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Abstract—In this paper, an accurate, efficient, and simple
vision-based pose estimation strategy for UAV navigation in
GNSS-denied environments is presented. Using visual informa-
tion and previous knowledge of 3D geometries present in the
environment, the pose can be estimated accurately and used for
autonomous navigation. The indoor mission in the IMAV 2016
competition has been chosen for developing and evaluating this
approach. Three Perspective-n-Point (PnP) algorithms have been
tested and benchmarked with the purpose of selecting the most
suitable for navigating in this scenario. All of them have been
tested in a realistic Gazebo-based simulation using our novel
UAV software, Aerostack, which allows for a fully autonomous
solution. A complete flight in a GNSS-denied environment has
been successfully simulated, indicating that real flights are
feasible with this approach.

I. INTRODUCTION

Nowadays, the field of micro aerial vehicles is evolving
very rapidly due to its high versatility and the capability for
performing complex maneuvers in structured and unstructured
environments. Even though a lot of progress has been achieved
during the recent years, research efforts are still focused on
obtaining fully autonomous systems that can perform high
level missions such as the autonomous exploration of a GNSS-
denied environment.

Performing such maneuvers in GNSS-denied environments,
requires highly accurate position estimation and environment
mapping. For this purpose, some approaches are based on
active sensors like lasers [1]–[3], or sonars [4], [5]. However
these approaches sometimes derivate in heavy weight or high
power consumption, affecting agility, endurance, and range of
the UAV.

For addressing this problem, some approaches for localiza-
tion using vision have been proposed, using only the informa-
tion provided by a single camera [6], [7]–[9], or a stereo vision
system [2], [10]–[12]. These kinds of localization strategies
provide the advantage of a lightweight system which can be
used in indoor as well as outdoor environments. However,
using a vision based system for pose estimation and navigation
is a very challenging task. For this purpose, some approaches
have used visual markers for retrieving the pose of the UAV
[13]–[16]. In addition, optical flow based approaches have
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demonstrated their good capability for indoor navigation with
obstacle avoidance [17]–[19].

In this paper, we present a simple and robust monocular
pose estimation system for entering a building in a GNSS-
denied environment by using the front camera mounted on
board the UAV as the main sensor for localization. In the
proposed approach, a Computer Vision algorithm has been
developed for image detection of the entrances of a building,
i.e. door and window, marked with colours. Once the entrances
have been detected, a PnP algorithm is used for computing the
pose of the UAV based on the information provided by the
detection module, and the 3D geometry of door and window
in a global map, which is known. We compare the localization
accuracy of three different pose estimation algorithms in order
to select the most suitable for an specific GNSS-denied flight
scenario.

The rest of the paper is structured as follows: Section II
presents the problem statement and Section III introduces the
proposed methodology. In Section IV the obtained results are
described. Finally, Section V concludes the paper and points
towards future research directions.

II. PROBLEM STATEMENT

The strategy presented in this paper has been proposed
as part of CVG-UPM team solution for participating in The
International Micro Air Vehicle Conference and Competition
(IMAV1), an international reference challenge for UAV au-
tonomous navigation. This yearly event combines a scientific
conference with a robotics competition using Micro Air Ve-
hicles (MAVs) and focuses on research that can be applied
to real life scenarios. The indoor competition for the edition
of 2016 requires one or multiple UAVs to enter a building
in a drilling platform to move some important objects to safe
locations in a GNSS-denied environment.

In our solution for this part of the competition, we propose
a monocular vision approach for pose estimation outside the
building. Monocular vision can be used for pose estimation
by visually recognising landmarks in the surrounding environ-
ment which can serve as navigational aids for pose estimation,
providing a cheap, lightweight and low consumption solution.
In this case, we propose to use the front camera mounted on

1http://www.imavs.org
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Fig. 1: Detections of door and window on the building façade.

board our UAV to capture RGB images of the building façade,
detect door and window corners, whose frame of entrance will
be marked with predefined colours for visual aid. The proposed
detection strategy is based on two filters:
• Color filter: This filter is based on the rules proposed

in the IMAV 16 competition for the entrances to the
building. The door of the building has a red colored
frame, while the frame of the window is blue. Taking this
assumption into account the color filter of the proposed
strategy is based on using the Opponent color space for
enhancing the red and blue color. The proposed color
channels are computed using equations 1 and 2.
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The next step is to apply a threshold in the corresponding
color channels O1 and O2. Finally, an operation for
finding contours is applied to the thresholded images in
order to remove those contours with a small area.

• Shape filter: This filter is based on the geometry of the
objects to be detected. First, an edge detector based on
Canny operator is applied. After that, some morphologic
operations (e.g. dilation) are applied in order to increase
the detected edge contours. Finally, the geometry of the
contours is taken into account for removing those which
do not fit into a rectangle.

Once door and window corners have been detected, previous
knowledge about their 3D geometry (in this case, their relative
positions and sizes) can be used to estimate the camera pose
and therefore the UAV pose, by using a Perspective-n-Point
(PnP) algorithm.

The aim of the Perspective-n-Point problem is to determine
the position and orientation of a camera given its intrinsic

parameters and a set of n correspondences between 3D points
and their 2D projections. In this case, the 3D points are the
3D coordinates of the door and window corners in an arbitrary
reference system and their 2D image projections are obtained
using the aforementioned detection strategy.

In the following section we present the methodology used
to compare the localization accuracy given by three PnP
algorithms, in an effort to determine the most suitable one
for localization in this specific navigation scenario.

III. PROPOSED METHODOLOGY

In this section, the proposed PnP algorithms to be compared
and the test bench structure of this analysis are presented.

A. Analyzed PnP algorithms

A set of three state-of-art PnP algorithms has been tested.
As stated, these algorithms are sensitive to the number of
points and the distribution of the points over the space. In
the following subsection, each algorithm is presented, as well
as their benefits and drawbacks in this specific scenario of
study.

1) Iterative PnP: This method is based on an iterative
solution based on Levenberg-Marquardt optimization. In this
case, the function finds the pose of the corresponding object
with respect to the camera that minimizes the re-projection
error, that is, the sum of squared distances between the
observed 2D projections and the projected 3D object points.

2) Robust PnP (RPnP): This algorithm is a robust non-
iterative solution of PnP. This method works well for both
non-redundant point sets (n ≤ 5) and redundant point sets.
In addition, this algorithm retrieves correct results robustly in
the three configurations of points (Ordinary 3D case, Planar
case and Quasi-singular case [20]), and its computational
complexity grows linearly with n.

In our scenario of study, the points are co-planar and the
number of points oscillates between 4 to 8. RPnP is capable of
providing a robust and accurate solution in our case of study.
Nevertheless, depending on the configuration, a non-iterative
solution can lead to a lower accuracy compared to an iterative
approach.

3) Efficient PnP (EPnP): [21] This method is based on
a non-iterative solution to the PnP problem, in which the n
3D points of the object are expressed as a weighted sum of
four virtual control points. The coordinates of these control
points in the camera’s reference system can be calculated
by expressing these coordinates as a weighted sum of the
eigenvectors of a 12× 12 matrix and solving a small constant
number of quadratic equations in order to obtain the right
weights. This algorithm is applicable for n ≥ 4 in planar and
non-planar configurations, which make it very suitable for the
problem proposed in this paper.

B. Test Bench

The test bench is based on the Aerostack architecture and
a Gazebo simulated environment. All three algorithms are
evaluated using a common time reference and the same set
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Fig. 2: IMAV’16 house replica, implemented in a Gazebo
model.

of 2D and 3D features. In the following subsections, the test
bench is elucidated.

1) Aerostack Architecture: Aerostack (http://aerostack.org)
is a software implementing fully autonomous navigation so-
lutions for one or more heterogeneous UAVs. It is a versatile,
robust and swarm-ready set of ROS packages. The autonomous
navigation of the UAV in simulation has been carried out by
Aerostack. A full description of Aerostack and its components
falls out of the scope of this paper and can be reviewed in [22]
and [23].

2) Gazebo Simulation Environment: Gazebo simulator
(http://gazebosim.org) is a powerful tool to rapidly test algo-
rithms, design robots, and perform regression testing using
realistic scenarios. It provides a versatile set of models and
plugins (ROS compatible), as well as an easy-to-use Applica-
tion Programming Interface (API).

A replica of the IMAV’16 indoor competition set has been
carefully designed in Gazebo simulator. All of the sizes of
the mission elements, their colours (door and window frames)
and their distribution in the scenario have been realistically
modelled, in order to accurately test solutions before trying in
the real world. This is best depicted in Figure 2.

Furthermore, the physical appearance and dynamics of a
Parrot ARDrone 2.0 has been included, as well as different
extra sensors (RGB camera, LIDAR, RGB-D camera, IMU and
others). The autopilot has been simulated using a Software-In-
The-Loop (SITL) simulation, in order to keep tests closer to
the real world solution.

3) Simulation details: A flight from the take-off point to an
area inside the house has been simulated. With a front RGB
simulated camera and the simulated movements of the UAV,
a realistic set of images is obtained and used to detect the
corners of door and window. At any point of the flight, either
the door and/or the window are seen by this camera.

In addition, Gazebo provides ground truth data of the pose
of the UAV, which is used for evaluation. The trajectory
followed by the UAV is shown in Figure 4.

PnP algorithms provide the pose of an arbitrary frame of
reference in which the 3D points are specified with respect

Fig. 4: UAV trajectory in the scenario of study

to the camera frame of reference. A transformation between
this frame and the Gazebo global frame of reference has been
taken into account for the PnP pose estimation results to be
comparable with the ground truth data.

The position estimated by the three PnP algorithms and
the ground truth data have been compared. Mean, standard
deviation and maximum and minimum pose estimation errors
have been analysed.

IV. RESULTS AND BENCHMARK

In this section, the benchmarking results are presented.
Different error indicators have been considered in order to
provide a suitable comparison among the whole set of PnP
algorithms.

The difference between the ground truth data and the
position estimated by the three PnP algorithms of study is
best depicted in Figure 3. The whole set of algorithms shows
a proper performance, regarding the ground truth data. The
results are not filtered or modified by any offset, so that the
PnP estimation remains unaltered. In the z-axis the results
remain the closest to the ground truth. This is due to the planar
configuration of the case of study, since the points share the
same plane and they are perpendicular to the camera plane.
This leads to an increased estimation error in x and y axes.

In addition, the absolute error for each PnP position esti-
mation has been depicted in Figure 5. As shown, as the UAV
gets closer to the house façade, the error decreases. This is
due to the fact that, for a fixed camera resolution, the object
size in the image increases and subsequently PnP algorithms
can provide a better estimation in translation and rotation. The
error in PnP algorithms is a function of the camera distance
from the object space. In this planar configuration, where the
points of the object space share the same plane, the error does
not remain zero. PnP has some error in the estimation, due to
different other sources of error, such as errors in the 2D feature
detection, estimation, camera calibration, etc. Nevertheless,
the error estimation is enough to properly locate the UAV in
the whole environment and cross the window or the door for
entering the building. This is possible by using an Extended
Kalman Filter (EKF) to fuse the data of various on board
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(a) Iterative PnP pose estimation in x-axis (b) Iterative PnP pose estimation in y-axis (c) Iterative PnP pose estimation in z-axis

(d) RPnP pose estimation in x-axis (e) RPnP pose estimation in y-axis (f) RPnP pose estimation in z-axis

(g) EPnP pose estimation in x-axis (h) EPnP pose estimation in y-axis (i) EPnP pose estimation in z-axis

Fig. 3: Simulation results obtained in the stated experiment. (a), (b), (c), (d), (e), (f), (g), (h), (i) Pose estimation of every
algorithm and Gazebo ground truth representation in every axis of the space.

sensors, such as an Inertial Measurement Unit (IMU), with
the pose estimation obtained using these techniques.

Other indicators, such as Squared Root Mean Quadratic
(SRMQ), maximum and minimum position estimation error
can be considered. This let the benchmark to be consistent in
the comparative analysis. In table I different error indicators
are best enumerated.

TABLE I: Benchmark of the set of PnP algorithms.

Algorithm SRMQ (m) Max (m) Min (m) PO
OpenCV PnP 0.6571 2.696 (x-axis) 5E-4 (z-axis) No

RPnP 0.3711 2.6081 (x-axis) 4E-5 (z-axis) No
EPnP 2.4342 16.5752 (x-axis) 3E-05 (z-axis) No

The indicators for both Iterative PnP and RPnP resulted
in being really similar, although RPnP shows slightly better
performance. However, the error is acceptable, especially when
filtering this data and fusing it with data from other sensors.
Moreover, EPnP shows poorer performance, but still valid
for this application. It can be observed that none of these
algorithms implement internally a prediction and optimization
post process (PO). This would lead to a finer performance with
more complex objects (more points spread in the object space)
and does not require any other feeds of pose estimation. The
RPnP algorithm performed the best in the scenario of study.

Further optimizations can be made in order to decrease the
stationary error.

These three state-of-art PnP algorithms have demonstrated
to provide a proper performance for monocular pose estima-
tion in GNSS-denied environments. Each of them combined
with sensor fusion techniques, such as EKF, provide a com-
plete solution for pose estimation, taking advantage of known
geometries of the surrounding environment. The benchmark
has revealed that the error is acceptable for real applications,
with RPnP method remaining closely the best.

V. CONCLUSIONS AND FUTURE WORK
Indoor and GNSS-denied environment navigation is an

extremely challenging task. To achieve this goal inexpensively
without extra sensors, monocular pose estimation algorithms
can be used. PnP pose estimation is based on previous knowl-
edge of 3D geometries in the scenario for localization. Three
PnP algorithms has been tested and simulated. The simulation
provided proper results, showing that an autonomous entrance
to an indoor environment is completely feasible with this
approach. PnP has some error in the estimation, due to dif-
ferent other sources of error but is accurate enough to provide
a precise localization at real-time frame rates. Furthermore,
these results can be greatly improved when combined with
other filtering and state estimation techniques.
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(a) Iterative PnP pose estimation error in x-axis (b) Iterative PnP pose estimation error in y-axis (c) Iterative PnP pose estimation error in z-axis

(d) RPnP pose estimation error in x-axis (e) RPnP pose estimation error in y-axis (f) RPnP pose estimation error in z-axis

(g) EPnP pose estimation error in x-axis (h) EPnP pose estimation error in y-axis (i) EPnP pose estimation error in z-axis

Fig. 5: Simulation results obtained in the stated experiment. (a), (b), (c), (d), (e), (f), (g), (h), (i) Absolute estimation error for
each PnP algorithm of study.

Improvements in the detection algorithm are under study,
such as making it more versatile against other types of ge-
ometries. Also, other PnP algorithms, specific for planar case,
should be included, benchmarked and optimized following
this work flow. Finally, real flights are required to validate
our algorithm, even though results have been obtained with a
highly realistic simulation.
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