Autonomous Navigation in Partially Observable
Environments Using Hierarchical Q-Learning

Y. Zhou; E. van Kampen, and Q. P. Chu
Delft University of Technology, 2629HS Delft, The Nethertis

ABSTRACT

A self-learning adaptive flight control design al-
lows reliable and effective operation of flight ve-
hicles in a complex environment. Reinforcement
Learning provides a model-free, adaptive, and
effective process for optimal control and naviga-
tion. This paper presents a new and systematic
approach combining Q-learning and hierarchical
reinforcement learning with additional connect-
ing Q-value functions, which separate the effect
of internal rewards from the external rewards.
An online navigation algorithm with both Q-
learning and Hierarchical decomposition is pro-
vided and applied to anillustrative task in a com-
plex, partially observable environment. The en-
vironment is completely unknown at the begin-
ning, and the agent learns the most efficient path
online to avoid obstacles and to get to the target
area. The present work compares the results us-
ing ‘flat’ Q-learning and hierarchical Q-learning.
The results indicate that hierarchical Q-learning
can help to accelerate learning, to solve ‘curse of
dimensionality’ in complex navigation tasks, to
naturally reduce the uncertainty or ambiguity at
higher levels, and to transfer the learning results
within tasks and across tasks efficiently. This
proposed method can potentially design a near-
optimal controller hierarchically for autonomous
navigation without a-prior knowledge of the en-
vironment.

1 INTRODUCTION

These methods, especially those applied to flying vehicles,
are rendered intractable by 1) the nonlinearity of the umkno
system, 2) the complexity of the task and environment, and 3)
the partial observability of the system and environmenisTh
paper focus on the last two problems induced by the com-
plex and partially observable environment, which are com-
mon challenges in navigation.

Reinforcement learning often encounter the exponentially
growing of states caused by the complexity of the environ-
ment and decision making, which is called the ‘curse of di-
mensionality’. Many RL algorithms apply approximate dy-
namic programming (ADP), which uses a universal approx-
imator with parameters to approximate the cost/value func-
tion, so that they can be used to solve the optimality prob-
lems with large or continuous state spaces online [1, 2,.3, 4]
However, with current ‘flat’ methods, the number of the pa-
rameters will still grow with the exponentially growing dfet
states and actions. Recent research attempts to deal with th
‘curse of dimensionality’ with hierarchical decompositjo
which has always been a natural approach to problem solving
[2, 5]. Hierarchical methods replace state-to-action nrapp
by a hierarchy of temporally abstract actions which operate
over several time steps. Therefore, a complex problem may
be solved by decomposing it into some smaller and simpler
problems. Hierarchical decomposition speeds up learmng f
complex tasks more efficiently. Additionally, the experden
and learning results gained during the learning can be gener
alized within not only a task and but also across tasks [6].

In the real world, the agent might not have perfect per-
ception of the states or the environment [7]. The frame-
work dealing with Partially Observable Markov Decision
Process (POMDP) problems and deciding how to act in par-
tially observable environments has been developed edlyecia

In recent years, many studies have |mplemepted ReING, these situations and remains an active area of research
f_orcement Learning (RL) antrollers to solve _non_llnear; op [8, 9, 10]. For instance, Nominal Belief-state Optimizatio
timal control problems. Reinforcement learning is leagnin NBO) [9, 10] which combines application-specific approxi-
what actions to take to affect the state and to maximize th ations and techniques within the POMDP framework pro-
numerical reward signal by interacting with the environfen ;o4 4 practical design that coordinates the plants in the
and to rr.1aX|m|'ze'exp'ected fu}grel rewgrds uIt|mate.Iy. Th'spresence of occlusions. Another method, called the Posteri
method links bio-inspired artificial intelligence techaés to Belief Distribution (PBD) [11] , has been proposed to cal-
the field of control to overcome some of the limitations andCulate the posterior distribution over beliefs after a seme
problems in many control methods. Nevertheless, tradition of actions. It is an online, forward-search algorithm to-con

RL methods solving the optimality problem is an off-line trol a flying vehicle in a target monitoring task by evalugtin

method, assuming that the state and environment is fully Obthe expected reward of a sequence of primitive actionsdall

servable and that the observed states obey Markov process&s,ro-actions’. Other than that Output-Feedback (OPFB)
*Email address(es): Y.Zhou-6@tudelft.nl approximate dynamic programming algorithms [4, 12] have

been proposed, as opposed to full state feedback, to tacklalue function,VV* or Q*. For a specific problem, there is
problems without direct state observation. POMDP methodslways one or more optimal policies which are better than
act based on the estimation of the hidden variables and a@ equal to all other policies. Because it is the optimal galu
theoretically more powerful. However, most existing work function, its consistency can be written in a special forriwi
studies ‘flat’ models and cannot completely circumvent theout reference to any specific policy. Thus, the Bellman op-
partially observability of the environment. Hierarchioaéth- timality equation for state value functio}*, is shown as
ods allow hidden variables to be estimated at differenti$gve follows:
and naturally reduce the uncertainty at higher levels. oo

This paper begins with a brief introduction to Markov ~ V*(s) = max {Z YEre klse = 3}
and semi-Markov decision processes. Then, we present a k=0
hierarchical reinforcement learning (HRL) approach for au = max Er- {ry + YV*(s')|ss = s,a, = a},
tonomous navigation with Q-learning, which can help to sys- acA
tematically accelerate learning and to solve ‘curse of dime wherey < [0,1] is a parameter called thdiscounted rate
sionality’ in complex navigation tasks online. In section 4 This equation also provide the relationship between theeval
the proposed method is applied to an illustrative navigatio of the current statd*(s) and its possible successor states
task with a discrete state space, and the results of usirg ‘flav*(sf)_
Q-learning and hierarchical Q-learning are compared asd di Similarly, the state-action value function, denoted
cussed, showing how much the hierarchical method can irT'I@’f(S7 a). is defined as the expected return starting fram
prove the performance. The last part concludes the advanaking the actioru, and thereafter following policy. And
tages and disadvantages of using the hierarchical method the corresponding Bellman optimality equatidj,, is shown
this paper, and addresses the challenges and possibilities as follows:

the future research. Q*(s,a) = E{r, + max Q*(s',d)|sy = s,a, = a}
a’'€Ag

3

2 MARKOV DECISION PROCESSES AND
SEMI-MARKOV DECISION PROCESSES =RI +7 ZT{?S, Jmax Q*(s',a’).
Reinforcement Learning is defined not by characterizing s)

learning methods, but by characterizing a learning problem An MDP defines only the sequential decision process
which can be described as an optimal control problem ofather than the time between one decision and the next [5].
Markov Decision Processes (MDPs) [13, 14]. MDPs are used he semi-Markov decision process (SMDP) is a generaliza-
to provide a mathematical framework to model decision maktion of MDP. An SMDP defines the time as the remain-
ing in situations where their outcomes are partly random anéng/waiting time in the current stage. The amount of time can
partly under the control of a decision maker [15]. MDP with be either real valued in continuous-time discrete-eveat sy
finite state and action spaces is called a finite MDP and modems or integer valued in discrete-time systems, whichesl us
of the modern theory of RL is restricted to finite MDPs [13]. in this paper. When actioa is executed in the current state
A particular finite MDP is defined by its state and action setss:, the joint transition probabilities of the next state ; oc-
S and A, and by the one-step dynamics of the environmentcurring afterr is written asP(s; 1, 7[s¢, a) [5]. The Bellman
With any states and actioru, the probability of each possible optimality equation fol™ is
next states’ can be obtained by transition probabilitis,, :

PL, = P{siy1 = 5'|sy = s,a;, = a}. (1) V*(s) = max{ R{y + Z’YTP(S/»T|57G)V*(S/) , (5)

ss! acA

(4)

With any current state, actiona and any next state’, d the Bell imalit tion fGr i
the expected value of the next reward can be given as followNd the Bellman optimality equation faf* is

Q" (s,a) =RE,

Ra
+Z’77P(S/,T|S7a) max Q*(s',a). (©)

ss! T

E{r|s; = s,ay = a,s441 = s'}, 2

wherer; denotes the immediate reward of the next state a’ €A
after taking a possible action These qualities completely
specify the most important aspects of the dynamics of a finite
MDP. Navigation for mobile robots in known or small-scaled

RL approach uses the concepts of a dynamical systemsnvironment has been well studied. However, in practice,
state and of a value function under certain policio define mobile robots often need to explore an initially unknown en-
a functional equation, now often called the Bellman equavironment with limited sensors in complex autonomous nav-
tion [13]. By modifying the current policyr and the state igation tasks. With state space decomposition into smaller
value functionV or state-action value functio, RL meth- lower level state spaces, the task can be divided into smalle
ods make them tend to the optimal policy and the optimal and easier tasks, where ‘flat’ algorithms can be used.

3 HIERARCHICAL Q-LEARNING

3.1 Q-learning higher levels are callethacro actionsor behaviours which

Q_|earning is an off-po"cy temporary difference (TD) instruct the pOllcy in lower level. The macro action spaces
method. The learning of the state-action value functipn and values are dependent on the current macro state decom-
which directly approximates the optimal state-action galu Posed in their levels. The space of the original one-step ac-
function Q* of the estimation policyis independent of the tions for each state, which are callpdmitive actions may
behaviour policy[13]. This separation allows exploration Stay the same or partially admissible depending on the highe
with the behaviour policy and simplifies the analysis of thelevel macro action. o
algorithm. In this paper, we use one-step ‘flat’ Q-learning ~Macro actionb is defined over its input set, macro states
algorithm to update state-action values in discrete forthwi . and the current high level poligy similarly to primitive

immediate rewards;, as follows: actions, and additionally, a termination conditién {0, 1}.
Correspondingly, the Q-learning algorithm updates the est
Qr+1(s,a) = (1 —90)Qx(s,a) mation of the lower level state-action value with lower leve
. (7) actiona executed in the current stateand following a higher
+6 e+ e Qr(s',a’)|, level macro actior until b terminates after steps:
Qr+1 (87 a, b) = (1 - 6)Qk(57 a, b)

whered is alearning-rate parameter

Q-learning can be applied to SMDP with actiarexe- + 6 |Rir +7i4rp+77 max Qu(s’,a,b)|,
cuted in the current stateand immediate rewards . ; dur- a’€A,
ing the waiting timer. In the discrete-time system, the Q- whereR, , is the accumulated lower level reward during the
learning updates the estimated state-action valu@, a) of waiting time (see Eq.9), and., ., is the higher level reward

(10)

the optimalQ* (s, a) as follows [5]: returned after the termination &f which is executed at cur-
rent macro state:. All the states visited beforiterminates
Qr+1(s,a) = (1 = 0)Qx(s,a) belongs to the current macro state
(8) With decomposition of the environment, the primitive ac-

T ! !
+0 |\ Rir + a%i}i, @k(s,)], tions and macro actions can be evaluated and updated sepa-

rately. In real applications, the state may be partiallyeobs
where R; ; is the accumulated reward during the waiting aple. With hierarchical algorithms, the higher level may co
time: lect some information and estimate other state featureth Wi
1 those similar features, the lower level states can be ckcte
Rer=retyresn+ 49 g1 ©) together and constitute a macro state. In the one-step level
5given a higher level actioh, the Q-learning algorithm may

SM.D P Q-Iearnl_ng h?‘s 3 significant advantages .[13.’ keep its ‘flat’ form and assign state-action values with par-
16]. First, it uses iterative data samples from the distribu . .
tially observable features:

tions obtained from the real world test or produced stochas-
tic simulations, rather than access to the explicit knogéed QZL(S, a) = (1-0)Qu"(s,a)

of the expected rewards or the state-transition probsilit ' (11)
This makes SMDP Q-learning can be used as a model-free +0 |rsr i + b +7 max QY (s',a)|,

RL method. Second, SMDP Q-learning uses state-action val- ey

ues. Thus, in discrete-event systems, finding optimal mstio Where i denotes that this isth level Q-value following a
does not require one-step ahead search or accessing to tfie— 1)th level instructiond, the immediate reward, ; is
one-step action models, which is often difficult. Third,sti partially observable features related, apd is the reward of
possible to store action-values for every state-actiorsgar ~ accomplishment of following macro actidn With this Q-
small-scale problems. And it is easy to extend this advanvalueQ? (s, a), the system can greedily choose a primitive
tage to large-scale problems by using function approxionati action following the higher level instruction: taking ‘nrac
methods and/or hierarchical reinforcement learning magho action’b.

In higher levels, the system choose a ‘macro actioimn
L current macro state: and evaluates and updates the macro
For large-scale control and navigation problems, decomgyate_action values. If the system has a partial obseftsgbil

position of tasks and abstraction of actions allow systems t .- .0 «tates; can be estimated states hmlief macro states

solve current sub-problems and to ignore irrelevant detail e 5_jearning algorithm only considers the high level roacr
at current level. Each higher level uses a partial desonpti statesn:

of the environment, which can partition the environmend int . ,

sub-environmenor macro states This feature may naturally Q1.1 (m,b) = (1 —0)Qy.(m, b)

reduce the uncertainty or ambiguity induced by partial ob- Gt
servability of the environment. The activities or decision +0 |+ 7y b,rg%i/ Q. (m',b")],

3.2 Decomposition and Hierarchies

12)

wherej denotes that this igth level Q-value considering high level internal rewards, andis the waiting time withr = T'—
level rewardsy,,,, r is the immediate reward when the sys- ¢t. Noted that this lower level Q-learning algorithm in Eq.13
tem reaches the next macro statg and7" denotes the time, is in the same form as the higher level Q-learning algorithm
t + 7 in EqQ.10, wherb terminates. It only updates after the in Eq.12. This makes the hierarchical Q-learning algorithm
termination of the macro actidn systematic and reusable.

3.3 Strategy Connecting Hierarchies To evaluate and choose an action in current stafte-

lowing a higher macro actioh, we can combine the ‘flat’

With good assigned rewards, Eq.11 and 12 can alread ; .
be used to form the hierarchical Q-learning algorithm. How-%wer level Q-valuewy (s, a) and the connecting Q-value

ever, when the system changes or the formulation of hierar- k+1(s,0,b), as follows:

chy changes, the learned policy may not be reused. To make ib i i

this algorithm more flexible, transferable and reasonaht, Qi11(5,0) = Qipa(s,0) +wi - Qppa(s,ab), (15)
lower level Q-learning algorithm, Eqg.11, can be further di-
vided into a ‘flat’ Q-learning algorithm and a connecting Q-
learning algorithm. This division separates the exterpal r

Wafd rsr,¢ and the_ internal _rgwardw into_different state- 1, because the maximum state-action values in Eq.13 and 14
action value functions. Additionally, the discount factdor fc;r the next state’ are calculated separately. Comparing to
the external rewards and for internal rewards can be asd;igneEq 11, this new estimated Q-val Ef’b (s, a) iﬁ Eq.15 with

. y - +1 9 .

independently as well. : : . X
s . an on-line adjustable weight; makes the evaluation process
In ‘flat’ RL algorithm, external rewards are usually used. more flexible

External rewards are positive or negative outcomes from the
An n level hierarchical Q-learning algorithm consists of a

external reward system or other environmental sourcesy The rimitive level Q-learning algorithm (Eq.13Jx — 1) higher

are tangible, such as consuming energy or reaching a charger i . . .
in a robot navigation task. On the other hand, HRL algo evel Q-leaming algorithms (Eq.12), aftd — 1) connecting

rithms often require assigned internal rewards, which e i Q-learning algorithms (Eq.14). This hierarchical algumi

tangible and come from the sense of performance itself, Suchdates each level state-action value function indepelylen

. . . : : and evaluates the action in a state following a higher level
as accomplishment of following a higher level instructian o . : . . L .

: . ..instruction with a connecting strategy. Additionally, 8fal-
achievement of the sub-goal. The internal reward can either

be a reward observed immediately after taking actioim gorithm separates external and internal rewards in diftere
the current state, or be a delayed reward returned after ter_state-action valug functions, which makes adjlusting the im
mination of the macro actioh. Assigning suitable internal portance of the internal rewards online possible and more

e) . flexible. These features make this hierarchical Q-learaing
rewards is difficult. It can affect the evaluation of the an§) .
in each state following an instruction. gorithm more systematic, expandable, and easy to apply to

In this paper, a delayed internal reward evaluating the ac[eal applications.

complishment of following the higher level macro actiois 4 APPLICATION
used. The internal rewards; in each episode are assigned a
same value, 7. Thus, the ‘flat’ lower level Q-learning algo-

wherew; adjusts the weight of the internal rewards indicating
thesth level accomplishment. Note that the state-action value
in Eq.11 and 15 can be different even with = vy andw; =

4.1 Problem Setup

rithm is This section will present an illustrative application oéth
, ‘ hierarchical Q-learning algorithm: an indoor discretized-
Qhi1(s,a) = (1 =0)Q}(s,a) igation problem for a flying robot in a maze. Similar to Parr’s
P (13) maze problem [17], this maze has about 3&B6olute primi-
+0 |re s + 8, 28X Qs a)| tive statesand a target area, as shown in Fig.1. However, this

task is more complex and realistic with partial observapili
wherei indicates that this isth level ‘flat’ Q-value only con- different starting locations, and limited mobility. It aeily
sidering theith level external reward, anglg ; is the dis- has to perform two tasks at the same time: avoiding the ob-
counted factor for théth level external rewards. The con- stacles, and reaching the target area as soon as possible.

necting Q-learning algorithm is As depicted in Fig.2, in this indoor task, the flying robot
_ _ only has 3-step short-sight (obstacle in the 1, 2, 3-stefyawa
Qis1(s,a,0) = (1 - 0)Q}(s,a,b) or nothing) in 3 directions (front, left, and right) and krew
. P (14) its heading (north, south, east, and west). Thus, this robot
+ 0|V o YL e Qi(s",d’,0) 1, may only have 25@bserved primitive statesvhich induces

ambiguity in this complex task. This robot has limited mo-
wherei indicates that this is the additionah level Q-value bility: turn left, turn right, and move forward. Taking any o
taking internal reward into account when followiig— 1)th the primitive action will consume the energy and result in a
level macro actiorb, +; ; is the discounted factor for thigh ~ penalty ‘-1'. If the robot moves towards an obstacle when it

estimates its possible position, which is calleglief macro
statem, by comparing the pattern with a memorized map.
Each macro state is a decomposed environment and contains
a subset of the primitive states. After each episode, theanac
state-action value function can be updated with followikg a
gorithm:

Qlﬁ—i—l@nv b) = (1 - 6)Qll<(m b)

1 /AN (16)
+0 | r, 7+ ym max Qg (m' b)),

’

whereT denotes it is thd'th (m, b) macro state-action pair,
andr,,. 1 : {0, 10} is the immediate reward when the system
reaches the next macro staté. With the belief staten. and
the state-action value functia@; , , (i, b), the agent in the
1st level will give an instruction, macro actién { go north,
south, east, wegt for the 2nd level agent.

Figure 1: A POMDP maze problem with obstacles and atar- 11€ 2nd level agent follows the higher level instruction
get. by using the connecting Q-value updated by

Qi+1(saav b) = (1 - 6)@%(‘50' b)

T 2¢.0 1 (17)
L] +0 (V2 o 12 Jnax Qr(s',a',b) |,
(] Heading . - . |
/@ﬁ = (North, East, South, West) with a delayed internal rewand 1 : {0.5, —0.5}, which as-
- - signs a reward for going the right direction and a penalty for

D going a wrong direction or not moving. In this equation,
D Sensed state (sensor) is the waiting time from current timetill the termination of
D the macro action at time7: 7 = 1" — t. At the same time,
it accomplishes the task in its own level, avoiding obstscle
using the primitive state-action value function updated by

QiJrl(S’a) = (1 - 5)@%(501)

is next to the obstacle, it will automatically turn aroundian +6 |7y ¢ +ym2 max Qi(s” a)l,
result in a penalty -3'. When it reaches the target area, the a'€Ay

rob_ot vv_iII land at this area and get a termina}l reward_ 10" wherer, ; : {—1,-3} is the immediate reward when the
This flying robot dogs not know the map of thl_s maze in E_Id'system reaches the next state

vance, but has an internal memory of its trajectory, which . .

will be removed before another episode. This task focuses of‘ﬁ'g Result and Discussion

the high-level autonomous navigation and online path plan- Two algorithms are applied to this navigation problem:
ning rather than the system model or low-level control. We@ flat’ Q-learning algorithm and the hierarchical Q-leagi
assume that the flying robot has the ability to perform thedlgorithm presented in this paper. Fig.3 compares the num-

Figure 2: A primitive state of the flying robot.

(18)

primitive actions. bers of primitive actions taken in each iteration for thet*fla
)))] o Q-learning and hierarchical Q-learning algorithm. Witlatfl
4.2 Hierarchical Q-learning applied to Navigation Q-learning, the agent learns how to prevent from collision i

By using ‘flat’ Q-learning, the flying robot may only learn the first several iterations. However, the performanceivait|
to avoid the obstacles, because it will not know its correctbe improved significantly hereafter. There are two main rea-
absolute position. To get to the target as soon as possiblgpns: first, the huge number of actions taken before reaching
it need to explore in the maze, to find its possible positionthe target area makes the effect of the terminal reward propa
and to determine a proper direction from a higher level. Thigyate very slow to the experienced states; and second, the par
is how the hierarchical Q-learning method can be applied taial observability leads to the ambiguity in real absolutes,
this task. which prevents the convergence of observed state-actien va
This hierarchical method has 2 levels. The 1st level agenties. These features impair the agent’s learning abilityeof p
follows the ultimate goal of reaching the target area. It memforming the second task: reaching the target area as soon as
orizes and draws the observed pattern of the local map, ambssible.

-] [" NORTH
Rl ™
25f 1 F] Ease! - wesT
-o- hierarchical Q-learning 4 b - =]
:i(A —flat Q-learning 20l [SOUTH |
s [
g | -
! 15]]
£ 1 -1] b s]
= 40 4
I
-g 0.5F E]
: ° nd [, =
L k 4
. 60 I] r [y -
0 I-I
1
Number of iterrations 1]
sol [p = ™ I " 1
. L. . . . L -
Figure 3: The number of primitive actions taken in each it- It]
eration with a ‘flat’ Q-learning and a hierarchical Q-leaui
algorithm (averaged of 5 runs). 100k ‘ : ‘ ‘
20 40 60 80 100

4500 T

Figure 5: The greedy macro actions in the memorized map

40001 —— hierarchical Q-learning
’ after 15 iterations with hierarchical Q-learning.

3500
3000

2500 observability. Fig.5 presents the greedy macro actionaésh

by the high level hierarchical Q-learning in the memorized
map. The grid with pink dotted line decomposes the envi-
ronment into macro states. Since each macro state consists
of a fixed size of area, the corridor area is not completely
separated from the inaccessible area with walls with the en-
0 5 10 15 20 25 30 vironment decomposition. Some macro states can be partly
Number of iterrations corridor and partly inaccessible area with walls, whictoals
have been experienced and have greedy macro actions. The
Figure 4: The number of macro actions taken in each itera@gent created this map by stitching the constructed maps fro
tion with the hierarchical Q-learning algorithm (averagégd the memory after each episode. The light gray states irelicat
5 runs). that those areas haven't been experienced or observed. The
dark gray states are experienced target states and arereliist
with a red triangle.

On the other hand, the hierarchical Q-learning algorithm These results show that the state-action values is converg-
improves the performance of both the collision avoidansk ta ing with experiences. With more learning episodes, thetagen
and searching for the target area task. The low level agent fawill explore all possible actions and exploit those expace
cus on avoiding obstacles and following high level’s instru to learn to follow higher level instructions and to accorspli
tion. The high level agent focus its exploration of the statethe task as good as possible. Thus, the memorized map will
space and finds the optimal macro actions to get to the targéte more complete, and the state-action value functions will
area as soon as possible. In Fig.4, there is a clear trend of dall converge. The agent has the ability to find the hieraadhic
creasing number of the macro actions taken during learningpptimal path online from any initial position.

This result indicates that the agent improves the perfooman Furthermore, in a new high level task, such as search-
also from a higher level. The hierarchical Q-learning algo-ing for a different target area, or a new environment, such
rithm appears to improve the performance considerably angls an expanded maze, the agent can still use the low level
much faster. Even with more iterations and longer learnintand connecting Q-learning results, and only need to learn
time, the ‘flat’ Q-learning method can not improve the nav-a new higher level policy. The experience and learning re-
igation performance as much as the hierarchical Q-learningults during the learning can be transferred across tasks. T
method. feature also speeds up learning for complex tasks more ef-

This application demonstrates the ability of the hierarchi ficiently, and makes this present hierarchical Q-learning a
cal Q-learning to perform a navigation problem with partial transfer learning method.

2000f

1500F

Number of macro actions

1000F

5001

5 CONCLUSION

This paper proposes a systematic hierarchical Q-learning
method and applies it to a complex navigation task in a par-
tially observable environment. This method combines the ad
vantages of both the ‘flat’ Q-learning method and the hier-
archical structure. The results indicate that the presiemt h
archical Q-learning method can help to accelerate learning
to solve ‘curse of dimensionality’ in a complex autonomous

[7]

(8]

Olivier Sigaud and Olivier BuffetMarkov decision pro-
cesses in artificial intelligence John Wiley & Sons,
2013.

Alex Brooks, Alexei Makarenko, Stefan Williams, and
Hugh Durrant-Whyte. Parametric POMDPs for plan-
ning in continuous state spacesRobotics and Au-
tonomous Systents4(11):887-897, 2006.

navigation task, to naturally reduce the uncertainty or am- [9] Zachary A. Harris Scott A. Miller and Edwin K. P.

biguity at higher levels, and to transfer the experience and
learning results within and across tasks efficiently.

This paper investigates the complexity and partial observ-
ability of the task and environment in navigation tasks, but
not yet the nonlinear, unknown system of flying vehicles. Inl
the future, we will apply this method to a more realistic mi-
cro aerial vehicle control problem by further decomposhmey t
complex flight task into high-level navigation tasks and-dow
level control tasks, such as reference tracking. In lovellev

10]

control, the problem of nonlinearity of the unknown system[ll]

can be solved by using other ‘flat’ methods such as incre-
mental approximate dynamic programming. Thus, three of
the common problems in flight control mentioned at the be-
ginning of this paper, which are 1) the nonlinearity of the un

known system, 2) the complexity of the task and environment[12]

and 3) the partial observability of the system and environ-
ment, can be solved by using the hierarchical reinforcement
learning combining different ‘flat’ algorithms in each léve

REFERENCES
[1] Said G Khan, Guido Herrmann, Frank L Lewis, Tony

Pipe, and Chris Melhuish. Reinforcement learning and13]

optimal adaptive control: An overview and implementa-
tion examplesAnnual Reviews in ControB6(1):42-59,
2012.

[2] Jennie Si.Handbook of learning and approximate dy-
namic programmingvolume 2. John Wiley & Sons,
2004.

[3] Y. Zhou, E. van Kampen, and Qi Ping Chu. Incremental
approximate dynamic programming for nonlinear flight
control design. IrProceedings of the EuroGNC 2015

(14]

(15]

2015. [16]

[4] Y. Zhou, E. van Kampen, and Qi Ping Chu. Nonlinear
adaptive flight control using incremental approximate
dynamic programming and output feedback. AA [
Guidance, Navigation and Control Conferen216.

[5] Andrew G Barto and Sridhar Mahadevan. Recent ad-
vances in hierarchical reinforcement learnimjscrete
Event Dynamic Systemb3(1-2):41-77, 2003.

[6] Matthew E Taylor and Peter Stone. Transfer learning for
reinforcement learning domains: A surv&he Journal
of Machine Learning Research0:1633-1685, 2009.

17]

Chong. A POMDP framework for coordinated guidance
of autonomous uavs for multitarget trackifgURASIP
Journal on Advances in Signal Processi2g09.

Shankarachary Ragi and Edwin K. P. Chong. UAV path
planning in a dynamic environment via partially observ-
able markov decision processEEE Transactions on
Aerospace and Electronic Systen#9(4):2397-2412,
2013.

Ruijie He, Emma Brunskill, and Nicholas Roy. Efficient
planning under uncertainty with macro-actiondour-
nal of Artificial Intelligence Research10(1):523-570,
2011.

Frank L Lewis and Kyriakos G Vamvoudakis. Re-
inforcement learning for partially observable dynamic
processes: Adaptive dynamic programming using mea-
sured output data. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions ,of1(1):14—

25, 2011.

Richard S Sutton and Andrew G Bartimtroduction to
reinforcement learningMIT Press, 1998.

Richard Bellman. Dynamic Programming Princeton
University Press, 1957.

Mohamed Rida, Hicham Mouncif, and Azedine Boul-
makoul. Application of markov decision processes for
modeling and optimization of decision-making within a
container port. IrSoft Computing in Industrial Applica-
tions pages 349-358. Springer, 2011.

Dimitri P. Bertsekas and John N. TsitsiklisNeuro-
Dynamic Programming Athena Scientific, 1st edition,
1996.

Ronald Parr and Stuart Russell. Reinforcement legrnin
with hierarchies of machineé&dvances in neural infor-
mation processing systenpages 1043-1049, 1998.

	Autonomous Navigation in Partially Observable Environments Using Hierarchical Q-Learning

