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ABSTRACT

In this paper a relative localization (RL) system
for quadcopters based on ultra-wideband (UWB)
ranging measurements is proposed. To achieve
the relative localization, UWB modules are in-
stalled on the quadcopters to actively measure
distances and exchange data package to a hover-
ing quadcopter which is equipped with an identi-
cal UWB module. Since instantaneous distance-
only measurements cannot provide enough infor-
mation for relative position estimate, a combina-
tion of nonlinear and linear trajectory is ultilized
to fulfill the RL in this paper. To reduce the esti-
mate error, the heading in the linear path phase is
designed and chosen online. This intial relative
position estimate produced by the algorithm will
be further fed to the flight control loop to aid the
navigation of the quadcopters. Flight tests have
been conducted to validate the performance of
UWB based relative localization algorithm.

1 INTRODUCTION

Micro unmanned aerial vehicles (UAVs) are promising to
play more and more important roles in both civilian and mili-
tary activities. Currently, the navigation of UAVs is critically
dependent on the localization service provided by the Global
Positioning System (GPS), which suffers from the multipath
effect [1] and blockage of line-of-sight, and fails to work in
an indoor, forest or urban environment [2].

In certain environments such as forest and multi-
functional office, even though UAV can execute self-
localization and navigation through LiDAR sensor, camera,
etc. However, for a long-time flight, the percent of position
drift from simultaneous localization and mapping (SLAM)
system can degrade significantly so that it can no longer sup-
port autonomous flight. Theoretically, when UAVs are close
to each other, the localization solution for UAVs can be im-
proved by using relative position estimates. Hence, a relative
localization system can be useful to aid the navigation for
UAVs in a blind environment.
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The study on the cooperative localization can be dated
back to as early as the 90s of last century, when in [3] a
repeated move-and-stop actions were employed with static
robots serving as landmarks to localize the moving robots.
A huge body of works has flourished after 2000, and can
be roughly classified into two categories [4, 5] as based on
whether fusion or optimization method is used.

The majority of cooperative localization literature is dedi-
cated to fusion method, either by particle filter or by extended
Kalman Filter. By assuming that the location of each robot is
independent from the others’, [6] applied the method of non-
parametric belief propagation to marginalize the joint distri-
bution as the estimate of each agent. By carefully examining
the timing of marginalization in a Markov network, [7] was
able to account for the cross correlation with a delayed es-
timate for each robot in the team. Later it was extended in
[8] in a more convenient information filter form, with a cen-
tral processing center dealing with the relative measurements.
The fusion by covariance intersection method is considered
in [9] and [4]. Based on discrete-time range measurements
from an agent to a source, [10] addresses the position esti-
mation problem of a drifting source relative to an agent in
three-dimension by designing a Kalman filter with globally
exponentially stable error.

The other works are based on the optimization. Assuming
that in each time step the motions and observations are inde-
pendent among different robots, [11] obtained the estimate by
solving a MLE problem. For the distributed implementation,
it suggested an optimum seeking method by fixing the neigh-
bor’s position, and then exchanging the suboptimal estimate
for another round of optimization. [12] considered a MAP
formulation, and achieved the cooperative localization by dis-
tributed conjugate gradient method. When the measurements
are relative positions, Jacobian algorithm was used to solve
the distributed localization in [13]. Moving horizon estima-
tion (MHE) and convex optimization were applied to perform
multirobot localization with constraints and unknown initial
poses in [5].

Compared with the global and relative position informa-
tion, range measurement is relatively easy to obtain among
multi-UAVs. In this case, recently many researchers focus
on range based relative localization [14, 10]. Typically the
distance from a moving UAV to its neighbors can be esti-
mated from RF signals. Among different types of RF ranging
techniques, UWB ranging technology is robust to multipath
and non-line-of-sight (NLOS) effects, and can achieve a cen-
timeter level ranging error. The ultra wide bandwidth enables
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UWB modules to avoid the interface with other types of RF
signals such as WiFi and remote control signals in the flight
environment. Besides, the ultra-short duration pulses can be
exploited to simultaneously obtain precise range and data in-
formation, which provides extra information from neighbors
for relative localization.

In this paper, we establish a relative localization system
for quadcopters based on UWB range measurements. To
achieve the relative localization, an UWB module is installed
on the quadcopter to actively send ranging requests and data
package to neighboring UAVs. From a practical and compu-
tation point of view, only a part of distance and neighbor’s
height measurements go through calibration and relative lo-
calization algorithm. Flight tests with three UAVs have been
conducted to evaluate our developed relative localization al-
gorithms.

In the following section, we will formulate the relative
localization (RL) problem. In developing a solution to the
problem, we begin to examine how to estimate the relative
position with smaller errors in a dynamic agent group and
propose an UWB based relative localization algorithm (see
section 2). After that, the demonstration of the proposed rel-
ative localization for 3 UAVs in a woods near environment is
presented in section 3. We conclude our work in section 4.

2 UWB BASED RELATIVE LOCALIZATION

2.1 Problem Formulation

For each UAV in the team, relative localization aims to
determine the position of the neighboring UAV relative to it-
self. If the bearing and distance of the neighbor can be ob-
tained, then the relative localization is readily achieved. How-
ever, the relative bearing is quite difficult to achieve when
the neighbor is located outside the operational range of cam-
era. On the other hand, the distance measurement can still be
stably achieved with the help of UWB. In this case, a pos-
sible method is to combine the distance measurements and
the motion displacements for estimating the relative location.
As shown in the Figure 1(a), for the two UAVs P and Q,
relative localization aims to estimate the vector

−−→
PiQi from

the displacements
−→
δPi and

−−→
δQi, as well as the distances di,

i = 1, . . . , n. In this paper, we shall focus on the case when
one of the UAVs is static, say Q in Figure 1(b). Specifically,
we shall first discuss the proposed localization method under
the assumption that the displacement

−→
δPi can be accurately

measured, and then revise the corresponding method to in-
clude the error in

−→
δPi.

2.2 Direct Estimation by Trilateration

2.2.1 Algorithm

Denote
−−→
QP0 = (x, y) and

−−→
P0Pi = (∆xi,∆yi), then we have

di =
√

(x+ ∆xi)2 + (y + ∆yi)2, i = 0, 1, . . . , n. (1)

(a) RL of moving UAVs (b) RL from static UAV

Figure 1: Relative localization for two UAVs

In case of ranging error of di’s, we can estimate (x, y) by
solving the nonlinear least square problem

min

n∑
i=0

(di −
√

(x+ ∆xi)2 + (y + ∆yi)2)

= min

n∑
i=0

(di − fi(x, y)).

(2)

The solution to the above problem is usually achieved by the
Gauss-Newton method, which is based on the linear approxi-
mation of fi around the current estimate (x̂, ŷ) as

fi(x, y) ≈ fi(x̂, ŷ)

+
1

fi(x̂, ŷ)
(x̂+ ∆xi, ŷ + ∆yi) · (x− x̂, y − ŷ).

(3)

Replacing the approximation (3) in (2), problem (2) can be
transformed into a linear least square problem whose normal
equation is given by

d0 − f̂0
d1 − f̂1

...
dn − f̂n

 =


x̂/f̂0 ŷ/f̂0
x̂1/f̂1 ŷ1/f̂1

...
...

x̂n/f̂n ŷn/f̂n


(
x− x̂
y − ŷ

)
, (4)

or ∆d = J∆p where x̂i = x̂+ ∆xi and ŷi = ŷ + ∆yi. Now
we have

∆p =

(
x− x̂
y − ŷ

)
= (J ′J)−1J ′∆d (5)

The newly obtained (x, y) can be treated as the new estimate
to update J and ∆d for a new normal equation. The iteration
will stop until |x − x̂| < 0.01 and |y − ŷ| < 0.01 and the
problem (2) is solved.

However, we still need an initial guess to solve (2), which
comes from the solution of a related least square problem
dealing with the squared distances of (1). Actually, squar-
ing both sides of (1) and subtracting the first equation d20 =
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x2 + y2 from the other n equations, we get the following lin-
ear system

2


∆x1 ∆y1
∆x2 ∆y2

...
...

∆xn ∆yn


[
x
y

]
=


d21 − d20 − (∆x21 + ∆y21)
d22 − d20 − (∆x22 + ∆y22)

...
d2n − d20 − (∆x2n + ∆y2n)

 (6)

or 2A

[
x
y

]
= D. Now an initial guess of

−−→
QP0 can be given

by [
x
y

]
=

1

2
(A′A)−1A′D. (7)

Remark 2.1. Although the equation (6) is able to give an ex-
act solution when there is no ranging error, the introduction
of squared distances would increase the error of calculation
and only achieves a rough estimate. In fact, if the range mea-
surement d is a Gaussian random variable with distribution
N(d̄, σ2), then the variance of d2 is given by 4d̄2σ2 + 2σ4

dependent on d̄2. On the other hand, (4) employs the original
measurements as the input and a rough initial guess is able to
guarantee the convergent solution in a few iterations. Hence
we employ the rough estimate from (6) as the initial guess of
(2) and obtain the estimate from (4).

2.2.2 Error Analysis

From (5) the error covariance of the solution of (2) can be ap-
proximated by E [∆p′∆p] = σ2(J ′J)−1, where E[·] denotes
the expectation of ·, if the ranging error is assumed to be inde-
pendent from each other and has a variation of σ2. Noticing
that each row of J is a normalized vector, we can rewrite J
as

J =


cos θ0 sin θ0
cos θ1 sin θ1

...
...

cos θn sin θn

 =
[
c s

]
(8)

and obtain (J ′J)−1 as

(J ′J)−1 =
1

det(J ′J)

[
s′s −c′s
−c′s c′c

]
.

Now the mean squared error is given by the trace of
σ2(J ′J)−1 as

MSE =
σ2(n+ 1)

det(J ′J)
(9)

(a) Geometry of J (b) Heading to maximize Θ

Figure 2: Heading diagram

where n + 1 is the sample size. In the meanwhile, direct
computation shows that

det(J ′J) =
∑
i 6=j

cos2 θi sin2 θj −
∑
i6=j

cos θi sin θi cos θj sin θj

=
∑
i 6=j

(cos2 θi sin2 θj − cos θi sin θi cos θj sin θj)

=
∑
i 6=j

(cos θi sin θj − cos θj sin θi)
2

= 2
∑

0≤i<j≤n

sin2(θi − θj),

(10)
where each addend is the area spanned by the unit vectors
[cos θi sin θi] and [cos θj sin θj ]. If we assume that the UAV
can only obtain the accurate displacement over a short dis-
tance r and r << ||

−−→
QP0|| (namely (∆xi)

2 + (∆yi)
2 <<

x2 + y2 for each i), then det(J ′J) ≈ 2
∑

0≤i<j≤n(θi− θj)2.
Now the MSE is only dependent on the angles spanned by
the corresponding unit vectors, and aligning each Pi along
a straight line would not affect the localization accuracy.
Therefore, we may let the UAV fly along a straight line during
the relative localization. Moreover, it’s reasonable to assume
that each small increment of θ is equal, or θi+1 − θi = ω. In
this case, det(J ′J) ≈ 2

∑
0≤i<j≤n(i−j)2ω2 = (n

4

6 + 2n3

3 +
5n2

6 + n
3 )ω2 and

MSE ≈ 6σ2

(n4 + 4n3 + 5n2 + 2n)ω2
=

6σ2

(n2 + 4n+ 5 + 2
n )Θ2

where Θ = θn − θ0. We can see that a major reduction
of the mean squared error can be from an increase of Θ.
In light of this observation, the UAV is to move along the
line which maximizes Θ, or the angle ∠P0QPn as in Figure
2(a). We can see that the maximum Θ = arcsin(r/d0) if
the UAV is to move a short distance of r for the relative lo-
calization as shown in Figure 2(b). Also, the heading in the
North-East frame can be found as α = λ − Θ − π

2 , where
λ = arctan 2(y, x).
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Figure 3: Two phases in the relative localization

2.2.3 Application to Relative Localization

Now we can apply the error analysis to the relative local-
ization as follows. Actually, a linear path is not enough to
uniquely determine the vector

−−→
QP0 due to the ambiguity,

while a nonlinear path nails it. Therefore, we propose the
relative localization as a combination of a nonlinear path and
a linear path. To be specific, assume that the UAV is to ful-
fill the relative localization in a short distance r and it first
moves along some nonlinear path of fixed length r1. After
the nonlinear phase, we can actually get a rough estimate of
(x0, y0) as (x̂0, ŷ0), as well as that of

−−−→
QPn1

as (x̂n1
, ŷn1

). As
suggested from the last subsection, we need to move along
some direction by a length of r2 = r− r1 such that ∠P0QPn
reaches the maximum. Obviously the heading should be cho-
sen as α = λ̂ − Θ − π

2 , where λ̂ = arctan 2(ŷn1 , x̂n1),
Θ = arcsin(r2/dn1

). These two phases are also depicted
in Figure 3.

2.3 Inclusion of Displacement Error in the Algorithm

This section evaluates the performance of the proposed
relative localization algorithms considering that both the dis-
tance measurements and the odometry estimates are subject
to noise. Specifically we assume the range measurements
of each UAV are subject to independent zero-mean Gaussian
noise and the odometry estimates are subject to two indepen-
dent sources of noise.

To apply the direct estimation method, we still need to
account for the displacement error, which can be solved by
the following EKF. In fact, the system model can be simply
modeled as follows:

x(k + 1) = x(k) + ∆x(k) + ζx(k),

y(k + 1) = y(k) + ∆y(k) + ζy(k),

d(k) =
√
x2(k) + y2(k) + η(k),

(11)

where (x(k), y(k)) denotes the relative position of the mov-
ing UAV at the time step k, (∆x(k),∆y(k)) is the displace-
ment, d(k) is the UWB ranging, and ζx(k), ζy(k), η(k) are
the corresponding noises. With the initial estimate given by
the direct trilateration, we can apply the EKF for relative lo-
calization.

With Figure 3, we summarize the relative localization of
the moving UAV P from the static UAV Q as below:

Figure 4: UWB-based relative localization workflow

I (1) P moves along a nonlinear path of fixed length r1
to the point Pn1 and collect the distance measurements
di and displacement (∆xi,∆yi) in the NE frame,
i = 0, . . . , n1.
(2) Obtain estimate of

−−−→
QPn1

as (x̂n1
, ŷn1

) by trilat-
eration algorithm described in section 2.2.1. Choose
heading in the next phase by α = λ̂ − Θ − π

2 , where
λ̂ = arctan 2(ŷn1

, x̂n1
), Θ = arcsin(r2/dn1

) and r2
is the flight distance in the next phase.

II (1) With the heading of α, P moves along a linear path
of fixed length r2 to the point Pn and collect the dis-
tance measurements di and displacement (∆xi,∆yi)
in the NE frame, i = 0, . . . , n.
(2) Obtain estimate of

−−→
QP0 as (x̂0, ŷ0) by trilateration

algorithm described in section 2.2.1, as well as the
error covariance matrix M = σ2(J ′J)−1.

III The initial guess (x̂0, ŷ0) and M will be used to ini-
tialize the EKF based on the model (11). di and
(∆xi,∆yi) are used to generate the final estimate of
−−→
QPn.

3 FLIGHT TESTS WITH QUADCOPTERS

To validate the proposed UWB-based relative localization
approach, flight tests of 3 UAVs have been conducted in like-
forest environments. The detailed hardware configuration is
depicted in [15]. Below, we shall discuss the experiments in
details.

3.1 UWB based Relative Localization Workflow
Figure 4 illustrates the workflow of the UWB based rel-

ative localization system. To achieve the range-based rela-
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tive localization, all of the UAVs are equipped with the same
UWB module. As the two-way time of flight ranging method
described in [15], the UWB module on a hovering quadcopter
actively sends ranging requests to neighboring UAVs for dis-
tance measurement and communication. Once a distance is
obtained by UAV2 and UAV3, it will be calibrated by linear
regression where the calibration parameters are determined
by a series of experiments in different environments[15]. The
calibrated range then goes through the outlier detection be-
fore it is stored in the database. To reduce the computation
and avoid excessive repetition of similar data, only the se-
lected distance measurements and neighbor’s information are
recorded and this selection depends on the movement of each
UAV. Note that trilateration is applied to trigger the algorithm
and its output serves as the initial state estimate for EKF. The
follow-up localization is sustained by EKF in a recursive way.

Each part of our UWB based relative localization system
is elaborated in section 2.2 and 2.3. Path direction during the
linear phase is analyzed in section 2.2.3

3.2 UWB based Relative Localization for 3 UAVs Flight
The location of our test site was closen at Dover in Singa-

pore with a area of 30× 40 m. To validate the performance of
our proposed relative localization, the ground truth reference
for calibration is necessary. Since that, a baseline, which is
parallel to a ditch with 233 degrees with respect to the north,
was selected as our reference. The UAVs are aimed to navi-
gate to or hover over the relative targets we set preliminarily
(yellow flags on the ground in Figure 7) and this performance
will demonstrate the availability of UWB based relative lo-
calization. Some experimental details will be introduced as
following.

UAV1 was set in the middle of UAV2 and UAV3 initially
with 20 meters away from them as shown in Figure 5. Once
UAVs took off, UAV1 hovered over the start point and UAV2
and UAV3 flied along a preset non-linear trajectory to collect
distance data and generated initial relative position estimates,
namely phase I. During phase II, UAV2 and UAV3 flied as a
linear trajectory to improve the accuracy of the relative posi-
tion estimates by using the proposed trilateration algorithm.
Then in phase III, UAV2 and UAV3 flied directly to their own
desired targets (the red stars in Figure 5) set in relative coor-
dinates and the video shot during 3 UAVs flight is shown in
Figure 6. Finally all of these 3 UAVs hovered over their own
targets with reference to the landmarks (yellow flags on the
ground in Figure 7) measured by tape measure before flight
test. It can be seen from Figure 7, once accomplishing the
entire phases UAV2 and UAV3 hovered over their own land-
marks with the position error less than 1 meter (Figure 8).

4 CONCLUSION AND FUTURE WORK

The relative localization strategy proposed in this paper
utilizes UWB radios to estimate the relative position of mov-
ing UAVs to a static one over a short distance. The error
analysis of the trilateration method is employed to reduce

Figure 5: Demo scenario at Dover

Figure 6: Flight video shot of 3 UAVs at Dover.

Figure 7: Performance of the relative localization for 3 UAVs.

Figure 8: Accuracy of the relative localization measured after
landing.
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the localization error. Basically, the UAV is first to move
along some nonlinear path for a rough estimate, based on
which a heading will be chosen for the UAV to move along
a straight line aiming to improve the localization error. The
rangings and displacements over the course are first fed to the
nonlinear least squares algorithm for an initial guess, which
serves to initialize the EKF. The proposed trilateration algo-
rithm and EKF cooperate to achieve highly precise relative
position estimate for autonomous flight of the quadcopters.
Flight tests have been conducted to validate the performance
of the proposed UWB-based relative localization, and the re-
sults demonstrate its capability of providing accurate relative
position for the quadcopters.

Future works will be steered to the case of relative local-
ization when all the three UAVs are moving simultaneously.
Integrated with certain self-localization algorithms, a more
robust and accurate localization technique for long term flight
in GPS denied environments can be investigated. Besides,
UWB based UAV swarming may be explored and demon-
strated in the future.
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