
Simulation of an Obstacle Avoidance Algorithm in a
Dynamic 2D Environment

J.S Coetzee∗, Dr. WJ Smit†

Department of Mechanical and Mechatronic Engineering
Stellenbosch University

Stellenbosch, South Africa

ABSTRACT

This paper describes the methods followed to
more accurately predict how a combination of
D* Lite and the Virtual Force Field method
would react when sensor as well as pose uncer-
tainties are considered during the map building
process. These uncertainties are then simulated
using MATLAB where the main focus is the ef-
fect that these uncertainties have on the com-
bined algorithms’ output and whether the same
results can be obtained by using simplified as-
sumptions.

1 INTRODUCTION

Obstacle avoidance algorithms can be broadly classified
into two different categories, global and local path plan-
ning [1]. Global path planning is mainly done offline,
whereas local collision avoidance must be fast, reactive and
usually carried out online to ensure the safety of the vehicle
by compensating for previously unknown obstacles.

The key distinction between the two obstacle avoidance
categories is the amount of information available regarding
the robots’ immediate environment. If all the information re-
garding the obstacles is available, global path planning will
be the best approach. On the other hand, if the information
regarding the environment is incomplete or unreliable, local
information based on sensor data will have to be used to nav-
igate [2].

Apart from using one or a combination of the two ap-
proaches to provide a basic solution, there are other criteria
the algorithms must preferably satisfy. These criteria include
the robot’s dynamics, implementation time, limited computa-
tional resources, robustness as well as the optimality of the
code being implemented [1].

Although many techniques for both local and global col-
lision avoidance have been proposed in the recent litera-
ture [1, 2, 3], there is still a great interest around the globe
to better address obstacle avoidance.

The aim of this paper is to simulate a combination of two
different avoidance algorithms with a probability map build-

∗Email address: 16484649@sun.ac.za
†Email address: wjsmit@sun.ac.za

ing technique to see how it will react in a dynamic environ-
ment. Therefore, it was decided to use a slower global path
planning algorithm (D* Lite) with a fast reacting local obsta-
cle avoidance algorithm (Virtual Force Field) while building
a map of the surroundings by taking into account sensor noise
as well as pose uncertainty.

In Section 2 a general background regarding the map
building process used in this paper is given. This is followed
by an overview of the Virtual Force Field method as well as
D* Lite. The simulations, as well as their results, will be
discussed in Section 3 followed by the conclusion and future
work in Section 4.

2 BACKGROUND

2.1 Map Building
In an ideal world, hard assignment regarding the occu-

pancy of a grid cell (one for occupied and zero for empty) can
be used since everything about the robot and sensor is known.
However, sensor measurements are noisy, which implies that
the position of the robot is not accurately known. Therefore,
it would be more realistic to assign a probability value to each
grid cell, representing the certainty of a cell being occupied.

Since the sensor is mounted on the multicopter, all mea-
surements received will be given relative to its pose at that
time [4]. Suppose, mi is the outcome of cell i being occupied
given the current pose and measurement (z) from the multi-
copter and sensor respectively. Assuming, for now, that the
multicopter estimates its pose correctly, the grid update for-
mula is given by [5]:

log

(
p(mi|z1:t)

p(mc
i |z1:t)

)
= log

(
p(mi|zt)

p(mc
i |zt)

)
+ log

(
p(mi|z1:t-1)

p(mc
i |z1:t-1)

)
− log

(
p(mi)

p(mc
i )

)
(1)

The last term in Equation 1, also given in Equation 2, is
known as the prior probability log-odds ratio of a cell. In the
absence of any prior knowledge regarding the environment,
this term is set to zero, i.e. p(mi) = 0.5.

log

(
p(mi)

1− p(mi)

)
(2)

The second term on the right-hand side of Equation 1 is the
probability of cell i being occupied. This value takes into

1

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



account all previous measurements regarding cell i whereas
the first term on the right-hand side of Equation 1, also given
in Equation 3, is known as the inverse sensor model. This
term only contains new information given by the sensor at
time t. The main reason log-odds is used is to enable the
update equation to integrate new measurements into the grid
through addition, avoiding truncation errors as well as the
multiplication of probabilities.

p(mi|zt) (3)

To convert the log-odds ratio (given on the left hand side of
Equation (1)) back to a probability value, the following steps
can be taken:

λ = log

(
p(mi|z1:t)

1− p(mi|z1:t)

)
(4)

p(mi|z1:t) =
eλ

1 + eλ
(5)

Therefore cell i will be updated accordingly, taking into ac-
count all prior knowledge regarding obstacles as well as new
sensor measurements.

Although this algorithm assumes a static environment, it
will also update the map sub-optimally for moving obstacles
by creating a smeared representation in the evidence grid [4].
For more information about the inverse sensor model and the
pose uncertainty of the multicopter, refer to Section 3.

2.2 Virtual Force Field

This Virtual Force Field is a global path planning algo-
rithm with local collision avoidance. Historically, this algo-
rithm was mainly used for ground robots and only recently
started being used in multicopters. One of the most signif-
icant benefits of this method is the fact that no knowledge
of the multicopter model is neccesary [6]. The Virtual Force
Field function consists of an attraction field that pulls the mul-
ticopter to the goal position and a repulsive field eminating
from obstacle to ensure that it travels safely [1]. The multi-
copter can therefore be seen as a particale with a positive elec-
trical charge. If all the obstacles are given a positive charge as
well, there will be a repulsive force on the multicopter. On the
other hand, if the goal is given a negative charge, there will be
an attraction force on the multicopter [7]. This method then
calculates the resultant force along with the resultant direc-
tion of the combined forces to plan its next position as seen
in Figure 1.

An alternative way of implementing this method is by tak-
ing the gradient of the resultant force to calculate the next
position. This can be compared to a marble on the floor. If
the floor is slanted in a certain direction, the marble will start
rolling till it reaches the bottom [7], as seen in Figure 2.

By using the gradient method, a path to the goal position
can be generated by checking the neighbouring values at each

Figure 1: Potential field vector diagram.

Figure 2: Potential field gradient diagram. The triangle and
the diamond respectively represents the start position goal po-
sition of the robot. The first image represents the attractive
force around the goal position, while the second image repre-
sents the repulsive force from each obstacle. The last image
represents the sum of these forces.

cell and continuously moving to the cell with the lowest Ftotal
value, where Ftotal is given by:

Ftotal[i, j] = Fatt[i, j] + Frep[i, j] (6)

Fatt[i, j] =
√
(x− xgoal)2 + (y − ygoal)2 (7)

Frep[i, j] =

{
0 if r > rsafe

2(rsafe−r) if r < rsafe
(8)

The current distance of the multicopter to the nearest obstacle
is given by r where rsafe is the safety boundary as seen in
Figure 1.

The Virtual Force Field method does not explicitly avoid
moving obstacles and has a tendency to get caught in local
minima. Therefore, the multicopter can get caught in clut-
tered environments before reaching its goal [1], but these is-
sues can be addressed with the proper implementation of a
global path planning algorithm [1, 8] as addressed in Sec-
tion 3.3.

2.3 D* Lite
The D* Lite algorithm used in this paper is based on the

second version of the D* Lite pseudo code given in [9]. Ac-
cording to [10], D* Lite is easy to understand and extend,

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



while being at least as efficient as Focused Dynamic A* (D*)
itself. Even though they are algorithmically different, they
still exhibit the same behavior. Both algorithms search from
the goal vertex to the current vertex of the multicopter by
using a heuristic function to focus their search, whilst also
using similar ways to minimize reordering of the priority
queue [10].

Figure 3: D* Lite global path planning (static environment).
The red indicates the shortest path, while the light gray indi-
cates all the vertices evaluated to generate the path. Dark gray
indicates the vertices that will be expanded next, if needed.
These paths were calculated with a 2, 4 and 6 m boundary
around the obstacles respectively(1 pixel = 1 m).

D* Lite is classified as a global path planning algorithm
because the multicopter will have to maintain an internal map
of its surroundings to calculate a path, as can be seen in Fig-
ure 3. When the map is updated with the relevant sensor data,
the D* Lite algorithm will determine if the new entries into
the map will have an effect on the current path and recalculate
if necessary, as seen in Figure 4.

The algorithm is able to re-plan faster than planning from
scratch each time as it modifies its previous search results
when needed. In other words, it efficiently recalculates the
shortest path from the current cell of the multicopter to the
goal cell by recalculating only the relevant cells that have
changed or have not been calculated before.

The algorithm has to obey two conditions [9, 10]. The
first is that the heuristic function h(s, s′) has to be non-
negative and forward-backward consistent. That is, it has to
adhere to h(s, s′′) ≤ h(s, s′) + h(s′, s′′) for all vertices

s, s′, s′′ ∈ S1. The second is that the cost of the shortest
path from any vertex s ∈ S to s′ ∈ S has to be more than
or equal to the value of the heuristic function for the same
vertices i.e. h(s, s′) ≤ c∗(s, s′). Both the heuristic and cost
function used in the end can be described by Figure 5.

Figure 4: D* Lite global path planning (dynamic environ-
ment). The red indicates the shortest path, while the light
gray indicates all the vertices evaluated to generate the path.
Dark gray indicates the vertices that will be expanded next, if
needed. The path was calculated with a 2 m boundary around
the obstacles (1 pixel = 1 m).

3 SIMULATIONS AND RESULTS

To accurately simulate how the multicopter will react
when using D* Lite and the Virtual Force Field methods de-
scribed in Section 2, the map of the surrounding area must be
built as if the measurements were taken from an actual mul-
ticopter. To do this, the amount of measurements being taken
by the lidar2 in one revolution has to be taken into account

1S denotes the finite set of vertices of the graph.
2PulsedLight lidar sensor combined with a continuously rotating servo

motor, giving up to 160 readings per revolution with a maximum distance of
40m when not rotating.

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



Figure 5: Heuristic and cost function used for D* Lite algo-
rithm.

along with measurement and pose uncertainty as discussed in
Section 3.1 and 3.2 respectively.

With a more realistic map of the environment being built,
it will be possible to more accurately simulate how D* Lite
combined with the Virtual Force Field method will work as
can be seen in Section 3.3.

3.1 Incorporating Measurement Uncertainty into Inverse
Sensor Model

When using Equation (1) to update the probability of a
cell, an ideal inverse sensor model should return p(mi|zt) = 0
for all the cells in front of the obstacles, p(mi|zt) = 1 for the
cell containing the obstacles and p(mi|zt) = 0.5 for all the
cells behind the obstacles as seen in Table 1. Therefore, the
function representing an ideal sensor model can be seen in
Figure 6 and is defined as [5]:

g(r) =


0 if r < Z − L

2

1 if Z − L
2 ≤ r < Z + L

2

0.5 otherwise
(9)

Where r represents the distance from the current position of
the multicopter to the cell that is being updated and Z rep-
resents the actual measurement from the sensor. Since the
centre of the cells are used to calculate the distance to the
sensor, the peak at Z may be completely missed if the cen-
tre of the cell has a slight offset from Z. To compensate for
this, another parameter, L, is introduced, signifying a band of
r values that receive a probability corresponding to definitely
occupied (p(mi|zt) = 1). A natural choice for the value of
this parameter is the diagonal distance between two corners
of a grid cell.

p(mi|zt) log

(
p(mi|zt)

1−p(mi|zt)

)
Interpretation

0 −∞ definitely free
0.5 0 unknown
1 ∞ definitely occupied

Table 1: Correspondences between the probabilities and the
log odds ratios along with their respected interpretations [11].

Figure 6: Ideal sensor model.

When collecting measurement data, it may be noisy. As-
suming that the noise is normally distributed around the mea-
sured value Z, with a standard deviation of σ. A probability
density function (PDF) of such a Gaussian distribution can
then be generated, as seen in Figure 7, and is defined as:

f(r;Z, σ2) =
1√
2πσ

e−
(r−Z)2

2σ2 (10)

To incorporate the noise into the ideal sensor model, a
convolution between Equation 9 and 10 had to be performed
giving the following piecewise defined function [11, 5]:

For r ∈
(
−∞, Z − L

2

)
(f ∗ g)(r) = 0

For r ∈
[
Z − L

2
, Z +

L

2

)
(f ∗ g)(r) = −1

2
erf
(
−Z√
2σ

)
+

1

2
erf
(
r − 2Z + L

2√
2σ

)
For r ∈

[
Z +

L

2
, Z +∞

)
(f ∗ g)(r) = −1

4
erf
(
r − 2Z − L

2√
2σ

)
+

1

2
erf
(
r − 2Z + L

2√
2σ

)
−1

4
erf
(
−Z√
2σ

)
(11)

Where erf represents the error function, r represents the
distance from the current position of the multicopter in the
map to the cell being updated and Z represents the measured
distance given by the sensor. To get a better understanding of
how the sensor model in Equation 11 works alongside Equa-
tion 1, refer to Figure 8 and 9. The cells in front the obsta-
cle got their probability decreased while the cell containing
the obstacle got an increase in probability whereas the cells
behind the obstacle stayed unaffected as would be expected.
The inverse sensor model, however, is not used as shown in

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



Figure 8. This is because a value of 0 will be mapped to−∞,
implying that new measurements will not be able to change
the value of the cell any more as seen in Table 1. To avoid
this problem, the sensor model was given both an upper and
a lower bound value [11].

Figure 7: Probability density function.

Figure 8: Gaussian inverse sensor model L = 1 and
σ2 = 0.16.

To see what effect the inverse sensor model has on the
readings, refer to Figure 10. As the map gets darker in some
places, the certainty that no obstacles are present grows while,
as the map gets lighter, the certainty that an obstacle is in-
deed present, increases. Using a lidar as the measurement
instrument, it was found that the ideal sensor model would
give similar results as the Gaussian inverse sensor model if
the same upper and lower bounds were implemented on it.
Therefore, the Gaussian inverse sensor model derived would
be more suitable for sensors with bigger measurement un-
certainty like sonar or stereo vision and an ideal-like inverse
sensor model can be used alongside the lidar for all intents
and purposes.

Figure 9: Map being updated by using previous map infor-
mation along with new measurement information.

Figure 10: Map being updated using the Gaussian inverse
sensor model. L = 1.4 and σ = 0.3. First image
(top) = 1 scan. Second image (top) = 5 scans. First image
(bottom) = 10 scans. Second image (bottom) = 20 scans.

3.2 Pose Uncertainty
To model the pose uncertainty of the quadcopter, mea-

surements were taken with both a Piksi real time kinematic
(RTK) GPS and the quadcopter controller. Since the RTK
GPS is accurate up to 2 cm, horizontally, it was used as a
ground truth measurement to determine the controllers’ po-
sition estimation error. This data was then processed and a
normal distribution was fit to it. The results of these distribu-
tions can be seen in Table 2. To incorporate this data into the
model, the cumulative distribution function (CDF) first has
to be calculated. Therefore, given a PDF with mean µ and
variance σ2, the CDF, as seen in Figure 11, can be generated
with:

Fx(x;µ, σ
2) =

1

2
+

1

2
erf
(
x− µ√

2σ

)
(12)

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



North East
µ [m] σ [m] µ [m] σ [m]

Test 1 -0.3813 0.2571 -0.1819 0.1864
Test 2 0.5838 0.2951 -0.0847 0.0913
Test 3 -0.6745 0.3395 0.5166 0.2779
Test 4 -1.2974 0.3270 0.7304 0.3291

Table 2: PDF distribution values obtained through testing for
both the Northern and Eastern error (Given in North, East and
Down (NED) coordinate system). Each test was done over a
15 min time frame.

To sample from a known one-dimensional PDF, a uniform
random number, u, between 0 and 1 first has to be gener-
ated. This number can then be used to calculate the inverse of
the CDF. This method is also known as the inverse transform
method [5] and can be found by using:

x =
√
2σ erf−1(2u− 1) + µ (13)

Figure 11: Cumulative distribution function.

These values are then used to update the map. It will be
assumed that the same measurement could have been made
from any of the positions generated by Equation 13. Since the
values were randomly generated from a normal distribution,
it makes sense to give an equal weight to each of them, sum-
ming to 1. To find the total value a cell will be updated with,
each of the weighted probabilities affecting that cell have to
be added together, refer to Figure 12 for a visual representa-
tion. Equation 1 can therefore now be re-written as follows to
take into account pose uncertainty [11, 5]:

log

(
p(mi|z1:t)

p(mc
i |z1:t)

)
=

M∑
j=1

w
[j]
t log

(
p(mi|z[j]t )

p(mc
i |z

[j]
t )

)

+ log

(
p(mi|z1:t-1)

p(mc
i |z1:t-1)

)
− log

(
p(mi)

p(mc
i )

)
(14)

Figure 12: Illustration of how a map will be updated with
pose uncertainty.

Since the maximum µ value from Table 2 is −1.2974 m
and the maps are generated as images where each pixel rep-
resents 1 m, the effect of the pose uncertainty is difficult to
see. One noticeable difference in the results, however, is the
blurred effect that comes from Equation 14 as illustrated in
Figure 12. Due to the pose uncertainty, the map generated
from sensor measurements of the environment will also move
in accordance with this uncertainty. To illustrate this, an error
of 7 m in both the Northern as well as Eastern direction was
simulated as seen in Figure 13. Since the pose uncertainty
always changes when flying (as shown in Table 2), the map
the multicopter builds of the environment will always be dif-
ferent from the previous flight as the map is updated relative
the multicopters current pose.

Unfortunately, the pose uncertainty update formula is
computationally intensive as a large number of samples has to
be generated from the CDF to accurately represent the PDF of
the multicopter’s pose uncertainty each time new sensor data
has to be incorporated into the map. However, it works well
when simulating the uncertainty in a robots’ pose. Luckily,
when actually flying, this equation does not need to be used as
the map will be updated according to the multicopters’ pose
estimation. Therefore, the map relative to the multicopter will
be correct and can be used to navigate safely.

If a global map of a static environment is available and
no sensor measurements can be taken, then an extra safety
boundary can be added to the obstacles. In other words,
this will basically enlarge the obstacles to compensate for
the uncertainty in the multicopter’s pose, ensuring its safety
when flying without extra sensor information from the envi-
ronment.

3.3 Combining Virtual Force Field with D* Lite

To be able to fly autonomously in a partially known or
unknown environment, it was decided to use a combination
of the three different techniques discussed in Section 2 to en-
sure the safety of the multicopter. As indicated previously,
the idea is to let the multicopter plan a global path while still
being able to react locally. D* Lite was therefore used as

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



Figure 13: Illustration of how a map built by the multicopter
will look over a map of the actual environment. A pose error
of 7 m in both the Northern and Eastern direction was chosen
for the illustration. Blue line: actual position. Green line: po-
sition estimation of the multicopter. Light gray illustrates the
actual environment, whereas black and white represents the
map the multicopter built. Black being no obstacles whereas
white represents obstacles.

a global path planner by calculating a path from the multi-
copter’s current position to the goal position. In a static envi-
ronment, it will only have to compute the path once, but in a
dynamic or unknown environment, the algorithm will be ex-
ecuted continuously until the goal position is reached. Even
though the path may stay the same, the algorithm still has to
check whether the addition or removal of obstacles affects the
path after every scan. This continuous re-checking/planning
can therefore get computationally intensive. One way of lim-
iting this is by only re-checking/planning every few steps.
The only problem with this is that if an obstacle is scanned,
blocking the path to the goal while D* Lite is not active, the
multicopter will fly straight into it.

For this reason it was decided to combine the global path
planner with the Virtual Force Field method. By combining
these two methods, they can help compensate for each others
shortcomings i.e. D* Lite won’t have to continuously recal-
culate, while the Virtual Force Field won’t get stuck in local
minima as the multicopter is being “pulled” to the goal posi-
tion by making temporary attraction points on the calculated
global path.

With the algorithm as described above, the amount of
steps that can be taken before D* Lite has to recalculate the
path, can be specified. If these steps are more than the sen-

sor range, the multicopter will still move along the previously
calculated path and update the map as usual. If an unexpected
obstacle appears on this path, the map will be updated accord-
ingly while the Virtual Force Field will assure the safety of
the multicoper by maintaining the necessary safety distance.

The safety boundary used by D* Lite has to be the same as
the boundary used by the Virtual Force Field, otherwise D*
Lite might calculate a path that goes through obstacles that
are too close to each other, causing the multicopter to still get
trapped in a local minima.

Both D* lite and the Virtual Force Field does not specifi-
cally avoid moving obstacles, but since the map building pro-
cess will generate a smeared representation for a moving ob-
stacle, they will be avoided sub-optimally until the map is
updated correctly again.

4 CONCLUSION AND FUTURE WORK

In Section 3 a map building technique was successfully
developed and implemented by taking into account both sen-
sor and pose uncertainties. For the sensor model it was found
that the Gaussian inverse sensor model gave similar results to
the ideal sensor model if the same upper and lower bounds
were applied. This is only the case because a lidar with small
measurement uncertainty was simulated. The Gaussian sen-
sor model, however, could still prove to be useful when used
alongside sensors with bigger measurement uncertainties like
sonar or stereo vision. With the multicopter’s pose uncer-
tainty, it was found that the update model created a blurred
representation of the obstacles. As each lidar reading update
required a significant amount of samples from the CDF to ac-
curately represent the PDF, it became computationally inten-
sive. Because the map is constantly updated according to the
new lidar information, the uncertainty in the pose (and there-
fore the update equation) is not needed for the map building
process when flying. Therefore, the map relative to the mul-
ticopter can be assumed correct and safe to travel. If, how-
ever, a multicopter has to be flown autonomously without a
distance sensor, a map of the environment can be used if an
additional uncertainty is added around the obstacles. Thus,
moving the uncertainty from the multicopters’ position to the
obstacle and ensuring the safety of the vehicle.

With a constantly updating map in place, a combination of
both D* Lite and the Virtual Force Field method was success-
fully implemented. Due to the fact that the D* Lite algorithm
can get computationally intensive when flying in a constantly
changing or unknown environment, it was decided to only re-
calculate the global path every few steps, when needed. The
multicopter therefore follows the global path by making a
temporary attraction point on it as it moves. When an un-
foreseen obstacle appears, the Virtual Force Field will ensure
that the multicopter stays at a safe distance until a new global
path can be calculated. Therefore, these two algorithms com-
pliment each other since D* Lite is now less computation-
ally intensive and the Virtual Force Field method does not get

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016



stuck in local minima any more. The code is, however, not
without its flaws. If the safety boundary generated by D* Lite
is smaller than the safety boundary generated by the Virtual
Force Field, the algorithm can still fall into a local minima as
the global path will be able to go through denser packed ob-
stacles. This, however, can easily be fixed by always ensuring
they are the same value.

In future work, the algorithm will be integrated with the
flight controller and other components as depicted in Fig-
ure 14. Extensive tests will then be done on the multicopter
simulator, jMAVSim, to see how the multicopter will react
in various situations. Lastly, actual flight tests will also be
completed to verify the simulated results as well as the as-
sumptions made.

Figure 14: Hardware and software setup along with commu-
nication protocols used.

REFERENCES

[1] Anusha Mujumdar and Radhakant Padhi. Evolv-
ing Philosophies on Autonomous Obstacle/Collision
Avoidance of Unmanned Aerial Vehicles. Journal of
Aerospace Computing, Information, and Communica-
tion, 8(2):17–41, 2011.

[2] Michael Hoy, Alexey S. Matveev, and Andrey V.
Savkin. Algorithms for collision-free navigation of mo-
bile robots in complex cluttered environments: a survey.
Robotica, 33(03):463–497, 2015.

[3] C. Goerzen, Z. Kong, and B. Mettler. A Survey of Mo-
tion Planning Algorithms from the Perspective of Au-
tonomous UAV Guidance. Journal of Intelligent and
Robotic Systems, 57(1-4):65–100, 2010.

[4] Sebastian Scherer, Sanjiv Singh, Lyle Chamberlain, and
Srikanth Saripalli. Flying Fast and Low Among Ob-
stacles. In Proceedings 2007 IEEE International Con-
ference on Robotics and Automation, pages 2023–2029.
IEEE, 2007.

[5] Daniek Joubert, Willie Brink, and Ben Herbst. Pose
Uncertainty in Occupancy Grids through Monte Carlo
Integration. J Intell Robot Syst Journal of Intelligent &
Robotic Systems : with a special section on Unmanned
Systems, 77(1):5–16, 2015.

[6] Tobias Paul, Thomas R. Krogstad, and Jan Tommy
Gravdahl. Modelling of UAV formation flight using 3D
potential field. Simulation Modelling Practice and The-
ory, 16(9):1453–1462, 2008.

[7] Luca De Filippis, Giorgio Guglieri, and Fulvia
Quagliotti. Path Planning Strategies for UAVS in 3D
Environments. Journal of Intelligent & Robotic Sys-
tems, 65(1-4):247–264, 2012.

[8] David Droeschel, Matthias Nieuwenhuisen, Marius
Beul, Dirk Holz, Jörg Stückler, and Sven Behnke.
Multilayered Mapping and Navigation for Autonomous
Micro Aerial Vehicles. Journal of Field Robotics,
33(4):451–475, 2016.

[9] Sven Koenig and Maxim Likhachev. Improved fast re-
planning for robot navigation in unknown terrain. In
Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No.02CH37292), vol-
ume 1, pages 968–975. IEEE, 2002.

[10] S Koenig and M Likhachev. D* Lite. Proceedings of
the Eighteenth National Conference on Artificial Intel-
ligence, pages 476–483, 2002.

[11] Daniek Joubert. Adaptive occupancy grid mapping with
measurement and pose uncertainty. 2012.

IMAV2016-35
http://www.imavs.org/pdf/imav.2016.35

IMAV 2016, Beijing, PR of China, 17-21 October 2016
International Micro Air Vehicle Competition and Conference 2016


