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ABSTRACT

This paper investigates the applicability of the
Vector Field Histogram Star (VFH*) obstacle
avoidance algorithm on multicopters using two-
dimensional LIDAR systems. Modifications to
the existing VFH* algorithm are made to ac-
count for position and yaw uncertainties of mul-
ticopters. The effects of tilt angles caused by
pitch and roll manoeuvres are also addressed by
modifying range measurements from the LIDAR
system. The need for steering control and the ef-
fects of changes in the search depth of the VFH*
algorithm are also investigated.

1 INTRODUCTION

The possible uses for multicopters are seemingly endless.
From search and rescue operations, photography, surveying,
emergency aid, and even drone racing it would seem their
uses are limited only by our own imaginations. However,
there are inherent dangers posed by multicopters. The loss
of control over such a drone can easily result in injuries oc-
curring from the falling mass or its spinning rotors. As safety
concerns grow over the use of such devices the need for au-
tonomous obstacle avoidance capabilities and autonomy have
become essential.

Obstacle avoidance can either be done locally, globally or
through a combination of the two. A local obstacle avoidance
system uses real time sensor data to detect obstacles in the
immediate vicinity of a robot and steers the robot clear of
any obstacles encountered in the robot’s path. On the other
hand global obstacle avoidance system determines the most
appropriate path for a robot to follow based on a map of the
robot’s known environment [1].

In 1989 Johann Borenstein and Yorem Koren suggested
the Virtual Force Field (VFF) method which combined two
existing concepts, that of certainty grids for obstacle repre-
sentation and potential fields for navigation [2] . The method
also made use of the Wall Following Method (WFM) to get
out of minimum trap situations. For the WFM the robot fol-
lows the obstacles contour until it can resume its path to the
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target position [2] . In 1991 they suggested an improved algo-
rithm called the Vector Field Histogram (VFH) method which
uses a two-dimensional Cartesian histogram grid for a world
model [3]. Onboard range sensors were used to update the
world model and then a two-stage data reduction process car-
ried out to compute the desired steering commands for the
robot [3]. In the first stage the histogram grid is reduced to a
one-dimensional polar histogram grid that is centered on the
robot. In the second data reduction stage the area around the
robot is divided into sectors each having its own polar obsta-
cle density value and the most suitable sector is chosen for the
robot to travel towards. Then, again in 1998 the VFH method
was improved and appropriately named the VFH+ method.
The VFH+ algorithm accounts for the robots width and ap-
proximates the available robot trajectories when selecting its
optimal path [4]. This resulted in smoother robot trajectories
and greater reliability. Then in 2000 the method was further
enhanced and called the VFH* method [1]. The VFH* algo-
rithm makes use of the A* search algorithm and appropriate
cost and heuristic functions in order to verify whether can-
didate directions do in fact guide the robot around obstacles.
This helps the robot to deal with situations that purely local
obstacle avoidance algorithms such as the VFF, VFH, VFH+
do not take into consideration.

Our aim is to establish the applicability of the VFH* algo-
rithm to multicopters since the algorithm was originally cre-
ated with with mobile ground robots in mind. We also inves-
tigate what modifications can be made to better the algorithm
for application on multicopters through simulations. We con-
sider only the case where the multicopter would make use of
a two-dimensional LIDAR system for range measurements.

In specific we investigate the effect of multicopter po-
sition and yaw uncertainties. The effects of pitch and roll
movements on range measurements are also investigated and
the effects of steering control and the VFH* algorithm’s
search depth in a multicopter capacity.

Section 2 provides a more detailed overview of the work-
ings of the VFH* algorithm. Our suggested modifications are
discussed in Section 3 with a conclusion on the applicability
of the algorithm in Section 4.

2 THE VFH* ALGORTIHM

The VFH* algorithm makes use of a two-dimensional
Cartesian histogram grid C for obstacle representation [3].
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Each cell of the histogram grid C has its own certainty value
c(i, j). On-board range sensors are used to continuously and
rapidly update the histogram grid in real time. Originally ul-
trasonic sensors were used but we propose the use of a two-
dimensional LIDAR system for use on a multicopter because
of its superior range capabilities compared to ultrasonic sen-
sors . Each cells’ certainty value c(i, j) is updated as the robot
moves. If an obstacle is detected the cell’s certainty value is
incremented otherwise its certainty value slowly decays away
over time. Thus, if an obstacle is detected multiple times it
will have a high certainty value while on the other hand ran-
dom noise or misreadings will fade away with time [3].

VFH* makes use of a four stage data reduction process
to reduce the data from the histogram grid C [4]. The aim
of which is to obtain candidate directions in which the robot
can move. Then the candidate directions are evaluated based
on a cost function and look-ahead verification and the most
suitable one is chosen as the robot’s direction of motion [1].

2.1 First Stage - The Primary Polar Histogram
The first data-reduction stage maps the active region Ca

from the histogram grid C onto the primary polar histogram,
Hp [4]. The active region Ca is located around the robot’s
momentary location and has a radius of ractive−region. Each
cell acts as an obstacle vector with a vector direction and mag-
nitude [4]. The vector direction, βi,j , is based on the direction
of the active cell relative to the robot center point (RCP):

βi,j = arctan

(
yo − yi
xo − xi

)
(1)

where:
xo, yo : Momentary coordinates of the RCP.
xi, yi : Coordinates of active cell Ci,j .

The vector magnitude,mi,j of an active cellCi,j is in turn
calculated as follows:

mi,j = c2i,j(a− bd2
i,j) (2)

where:
ci,j : Certainty value of active cell Ci,j .
di,j : Distance from active cell Ci,j to the RCP.

The parameters a and b are chosen according to:

a− b

(
ractive−region − 1

2

)2

= 1 (3)

Note that the certainty value, ci,j , is squared when the vec-
tor magnitude is calculated. This means that recurring range
readings will result in high certainty values and thus we can
be more confident that an obstacle resides in the obstacle cell
Ci,j . In contrast noise or once-off range readings do not result
in high certainty values.

The distance between the active cell and RCP, di,j , is also
squared when calculating the vector magnitude. This means
that occupied cells will have greater vector magnitudes the
closer they get to the robot.

To prevent the robot from cutting corners we have to com-
pensate for the robot’s width [4]. This is done by enlarging
occupied cells by the robot radius, rrobot. Additionally, a
minimum allowed distance between the robot and obstacle,
dsafety , can be added. The resulting radius rr+s, is then de-
fined as rr+s = rrobot+dsafety . By enlarging occupied cells
by rr+s the robot can be treated as a point-like vehicle [4].

The primary polar histogram,Hp, is constructed by divid-
ing the active window surrounding the robot into sectors [4].
An arbitrarily chosen angular resolution, α, is used so that
the number of sectors is always an integer, i.e. n = 360◦/α.
In our simulations we chose α = 5◦. Each angular sector
corresponds to a discrete angle ρ = k · α.

Instead of updating only the sectors in which occupied
cells fall all histogram sectors that are affected by the en-
larged occupied cells are updated while building the primary
polar histogram. The enlargement angle γi,j is calculated as
follows:

γi,j = arcsin

(
rr+s
di,j

)
(4)

The polar obstacle density for each sector k is calculated
as follows:

Hp
k =

∑
i,jεCa

mi,j · h
′

i,j (5)

with:

h′i,j = 1 if k · αε [βi,j − γi,j , βi,j + γi,j ] (6)

h′i,j = 0 otherwise (7)

The h′ function acts as a low-pass filter and smooths the
polar histogram [4]. The resulting polar histogram grid con-
siders the robot width.

Figure 1 shows a robot surrounded by obstacles. The pri-
mary polar histogram is drawn around the robot indicating
sectors with high polar density values or in other words sec-
tors that contain obstacles. The effect that the enlargement
angle γi,j has on the primary polar histogram is also indi-
cated. The sectors to the sides of each obstacle that fall within
the enlargement angle are also deemed blocked and assigned
a polar density value using Equation 5. The sectors that are
blocked due to the enlargement angle are the filled sectors as
shown in Figure 2.

2.2 Second Stage - The Binary Polar Histogram
When a robot moves in an environment with several nar-

row openings these openings can alternate between open and
blocked between consecutive readings [4]. This causes the
robot to keep changing its steering direction between alterna-
tive openings. To get rid of this indecisive behaviour the polar
histogram is reduced to a binary polar histogram.

The binary polar histogram Hb uses a hysteresis based
on two thresholds τlow and τhigh [4]. By using these thresh-
old values the primary polar histogram Hp’s sectors are re-
duced from polar density values to either being free(0) or



Figure 1: Primary polar histogram constructed around robot.

Figure 2: Binary polar histogram constructed around robot
with two candidate directions.

blocked(1). The set of rules used to update the binary polar
histogram Hb are shown:

Hb
k,i = 1 ifHp

k,i > τhigh (8)

Hb
k,i = 0 if Hp

k,i < τlow (9)

Hb
k,i = Hb

k,i−1 otherwise (10)

This concept is illustrated in Figure 2 where the polar his-
togram from Figure 1 has been reduced to a binary polar his-
togram where the sectors are either open or closed.

2.3 Third Stage - The Masked Polar Histogram
VFH* approximates robot trajectories as circular arcs

(constant curvature curves) to account for the fact that most
mobile robots are unable to change their direction of motion
instantaneously and are subject to turning circles [4]. The cur-
vature of a curve is defined as κ = 1/r where r is the steering
radius. The values for minimum steering radii of a robot can
be found experimentally and are functions of velocity. The

steering radii to the right and left of the robot are defined as
rr = 1/κr and rl = 1/κl.

If the trajectory circle and an enlarged obstacle cell over-
lap all directions of motion are blocked to that side of the
robot. The masked polar histogram shows which directions
are accessible at the robot’s current speed. If all sectors are
blocked the robot would have to decrease its speed and recon-
struct the masked polar histogram [4].

2.4 Fourth Stage - Determining of Primary Candidate Di-
rections

By checking which sectors in the masked polar histogram
are free and which are blocked primary candidate directions
are identified [1, 4]. Then by evaluating each candidate direc-
tion at the hand of a cost function the new direction of motion
is calculated [1].

The right and left borders, kr and kl, of all openings are
determined to establish whether an opening is wide or narrow
[4]. An opening is considered wide if the difference between
its two borders is larger than smax sectors (smax = 16 in
our simulations). In contrast if the difference between its two
borders is less than smax sectors the opening is considered
narrow. Figure 2 shows a case where two narrow openings
are present and two primary candidate directions exist.

A narrow opening has only one primary candidate direc-
tion which is the center of the opening:

cn =
kr + kl

2
centered direction (11)

A wide opening has at least two primary candidate directions,
one to the right of its left border and one to the left of its right
border [4]. When the opening presents a clear path to the
target, that is when the target direction kt lies between the
two borders, the target direction kt is also considered to be a
primary candidate direction as shown:

cr = kr +
smax

2
towards the right (12)

cl = kl −
smax

2
towards the left (13)

ct = kt if kt ε [cr, cl] (14)

The two primary candidate directions cr and cl make the
robot follow the obstacle contour at a safe distance, while ct
leads the robot directly towards the target [4].

2.5 Verification of Candidate Directions
Look-ahead verification is used to verify which primary

candidate direction is the most suitable direction of motion
for the robot. VFH* does this by computing the new positions
and orientations of the robot if it were to move a projected
step distance ds in each of the primary candidate directions
[1] .

At every projected position a new primary polar his-
togram is constructed based on the histogram grid informa-
tion available. Then the data reduction process as described



previously is repeated. New candidate directions are found,
called projected candidate directions. The process is repeated
ng times until finally we are left with a search tree of depth
ng , where the end nodes correspond to the total projected dis-
tance dt = ng · ds [1] .

Every end node has a cost based on the path cost, which
is the sum of the costs of the branches leading back to the
start node, and a heuristic function that is implemented [1].
The primary candidate direction that leads to the end node
with smallest total cost is then selected as the new direction
of motion.

The larger dt the greater the total look-ahead. If selected
too high the algorithm is slowed down considerably while if
its chosen to small the robot might not choose the best path
going forward. Thus, selection of dt is a trade-off between
the speed and quality of the algorithm [1].

3 MODIFICATIONS TO VFH*
All multicopters are subject to inaccurate sensor data that

cause uncertainties to arise with regards to their position and
yaw estimations. The original VFH* algorithm does not cur-
rently take into consideration uncertainties in position and
yaw estimation since the mobile ground robots that the algo-
rithm was intended for have motor encoders and other mecha-
nisms that can more accurately determine the robot’s position
and orientation (yaw). However, as will be shown, the VFH*
algorithm can be modified to account for these uncertainties
by updating the way in which the multicopter builds its his-
togram grid and primary polar histogram.

The VFH* algorithm is also modified to take into consid-
eration a multicopter’s pitch and roll angles. These parame-
ters are important to consider when range measurements are
taken since an obstacle may be closer than what is being mea-
sured due to the angle of measurement.

3.1 Additional Sensor Region
The current implementation of VFH* reacts to obsta-

cles once they are within the multicopter’s active region Ca.
Though this makes sense for a mobile ground robot that
makes use of short range ultrasonic sensors it is bothersome
for multicopter system using a long range two-dimensional
LIDAR system. The problem lies in choosing an appropriate
value for the active region radius, ractive−region. If the re-
gion is too small the multicopter will not have sufficient time
to react to obstacles. On the other hand if the region is too
large the robot will start reacting to obstacles much earlier
than what is necessary.

This could be addressed by tuning the thresholds when
constructing the binary polar histogram as discussed in sec-
tion 2.2. But this process would be a tedious task and may
not always be reliable.

We present our solution in the form of an additional sen-
sor region. The sensor region is used to update the his-
togram grid C and its size is chosen to accommodate the
sensors range capabilities. In our simulations we chose a

sensor region of radius rsensor−region = 20m. This radius
can be made much larger, especially for multicopters mov-
ing at high speeds. The size of the active region then deter-
mines when the multicopter will react to an obstacle. In our
simulations we chose the active region to have a radius of
ractive−region = 5m. Thus, the sizes of the two regions can
vary as long as the following condition is satisfied:

ractive−region ≤ rsensor−region (15)

This allows the detection of obstacles before the multicopter
reacts to them. This characteristic is of utmost importance for
the implementation of the suggested modifications in the fol-
lowing subsections. It will become clear why it is important
to distinguish between these two regions as we proceed.

3.2 Adding Safety Distance to Range Data
The original VFH* algorithm made use of a safety dis-

tance dsafety when constructing the primary polar histogram
as was shown in Section 2.1. Though this safety distance
works well when the multicopter is moving around an object
it has no effect on the initial distance between the multicopter
and an obstacle. This is because the safety distance dsafety
is used to calculate only the enlargement angle γi,j in Equa-
tion 4 and is not accounted for in any way in terms of the
direct distance between the multicopter and the obstacle. Us-
ing the original VFH* algorithm would mean that the mul-
ticopter would only react to an obstacle once the obstacle is
within the multicopter’s active region. This means that the
safety distance is only considered as the multicopter moves
around the obstacle. In general this works well but to ensure
that the multicopter starts reacting at the appropriate distance
from an obstacle we account for the safety distance dsafety
when updating the histogram grid C as follows:

denlarged = di,j − dsafety (16)

where:
di,j : Distance from active cell Ci,j to the RCP.

By using denlarged when updating the histogram grid in-
stead of di,j the multicopter will start reacting to an obsta-
cle exactly a distance of dsafety sooner than it would when
dsafety is only included in the enlargement angle γi,j . It is
important to note that this improvement is only possible be-
cause we have a sensor region. This allows the histogram grid
to be updated before an obstacle enters the multicopter’s ac-
tive region. The correction made in Equation 16 means that
the multicopter will detect the obstacle a distance of dsafety
sooner than normal. This however means that the effective
distance between the multicopter’s center point and the ob-
stacle is:

deffective = ractive−region + dsafety (17)

3.3 Compensating for Multicopter Position Uncertainties
Most multicopters make use of GPS systems to determine

their positions. Accurate GPS and vicon systems are often



very expensive and even then one can never be 100% cer-
tain of the multicpoter’s position. This poses a problem for
the VFH* algorithm since it constructs its primary polar his-
togram from the histogram grid C based on the multicopter’s
position on the histogram grid.

To account for the uncertainties in a multicopter’s position
we first acknowledge that the multicopter can be anywhere
within a circular uncertainty region around its estimated po-
sition as shown in Figure 3. From the figure one can see that
the multicopter would fit through the gap between the two
obstacles if its position is 100% certain. But since that is un-
likely one has to consider the uncertainty region around the
multicopter which means that the multicopter might very well
be on a collision course with one of the two obstacles. The ra-
dius of the uncertainty region may vary depending on the type
and quality of sensor used as mentioned earlier. We define the
radius of the position uncertainty region as rposition. The un-

Figure 3: Multicopter position uncertainty.

certainty region is accounted for in the VFH* algorithm by
modifying the range readings from the two-dimensional LI-
DAR range sensor. This can be done by subtracting rposition
from the LIDAR range measurement when updating the his-
togram grid C:

denlarged = di,j − dsafety − rposition (18)

where:
di,j : Distance from active cell Ci,j to the RCP.

This enlarges the area an obstacle occupies in the his-
togram grid and allows the uncertainty region to be shifted
from the multicopter to the obstacles as illustrated in Figure
4. This is however only half the solution as this does not en-
large the sides of the obstacle to account for the multicpoter’s
position uncertainty. To account for that we need to modify
the enlargement angle γi,j from Equation 4 used to construct

the primary polar histogram:

renlarged = rmulticopter + dsafety + rposition (19)

γi,j = arcsin

(
renlarged
denlarged

)
(20)

Thus, the multicopter will start reacting sooner to an obsta-
cle to compensate for inaccuracies in its position estimation.
The multicopter’s position uncertainty is also compensated
for when it wants to move around obstacles since we have in-
cluded rposition term in the enlargement angle γi,j as shown
in Figure 4. In so doing the multicopter’s position uncertainty
is taken into account when VFH* algorithm calculates candi-
date directions.

Figure 5 shows a simulation of the VFH* algorithm tak-
ing into consideration various position uncertainties. It can
be observed that the multicopter reacts sooner when the un-
certainty is more due to Equation 18 while the increase in the
size of the arcs as the robot moves around the obstacle are the
consequence of Equation 20. The effective distance between
the multicopter and the obstacle where the multicopter starts
reacting to the obstacle can be updated as follows:

deffective = ractive−region + dsafety + rposition (21)

Figure 4: Enlarged obstacles with multicopter as point-like
vehicle.

Figure 6 on the other hand shows the effect of three po-
sition uncertainties when the multicopter attempts to traverse
terrain with clustered obstacles. The multicopter manages the
shortest root when no uncertainty is present, rposition = 0m,
while it is still able to move in between two obstacles which
are slightly further apart when rposition = 1m. However
when the uncertainty is increased even more to rposition =
4m the multicopter can no longer be certain that it won’t col-
lide with any of the obstacles and thus appropriately chooses
to go around the cluster.



Figure 5: Effect of various position uncertainties on multi-
copter trajectory.

Figure 6: Effect of position uncertainty on multicopter trajec-
tory in a cluttered environment.

3.4 Compensating for Multicopter Tilt Angle

One way in which multicopters are entirely different from
mobile ground robots is that they use pitch and roll manoeu-
vres to move forward or to the sides. This also means that
unlike mobile ground robots they do not have to change their
orientations (yaw) to change direction as they can easily move
in any direction through a combination of pitch and roll ma-
noeuvres.

A potential problem that arises with implementing VFH*
on a multicopter using a two-dimensional LIDAR range sen-
sor is that if a gimbal is not used the tilt angle of the drone
will affect the range measurements made by the sensor. Fig-
ure 7 shows a multicopter as seen from the side. If the mul-
ticopter is stationary while taking a range measurement the
true distance to the object would be the distance R1, ignor-

ing sensor inaccuracies of a few centimetres. However, as the
multicopter starts to move either towards the target, or away
from it, a tilt angle θtilt is introduced and the sensor range
measurement s would indicate that the object is further away
from the multicopter than it actually is. This error is depen-
dant on the obstacle distance to the multicopter and may even
be insignificant if the multicopter travels at low speeds, caus-
ing small tilt angles (θtilt), or if the obstacle is very close to
the multicopter, causing short range readings (s).

The effective range of an obstacle R1 is easily calculated
as:

R1 = s · cos(θtilt) (22)

The concept is exactly the same for pitch and roll manoeu-
vres. Thus, the error caused by a multicopter’s tilt angle dur-
ing either pitch or roll manoeuvres can easily be corrected
by calculating the effective range R1 and using the effective
range instead of the actual measured range s to update the his-
togram grid C. It is important to note that while the one end
of the multicopter might be lifted by an angle θtilt the other
end will be pointing down by an angle θtilt and every other
range reading will be at an angle in the range 0◦ ≤ θ < θtilt.
Figure 8 shows a simulation of the VFH* where the tilt angle

Figure 7: Effect of pitch angle on range readings.

was varied from 0◦ to 60◦ in increments of 15◦. It is impor-
tant to note that the obstacle is shown in the position where
the two-dimensional LIDAR sensor initially measures it to be
before correcting the measured distance. Thus the obstacle
would make up a region much closer to the multicopter on
the histogram grid for each of the cases where the tilt angle
is greater than zero. In all the cases the multicopter only re-
acts to the obstacle once it is detected in its active region.
The effect of the tilt angle correction can clearly be seen as
the multicopter starts reacting sooner on the figure as the tilt
angle increases. As the tilt angle is increased the measured
distance is corrected and the object is detected closer to the
multicopter’s starting position than what was initially mea-
sured.

3.5 Compensating for Multicopter Yaw Uncertainties
Uncertainties in a multicopter’s estimated yaw angle ef-

fect the VFH* algorithm in a similar fashion as pitch and roll
do. Figure 9 shows a top view of a multicopter with the yaw
uncertainty, θ∆yaw, defined as the angle by by which the mul-
ticopter may differ from it’s estimated yaw angle. It is impor-



Figure 8: Effect of tilt angle on multicopter trajectory.

tant to note that we are referring to the uncertainty of the yaw
angle and not the yaw angle itself. This is different from the
roll and pitch angles in that errors in yaw angle estimation oc-
cur at random and have an influence on not only the perceived
distance of an obstacle but also its perceived width.

To account for the effect yaw uncertainty has on the per-
ceived distance of an obstacle to the multicopter we repeat the
process followed in Section 3.4 as shown:

R2 = s · cos(θ∆yaw) (23)

Figure 9: Effect of yaw angle on range readings and obstacle
uncertainty.

R2 is then the corrected distance from the multicopter to
an obstacle. However if the multicopter has a tilt angle as
shown in Figure 10 then we also need to account for θtilt
when calculating the corrected distance, R2:

R2 = s · cos(θtilt) · cos(θ∆yaw) (24)

To account for the effect yaw uncertainty has on the width
of an obstacle we include ∆x, as shown in Figure 10, in the
enlargement angle γi,j as shown:

∆x = R1 · sin(θ∆yaw) (25)

then
∆x = s · cos(θtilt) · sin(θ∆yaw) (26)

renlarged = rmulticopter + dsafety + rposition + ∆x (27)

γi,j = arcsin

(
renlarged
denlarged

)
(28)

Figure 10: Combined effect of tilt and yaw angles on range
readings and obstacle uncertainty.

3.6 Effects of Steering Control and Search Depth
Since multicopters do not have to change their orienta-

tion (yaw angle) to change their direction of motion the need
for steering control in our simulations was questioned. Fig-
ure 11 shows the effect of different proportional steering con-
trol values on the VFH* algorithm. In this case having no
steering control, Ks = 0, still produces the correct multi-
copter trajectory. However, this would only be a valid trajec-
tory if the multicopter is travelling at low speeds. At higher
speeds dynamic effects such as the multicopter’s momentum
would make it impossible to change its direction of motion
instantaneously. Thus, if steering control is ignored while the
multicopter is moving at moderate to high speeds the multi-
copter will behave differently than what the VFH* algorithm
expects and can cause the multicopter to crash or hit an obsta-
cle. In another observation it was found that the VFH* algo-
rithm sometimes behaves in an unsatisfactory fashion when
we neglect steering control from our simulations. The prob-
lem is illustrated in Figure 12 where the multicopter, without
steering control, first moves to the right. As it moves to the
right it does not immediately find a clear path to the target po-
sition and the path cost becomes increasingly expensive until
the multicopter eventually turns around and moves left. In the
end it does successfully move around the obstacle. The initial
choice to go right is because we used a circular sensor and ac-
tive region. This means that only a small part of the obstacle
is initially detected. The detected part of the obstacle was in-
line with the multicopter and the target position as can be seen
from the figure. Thus, the choice to go right was most likely
made arbitrarily since not enough information was available.



Figure 11: Effect of steering control proportional constantKs

on multicopter trajectory.

When steering control is included in the algorithm the
multicopter cannot change its path so easily and commits
to moving right until it can move around the obstacle. The
reason for this is that if we do not consider steering control
the multicopter can change its direction of motion instanta-
neously even though the cost functions used by the original
VFH* does make it expensive for the multicopter to make
large changes in its direction of motion. In the above de-

Figure 12: Effect of steering control on multicopter trajectory.

scribed scenario the look-ahead verification search depth was
chosen to be ng = 5. If this is increased to ng = 10 the VFH*
algorithm determines that the least expensive path would in
fact be to the left and makes the correct decision from the
start as shown in Figure 13 since it has more information to
make an informed decision.

Figure 13: Effect of various search depths on multicopter tra-
jectory.

4 CONCLUSION

This paper presented an overview of the VFH* algorithm
and discussed the effects of position and yaw uncertainties.
It also addressed the influence of tilt angles on the range
measurement of obstacles when a two-dimensional LIDAR
system is used. It was found that the VFH* algorithm is
indeed applicable to multirotors and can be modified to ac-
count for position and yaw uncertainties. The algorithm can
also be modified to consider the tilt angle of a multirotor as it
builds its histogram grid with range measurements for a two-
dimensional LIDAR system. It was also shown that the VFH*
can still benefit from steering control and that the algorithm’s
search depth ng is still an important parameter when the best
path around obstacles needs to be determined.
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