
Autonomous Navigation in Partially Observable
Environments Using Hierarchical Q-Learning

Y. Zhou∗, E. van Kampen, and Q. P. Chu
Delft University of Technology, 2629HS Delft, The Netherlands

ABSTRACT

A self-learning adaptive flight control design al-
lows reliable and effective operation of flight ve-
hicles in a complex environment. Reinforcement
Learning provides a model-free, adaptive, and
effective process for optimal control and naviga-
tion. This paper presents a new and systematic
approach combining Q-learning and hierarchical
reinforcement learning with additional connect-
ing Q-value functions, which separate the effect
of internal rewards from the external rewards.
An online navigation algorithm with both Q-
learning and Hierarchical decomposition is pro-
vided and applied to an illustrative task in a com-
plex, partially observable environment. The en-
vironment is completely unknown at the begin-
ning, and the agent learns the most efficient path
online to avoid obstacles and to get to the target
area. The present work compares the results us-
ing ‘flat’ Q-learning and hierarchical Q-learning.
The results indicate that hierarchical Q-learning
can help to accelerate learning, to solve ‘curse of
dimensionality’ in complex navigation tasks, to
naturally reduce the uncertainty or ambiguity at
higher levels, and to transfer the learning results
within tasks and across tasks efficiently. This
proposed method can potentially design a near-
optimal controller hierarchically for autonomous
navigation without a-prior knowledge of the en-
vironment.

1 INTRODUCTION

In recent years, many studies have implemented Rein-
forcement Learning (RL) controllers to solve nonlinear, op-
timal control problems. Reinforcement learning is learning
what actions to take to affect the state and to maximize the
numerical reward signal by interacting with the environment,
and to maximize expected future rewards ultimately. This
method links bio-inspired artificial intelligence techniques to
the field of control to overcome some of the limitations and
problems in many control methods. Nevertheless, traditional
RL methods solving the optimality problem is an off-line
method, assuming that the state and environment is fully ob-
servable and that the observed states obey Markov processes.

∗Email address(es): Y.Zhou-6@tudelft.nl

These methods, especially those applied to flying vehicles,
are rendered intractable by 1) the nonlinearity of the unknown
system, 2) the complexity of the task and environment, and 3)
the partial observability of the system and environment. This
paper focus on the last two problems induced by the com-
plex and partially observable environment, which are com-
mon challenges in navigation.

Reinforcement learning often encounter the exponentially
growing of states caused by the complexity of the environ-
ment and decision making, which is called the ‘curse of di-
mensionality’. Many RL algorithms apply approximate dy-
namic programming (ADP), which uses a universal approx-
imator with parameters to approximate the cost/value func-
tion, so that they can be used to solve the optimality prob-
lems with large or continuous state spaces online [1, 2, 3, 4].
However, with current ‘flat’ methods, the number of the pa-
rameters will still grow with the exponentially growing of the
states and actions. Recent research attempts to deal with the
‘curse of dimensionality’ with hierarchical decomposition,
which has always been a natural approach to problem solving
[2, 5]. Hierarchical methods replace state-to-action mapping
by a hierarchy of temporally abstract actions which operate
over several time steps. Therefore, a complex problem may
be solved by decomposing it into some smaller and simpler
problems. Hierarchical decomposition speeds up learning for
complex tasks more efficiently. Additionally, the experience
and learning results gained during the learning can be gener-
alized within not only a task and but also across tasks [6].

In the real world, the agent might not have perfect per-
ception of the states or the environment [7]. The frame-
work dealing with Partially Observable Markov Decision
Process (POMDP) problems and deciding how to act in par-
tially observable environments has been developed especially
for these situations and remains an active area of research
[8, 9, 10]. For instance, Nominal Belief-state Optimization
(NBO) [9, 10] which combines application-specific approxi-
mations and techniques within the POMDP framework pro-
duced a practical design that coordinates the plants in the
presence of occlusions. Another method, called the Posterior
Belief Distribution (PBD) [11] , has been proposed to cal-
culate the posterior distribution over beliefs after a sequence
of actions. It is an online, forward-search algorithm to con-
trol a flying vehicle in a target monitoring task by evaluating
the expected reward of a sequence of primitive actions, called
‘macro-actions’. Other than that, Output-Feedback (OPFB)
approximate dynamic programming algorithms [4, 12] have

1



been proposed, as opposed to full state feedback, to tackle
problems without direct state observation. POMDP methods
act based on the estimation of the hidden variables and are
theoretically more powerful. However, most existing work
studies ‘flat’ models and cannot completely circumvent the
partially observability of the environment. Hierarchicalmeth-
ods allow hidden variables to be estimated at different levels,
and naturally reduce the uncertainty at higher levels.

This paper begins with a brief introduction to Markov
and semi-Markov decision processes. Then, we present a
hierarchical reinforcement learning (HRL) approach for au-
tonomous navigation with Q-learning, which can help to sys-
tematically accelerate learning and to solve ‘curse of dimen-
sionality’ in complex navigation tasks online. In section 4,
the proposed method is applied to an illustrative navigation
task with a discrete state space, and the results of using ‘flat’
Q-learning and hierarchical Q-learning are compared and dis-
cussed, showing how much the hierarchical method can im-
prove the performance. The last part concludes the advan-
tages and disadvantages of using the hierarchical method in
this paper, and addresses the challenges and possibilitiesof
the future research.

2 MARKOV DECISION PROCESSES AND

SEMI-MARKOV DECISION PROCESSES

Reinforcement Learning is defined not by characterizing
learning methods, but by characterizing a learning problem
which can be described as an optimal control problem of
Markov Decision Processes (MDPs) [13, 14]. MDPs are used
to provide a mathematical framework to model decision mak-
ing in situations where their outcomes are partly random and
partly under the control of a decision maker [15]. MDP with
finite state and action spaces is called a finite MDP and most
of the modern theory of RL is restricted to finite MDPs [13].
A particular finite MDP is defined by its state and action sets,
S andA, and by the one-step dynamics of the environment.
With any states and actiona, the probability of each possible
next states′ can be obtained by transition probabilitiesPa

ss′ :

Pa
ss′ = P{st+1 = s′|st = s, at = a}. (1)

With any current states, actiona and any next states′,
the expected value of the next reward can be given as follow:

Ra
ss′ = E{rt|st = s, at = a, st+1 = s′}, (2)

wherert denotes the immediate reward of the next states′

after taking a possible actiona. These qualities completely
specify the most important aspects of the dynamics of a finite
MDP.

RL approach uses the concepts of a dynamical system’s
state and of a value function under certain policyπ to define
a functional equation, now often called the Bellman equa-
tion [13]. By modifying the current policyπ and the state
value functionV or state-action value functionQ, RL meth-
ods make them tend to the optimal policyπ∗ and the optimal

value function,V ∗ or Q∗. For a specific problem, there is
always one or more optimal policies which are better than
or equal to all other policies. Because it is the optimal value
function, its consistency can be written in a special form with-
out reference to any specific policy. Thus, the Bellman op-
timality equation for state value function,V ∗, is shown as
follows:

V ∗(s) = max

{
∞∑

k=0

γkrt+k|st = s

}

= max
a∈A

Eπ∗ {rt + γV ∗(s′)|st = s, at = a} ,

(3)

whereγ ∈ [0, 1] is a parameter called thediscounted rate.
This equation also provide the relationship between the value
of the current stateV ∗(s) and its possible successor states
V ∗(s′).

Similarly, the state-action value function, denoted
Qπ(s, a), is defined as the expected return starting froms,
taking the actiona, and thereafter following policyπ. And
the corresponding Bellman optimality equation,Q∗, is shown
as follows:

Q∗(s, a) = E{rt + γ max
a′∈A

s
′

Q∗(s′, a′)|st = s, at = a}

= Ra
ss′ + γ

∑

s′

Pa
ss′ max

a′∈A
s
′

Q∗(s′, a′).
(4)

An MDP defines only the sequential decision process
rather than the time between one decision and the next [5].
The semi-Markov decision process (SMDP) is a generaliza-
tion of MDP. An SMDP defines the timeτ as the remain-
ing/waiting time in the current stage. The amount of time can
be either real valued in continuous-time discrete-event sys-
tems or integer valued in discrete-time systems, which is used
in this paper. When actiona is executed in the current state
st, the joint transition probabilities of the next statest+1 oc-
curring afterτ is written asP (st+1, τ |st, a) [5]. The Bellman
optimality equation forV ∗ is

V ∗(s) = max
a∈A



Ra

ss′ +
∑

s′,τ

γτP (s′, τ |s, a)V ∗(s′)



 , (5)

and the Bellman optimality equation forQ∗ is

Q∗(s, a) = Ra
ss′

+
∑

s′,τ

γτP (s′, τ |s, a) max
a′∈A

s
′

Q∗(s′, a′). (6)

3 HIERARCHICAL Q-LEARNING

Navigation for mobile robots in known or small-scaled
environment has been well studied. However, in practice,
mobile robots often need to explore an initially unknown en-
vironment with limited sensors in complex autonomous nav-
igation tasks. With state space decomposition into smaller,
lower level state spaces, the task can be divided into smaller
and easier tasks, where ‘flat’ algorithms can be used.



3.1 Q-learning

Q-learning is an off-policy temporary difference (TD)
method. The learning of the state-action value functionQ,
which directly approximates the optimal state-action value
functionQ∗ of the estimation policy, is independent of the
behaviour policy[13]. This separation allows exploration
with the behaviour policy and simplifies the analysis of the
algorithm. In this paper, we use one-step ‘flat’ Q-learning
algorithm to update state-action values in discrete form with
immediate rewardsrt, as follows:

Qk+1(s, a) = (1− δ)Qk(s, a)

+ δ

[
rt + γ max

a′∈A
s
′

Qk(s
′, a′)

]
,

(7)

whereδ is a learning-rate parameter.
Q-learning can be applied to SMDP with actiona exe-

cuted in the current states and immediate rewardsrt+i dur-
ing the waiting timeτ . In the discrete-time system, the Q-
learning updates the estimated state-action valueQt(s, a) of
the optimalQ∗(s, a) as follows [5]:

Qk+1(s, a) = (1− δ)Qk(s, a)

+ δ

[
Rt,τ + γτ max

a′∈A
s
′

Qk(s
′, a′)

]
,

(8)

whereRt,τ is the accumulated reward during the waiting
time:

Rt,τ = rt + γrt+1 + · · ·+ γτ−1rt+τ−1. (9)

SMDP Q-learning has 3 significant advantages [13, 5,
16]. First, it uses iterative data samples from the distribu-
tions obtained from the real world test or produced stochas-
tic simulations, rather than access to the explicit knowledge
of the expected rewards or the state-transition probabilities.
This makes SMDP Q-learning can be used as a model-free
RL method. Second, SMDP Q-learning uses state-action val-
ues. Thus, in discrete-event systems, finding optimal actions
does not require one-step ahead search or accessing to the
one-step action models, which is often difficult. Third, it is
possible to store action-values for every state-action pairs for
small-scale problems. And it is easy to extend this advan-
tage to large-scale problems by using function approximation
methods and/or hierarchical reinforcement learning methods.

3.2 Decomposition and Hierarchies

For large-scale control and navigation problems, decom-
position of tasks and abstraction of actions allow systems to
solve current sub-problems and to ignore irrelevant details
at current level. Each higher level uses a partial description
of the environment, which can partition the environment into
sub-environmentor macro states. This feature may naturally
reduce the uncertainty or ambiguity induced by partial ob-
servability of the environment. The activities or decisions in

higher levels are calledmacro actionsor behaviours, which
instruct the policy in lower level. The macro action spaces
and values are dependent on the current macro state decom-
posed in their levels. The space of the original one-step ac-
tions for each state, which are calledprimitive actions, may
stay the same or partially admissible depending on the higher
level macro action.

Macro actionb is defined over its input set, macro states
m, and the current high level policyµ similarly to primitive
actions, and additionally, a termination conditionβ : {0, 1}.
Correspondingly, the Q-learning algorithm updates the esti-
mation of the lower level state-action value with lower level
actiona executed in the current states, and following a higher
level macro actionb until b terminates afterτ steps:

Qk+1(s, a, b) = (1− δ)Qk(s, a, b)

+ δ

[
Rt,τ + rt+τ,b + γτ max

a′∈A
s
′

Qk(s
′, a′, b′)

]
,

(10)

whereRt,τ is the accumulated lower level reward during the
waiting time (see Eq.9), andrt+τ,b is the higher level reward
returned after the termination ofb, which is executed at cur-
rent macro statem. All the states visited beforeb terminates
belongs to the current macro statem.

With decomposition of the environment, the primitive ac-
tions and macro actions can be evaluated and updated sepa-
rately. In real applications, the state may be partially observ-
able. With hierarchical algorithms, the higher level may col-
lect some information and estimate other state features. With
those similar features, the lower level states can be clustered
together and constitute a macro state. In the one-step level,
given a higher level actionb, the Q-learning algorithm may
keep its ‘flat’ form and assign state-action values with par-
tially observable features:

Q
i,b
k+1

(s, a) = (1− δ)Qi,b
k (s, a)

+ δ

[
rs′,t + rb,t + γ max

a′∈A
s
′

Q
i,b
k (s′, a′)

]
,

(11)

where i denotes that this isith level Q-value following a
(i − 1)th level instructionb, the immediate rewardrs′,t is
partially observable features related, andrb,t is the reward of
accomplishment of following macro actionb. With this Q-
valueQb

k+1
(s, a), the system can greedily choose a primitive

action following the higher level instruction: taking ‘macro
action’ b.

In higher levels, the system choose a ‘macro action’b in
current macro statem and evaluates and updates the macro
state-action values. If the system has a partial observability,
macro statesm can be estimated states, orbelief macro states.
The Q-learning algorithm only considers the high level macro
statesm:

Q
j
k+1

(m, b) = (1− δ)Qj
k(m, b)

+ δ

[
rm′,T + γ max

b′∈B
m

′

Q
j
k(m

′, b′)

]
,

(12)



wherej denotes that this isjth level Q-value considering high
level rewards,rm′,T is the immediate reward when the sys-
tem reaches the next macro statem′, andT denotes the time,
t + τ in Eq.10, whenb terminates. It only updates after the
termination of the macro actionb.

3.3 Strategy Connecting Hierarchies

With good assigned rewards, Eq.11 and 12 can already
be used to form the hierarchical Q-learning algorithm. How-
ever, when the system changes or the formulation of hierar-
chy changes, the learned policy may not be reused. To make
this algorithm more flexible, transferable and reasonable,the
lower level Q-learning algorithm, Eq.11, can be further di-
vided into a ‘flat’ Q-learning algorithm and a connecting Q-
learning algorithm. This division separates the external re-
ward rs′,t and the internal rewardrb,t into different state-
action value functions. Additionally, the discount factors for
the external rewards and for internal rewards can be assigned
independently as well.

In ‘flat’ RL algorithm, external rewards are usually used.
External rewards are positive or negative outcomes from the
external reward system or other environmental sources. They
are tangible, such as consuming energy or reaching a charger
in a robot navigation task. On the other hand, HRL algo-
rithms often require assigned internal rewards, which are in-
tangible and come from the sense of performance itself, such
as accomplishment of following a higher level instruction or
achievement of the sub-goal. The internal reward can either
be a reward observed immediately after taking actiona in
the current states, or be a delayed reward returned after ter-
mination of the macro actionb. Assigning suitable internal
rewards is difficult. It can affect the evaluation of the actions
in each state following an instruction.

In this paper, a delayed internal reward evaluating the ac-
complishment of following the higher level macro actionb is
used. The internal rewardsrb,t in each episode are assigned a
same valuerb,T . Thus, the ‘flat’ lower level Q-learning algo-
rithm is

Qi
k+1(s, a) = (1− δ)Qi

k(s, a)

+ δ

[
rs′,t + γE,i max

a′∈A
s
′

Qi
k(s

′, a′)

]
,

(13)

wherei indicates that this isith level ‘flat’ Q-value only con-
sidering theith level external reward, andγE,i is the dis-
counted factor for theith level external rewards. The con-
necting Q-learning algorithm is

Qi
k+1(s, a, b) = (1− δ)Qi

k(s, a, b)

+ δ

[
γτ
I,i · rb,T + γI,i max

a′∈A
s
′

Qi
k(s

′, a′, b)

]
,

(14)

wherei indicates that this is the additionalith level Q-value
taking internal reward into account when following(i− 1)th
level macro actionb, γI,i is the discounted factor for theith

level internal rewards, andτ is the waiting time withτ = T−
t. Noted that this lower level Q-learning algorithm in Eq.13
is in the same form as the higher level Q-learning algorithm
in Eq.12. This makes the hierarchical Q-learning algorithm
systematic and reusable.

To evaluate and choose an action in current states fol-
lowing a higher macro actionb, we can combine the ‘flat’
lower level Q-valueQi

k+1
(s, a) and the connecting Q-value

Qi
k+1

(s, a, b), as follows:

Q
i,b
k+1

(s, a) = Qi
k+1(s, a) + ωi ·Q

i
k+1(s, a, b), (15)

whereωi adjusts the weight of the internal rewards indicating
theith level accomplishment. Note that the state-action value
in Eq.11 and 15 can be different even withγE = γI andωi =
1, because the maximum state-action values in Eq.13 and 14
for the next states′ are calculated separately. Comparing to
Eq.11, this new estimated Q-valueQi,b

k+1
(s, a) in Eq.15 with

an on-line adjustable weightωi makes the evaluation process
more flexible.

An n level hierarchical Q-learning algorithm consists of a
primitive level Q-learning algorithm (Eq.13),(n − 1) higher
level Q-learning algorithms (Eq.12), and(n − 1) connecting
Q-learning algorithms (Eq.14). This hierarchical algorithm
updates each level state-action value function independently,
and evaluates the action in a state following a higher level
instruction with a connecting strategy. Additionally, this al-
gorithm separates external and internal rewards in different
state-action value functions, which makes adjusting the im-
portance of the internal rewards online possible and more
flexible. These features make this hierarchical Q-learningal-
gorithm more systematic, expandable, and easy to apply to
real applications.

4 APPLICATION

4.1 Problem Setup

This section will present an illustrative application of the
hierarchical Q-learning algorithm: an indoor discretizednav-
igation problem for a flying robot in a maze. Similar to Parr’s
maze problem [17], this maze has about 3600absolute primi-
tive statesand a target area, as shown in Fig.1. However, this
task is more complex and realistic with partial observability,
different starting locations, and limited mobility. It actually
has to perform two tasks at the same time: avoiding the ob-
stacles, and reaching the target area as soon as possible.

As depicted in Fig.2, in this indoor task, the flying robot
only has 3-step short-sight (obstacle in the 1, 2, 3-step away
or nothing) in 3 directions (front, left, and right) and knows
its heading (north, south, east, and west). Thus, this robot
may only have 256observed primitive states, which induces
ambiguity in this complex task. This robot has limited mo-
bility: turn left, turn right, and move forward. Taking any of
the primitive action will consume the energy and result in a
penalty ‘-1’. If the robot moves towards an obstacle when it



Target

20 40 60 80

0

20

40

60

80

Figure 1: A POMDP maze problem with obstacles and a tar-
get.

Agent

Sensed state (sensor)

Heading
(North, East, South, West)

Figure 2: A primitive state of the flying robot.

is next to the obstacle, it will automatically turn around and
result in a penalty ‘-3’. When it reaches the target area, the
robot will land at this area and get a terminal reward ‘10’.
This flying robot does not know the map of this maze in ad-
vance, but has an internal memory of its trajectory, which
will be removed before another episode. This task focuses on
the high-level autonomous navigation and online path plan-
ning rather than the system model or low-level control. We
assume that the flying robot has the ability to perform the
primitive actions.

4.2 Hierarchical Q-learning applied to Navigation

By using ‘flat’ Q-learning, the flying robot may only learn
to avoid the obstacles, because it will not know its correct
absolute position. To get to the target as soon as possible,
it need to explore in the maze, to find its possible position,
and to determine a proper direction from a higher level. This
is how the hierarchical Q-learning method can be applied to
this task.

This hierarchical method has 2 levels. The 1st level agent
follows the ultimate goal of reaching the target area. It mem-
orizes and draws the observed pattern of the local map, and

estimates its possible position, which is calledbelief macro
statem̂, by comparing the pattern with a memorized map.
Each macro state is a decomposed environment and contains
a subset of the primitive states. After each episode, the macro
state-action value function can be updated with following al-
gorithm:

Q1
k+1(m, b) = (1− δ)Q1

k(m, b)

+ δ

[
rm′,T + γE,1 max

b′∈B
m

′

Q1
k(m

′, b′)

]
,

(16)

whereT denotes it is theT th (m, b) macro state-action pair,
andrm′,T : {0, 10} is the immediate reward when the system
reaches the next macro statem′. With the belief statêm and
the state-action value functionQ1

k+1
(m̂, b), the agent in the

1st level will give an instruction, macro actionb : { go north,
south, east, west}, for the 2nd level agent.

The 2nd level agent follows the higher level instructionb

by using the connecting Q-value updated by

Q2
k+1(s, a, b) = (1− δ)Q2

k(s, a, b)

+ δ

[
γτ
I,2 · rb,T + γI,2 max

a′∈A
s
′

Q2
k(s

′, a′, b)

]
,

(17)

with a delayed internal rewardrb,T : {0.5,−0.5}, which as-
signs a reward for going the right direction and a penalty for
going a wrong direction or not moving. In this equation,τ

is the waiting time from current timet till the termination of
the macro actionb at timeT : τ = T − t. At the same time,
it accomplishes the task in its own level, avoiding obstacles,
using the primitive state-action value function updated by

Q2
k+1(s, a) = (1− δ)Q2

k(s, a)

+ δ

[
rs′,t + γE,2 max

a′∈A
s
′

Q2
k(s

′, a′)

]
,

(18)

wherers′,t : {−1,−3} is the immediate reward when the
system reaches the next states′.

4.3 Result and Discussion

Two algorithms are applied to this navigation problem:
a ‘flat’ Q-learning algorithm and the hierarchical Q-learning
algorithm presented in this paper. Fig.3 compares the num-
bers of primitive actions taken in each iteration for the ‘flat’
Q-learning and hierarchical Q-learning algorithm. With ‘flat’
Q-learning, the agent learns how to prevent from collision in
the first several iterations. However, the performance willnot
be improved significantly hereafter. There are two main rea-
sons: first, the huge number of actions taken before reaching
the target area makes the effect of the terminal reward propa-
gate very slow to the experienced states; and second, the par-
tial observability leads to the ambiguity in real absolute states,
which prevents the convergence of observed state-action val-
ues. These features impair the agent’s learning ability of per-
forming the second task: reaching the target area as soon as
possible.



Number of iterrations

N
um

be
r

of
pr

im
iti

ve
ac

tio
ns

(×
10

5
)

hierarchical Q-learning

flat Q-learning

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Figure 3: The number of primitive actions taken in each it-
eration with a ‘flat’ Q-learning and a hierarchical Q-learning
algorithm (averaged of 5 runs).

Number of iterrations

N
um

be
r

of
m

ac
ro

ac
tio

ns

hierarchical Q-learning

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 4: The number of macro actions taken in each itera-
tion with the hierarchical Q-learning algorithm (averagedof
5 runs).

On the other hand, the hierarchical Q-learning algorithm
improves the performance of both the collision avoidance task
and searching for the target area task. The low level agent fo-
cus on avoiding obstacles and following high level’s instruc-
tion. The high level agent focus its exploration of the state
space and finds the optimal macro actions to get to the target
area as soon as possible. In Fig.4, there is a clear trend of de-
creasing number of the macro actions taken during learning.
This result indicates that the agent improves the performance
also from a higher level. The hierarchical Q-learning algo-
rithm appears to improve the performance considerably and
much faster. Even with more iterations and longer learning
time, the ‘flat’ Q-learning method can not improve the nav-
igation performance as much as the hierarchical Q-learning
method.

This application demonstrates the ability of the hierarchi-
cal Q-learning to perform a navigation problem with partial

NORTH

SOUTH

EAST WEST

20 40 60 80 100

20

40

60

80

100

Figure 5: The greedy macro actions in the memorized map
after 15 iterations with hierarchical Q-learning.

observability. Fig.5 presents the greedy macro actions learned
by the high level hierarchical Q-learning in the memorized
map. The grid with pink dotted line decomposes the envi-
ronment into macro states. Since each macro state consists
of a fixed size of area, the corridor area is not completely
separated from the inaccessible area with walls with the en-
vironment decomposition. Some macro states can be partly
corridor and partly inaccessible area with walls, which also
have been experienced and have greedy macro actions. The
agent created this map by stitching the constructed maps from
the memory after each episode. The light gray states indicate
that those areas haven’t been experienced or observed. The
dark gray states are experienced target states and are clustered
with a red triangle.

These results show that the state-action values is converg-
ing with experiences. With more learning episodes, the agent
will explore all possible actions and exploit those experience
to learn to follow higher level instructions and to accomplish
the task as good as possible. Thus, the memorized map will
be more complete, and the state-action value functions will
all converge. The agent has the ability to find the hierarchical
optimal path online from any initial position.

Furthermore, in a new high level task, such as search-
ing for a different target area, or a new environment, such
as an expanded maze, the agent can still use the low level
and connecting Q-learning results, and only need to learn
a new higher level policy. The experience and learning re-
sults during the learning can be transferred across tasks. This
feature also speeds up learning for complex tasks more ef-
ficiently, and makes this present hierarchical Q-learning a
transfer learning method.



5 CONCLUSION

This paper proposes a systematic hierarchical Q-learning
method and applies it to a complex navigation task in a par-
tially observable environment. This method combines the ad-
vantages of both the ‘flat’ Q-learning method and the hier-
archical structure. The results indicate that the present hier-
archical Q-learning method can help to accelerate learning,
to solve ‘curse of dimensionality’ in a complex autonomous
navigation task, to naturally reduce the uncertainty or am-
biguity at higher levels, and to transfer the experience and
learning results within and across tasks efficiently.

This paper investigates the complexity and partial observ-
ability of the task and environment in navigation tasks, but
not yet the nonlinear, unknown system of flying vehicles. In
the future, we will apply this method to a more realistic mi-
cro aerial vehicle control problem by further decomposing the
complex flight task into high-level navigation tasks and low-
level control tasks, such as reference tracking. In low-level
control, the problem of nonlinearity of the unknown system
can be solved by using other ‘flat’ methods such as incre-
mental approximate dynamic programming. Thus, three of
the common problems in flight control mentioned at the be-
ginning of this paper, which are 1) the nonlinearity of the un-
known system, 2) the complexity of the task and environment,
and 3) the partial observability of the system and environ-
ment, can be solved by using the hierarchical reinforcement
learning combining different ‘flat’ algorithms in each level.

REFERENCES

[1] Said G Khan, Guido Herrmann, Frank L Lewis, Tony
Pipe, and Chris Melhuish. Reinforcement learning and
optimal adaptive control: An overview and implementa-
tion examples.Annual Reviews in Control, 36(1):42–59,
2012.

[2] Jennie Si. Handbook of learning and approximate dy-
namic programming, volume 2. John Wiley & Sons,
2004.

[3] Y. Zhou, E. van Kampen, and Qi Ping Chu. Incremental
approximate dynamic programming for nonlinear flight
control design. InProceedings of the EuroGNC 2015,
2015.

[4] Y. Zhou, E. van Kampen, and Qi Ping Chu. Nonlinear
adaptive flight control using incremental approximate
dynamic programming and output feedback. InAIAA
Guidance, Navigation and Control Conference, 2016.

[5] Andrew G Barto and Sridhar Mahadevan. Recent ad-
vances in hierarchical reinforcement learning.Discrete
Event Dynamic Systems, 13(1-2):41–77, 2003.

[6] Matthew E Taylor and Peter Stone. Transfer learning for
reinforcement learning domains: A survey.The Journal
of Machine Learning Research, 10:1633–1685, 2009.

[7] Olivier Sigaud and Olivier Buffet.Markov decision pro-
cesses in artificial intelligence. John Wiley & Sons,
2013.

[8] Alex Brooks, Alexei Makarenko, Stefan Williams, and
Hugh Durrant-Whyte. Parametric POMDPs for plan-
ning in continuous state spaces.Robotics and Au-
tonomous Systems, 54(11):887–897, 2006.

[9] Zachary A. Harris Scott A. Miller and Edwin K. P.
Chong. A POMDP framework for coordinated guidance
of autonomous uavs for multitarget tracking.EURASIP
Journal on Advances in Signal Processing, 2009.

[10] Shankarachary Ragi and Edwin K. P. Chong. UAV path
planning in a dynamic environment via partially observ-
able markov decision process.IEEE Transactions on
Aerospace and Electronic Systems, 49(4):2397–2412,
2013.

[11] Ruijie He, Emma Brunskill, and Nicholas Roy. Efficient
planning under uncertainty with macro-actions.Jour-
nal of Artificial Intelligence Research, 40(1):523–570,
2011.

[12] Frank L Lewis and Kyriakos G Vamvoudakis. Re-
inforcement learning for partially observable dynamic
processes: Adaptive dynamic programming using mea-
sured output data. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 41(1):14–
25, 2011.

[13] Richard S Sutton and Andrew G Barto.Introduction to
reinforcement learning. MIT Press, 1998.

[14] Richard Bellman. Dynamic Programming. Princeton
University Press, 1957.

[15] Mohamed Rida, Hicham Mouncif, and Azedine Boul-
makoul. Application of markov decision processes for
modeling and optimization of decision-making within a
container port. InSoft Computing in Industrial Applica-
tions, pages 349–358. Springer, 2011.

[16] Dimitri P. Bertsekas and John N. Tsitsiklis.Neuro-
Dynamic Programming. Athena Scientific, 1st edition,
1996.

[17] Ronald Parr and Stuart Russell. Reinforcement learning
with hierarchies of machines.Advances in neural infor-
mation processing systems, pages 1043–1049, 1998.


	Autonomous Navigation in Partially Observable Environments Using Hierarchical Q-Learning

