

C(s, s′)fs′c|sc,sv,a(s
′
c|sc, sv , a)ds′cdsc

+K × s′v(Collision)

(26)

This cost function is different from the regular reward func-
tion of the POMDP. Classically, a reward function corre-
sponding to R : S × A → R, where R(s, a) depends di-
rectly on the current state s and the action a done. This
way, the function R(b, a) become the average of R(b, a) =∑
s
R(s, a)b(s). It is a linear average that approaches the

value function of the POMDP with α-vectors based on its
PWLC (Piecewise linear convex) property. In our model, the
expected cost is no longer a linear average, and thus the value
function is not PWLC.

4 DISCUSSION AND PERSPECTIVE

There is an important state of the art and the theories be-
hind PWLC in POMDP. It enables to represent the policy by
a set of α-vectors which is easier and more intuitive, in con-
trary to the representation of the policy by a set of all the be-
lief b ∈ B. Moreover, the theoretical work on the POMDP by
[11] ensures that if the value function is PWLC, then value
function will be PWLC function at each epoch. The algo-
rithms based on PWLC value function used this particularity
to accelerate the computation of the optimum policy. In this
work, it is not possible to use these algorithms. One solu-
tion is to use algorithms that are not based on PWLC value
function. For example, RTDP-bel [12] does not work with
α-vector, but keeps a hash-table that maps beliefs to values.
This algorithm coincides with our problem, but the conver-
gence is not proved. Consequently, the next priority of our
work will be to research algorithms that could be adopted or
to find a new algorithm that can help to solve the problem.

In this paper, we developed our planning model in per-
spective to calculate a safe policy in a continuous environ-
ment. However, for reducing complexity, our model defines
discrete action set which leads to suboptimality in the path
planning solution. Therefore in the future, we would like to
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(a) Map of probability availability of the GPS (b) Belief states propagation without (TOP) and with GMM (BOTTOM)

Figure 7: Example of the gaussian mixture learning

incorporate continuous actions, which will reduce the action
constraints and then increase the optimality of the path.The
planning results depend mainly on the model and the algo-
rithms used. We are also interested in using reinforcement
learning to solve the planning model.
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