
Real-time Simultaneous Localization and Mapping for
UAV: A Survey

Jiaxin Li, Yingcai Bi, Menglu Lan, Hailong Qin, Mo Shan, Feng Lin, Ben M. Chen
National University of Singapore

ABSTRACT

Simultaneous Localization and Mapping
(SLAM) refers to the problem of using vari-
ous sensors like laser scanner, RGB cameras,
RGB-D cameras, etc, to estimate the position
of the robot, and concurrently construct the
2D/3D map of the environment. The SLAM
community has made great progress in the past
few decades. So far the 2D SLAM problem with
range finders is considered as solved, while the
real-time 3D SLAM, especially robust and high
quality visual SLAM on UAVs, remains an open
problem. This article aims to give a picture of
the evolution and very recent development of
SLAM algorithms, and emphasis is given on
real-time SLAM methods that are suitable for
Unmanned Aerial Vehicles (UAVs).

1 INTRODUCTION

Autonomous UAVs, robots, vehicles are receiving more
and more attention in academia and industry. Although
the industry has noticed the potential applications of un-
manned systems, including driver-less cars, building inspec-
tion, surveillance etc, lots of problems remain unsolved. Most
of problems are caused by the failure, inaccuracy or insta-
bility of perception. In outdoor environment, GPS provides
accuracy localization and partly solved the perception prob-
lem. In situations that GPS is unavailable, or high accuracy
of localization or mapping is needed, accurate and robust
SLAM algorithms are required. SLAM is especially diffi-
cult for UAVs because of the strict requirement of real-time
processing, and the limitation of UAV’s payload.

1.1 Localization
During navigation, a robot’s positions at discrete time in-

stants are related by rigid motion transformation T ∈ R4×4.
Aiming to solve T and concatenate T into a trajectory, lo-
calization have always been a hot topic in both research and
application, and the emergence of Global Positioning System
(GPS) have partly solved this problem in outdoor environ-
ments. For GPS denied situations, solutions like Wifi/Ultra
Wide Band (UWB) positioning, Motion Capture Camera Sys-
tem (VICON) are proposed. These solutions require extern
hardwares, making them impractical or too expensive for
most indoor applications. Therefore, on-board localization,

which utilizes only on-board sensors to estimate positions,
becomes a popular and feasible solution for most robots. Lo-
calization is especially indispensable for autonomous UAVs
because they can not “stop” in the air like ground robots. Lo-
calization is sometimes called odometry in robotics. In par-
ticular, Visual Odometry (VO), i.e. odometry using cameras,
is experiencing rapid growth recently.

1.2 Mapping
The significance of mapping comes mainly in three as-

pects. First of all, a map supports tasks like path planning
and obstacle avoidance, which are basic requirements of au-
tonomous navigation. Secondly, the map itself is the objec-
tive for many robot applications. Besides providing intu-
itive visualization, it allows further analysis of the explored
space, including dimension evaluation, object recognition,
etc. Thirdly, proper mapping will improve the accuracy and
robustness of localization. One of the most important features
of mapping is loop closure, which allows robots to recognize
a place visited previously and optimize it’s estimated trajec-
tory accordingly, therefore drift is reduced or even rejected.
Also, the ability of recognizing a place in the existing map
enables robots to recover from odometry failure.

In the early ages, localization and mapping are considered
separately, but later researchers found that SLAM is kind of
a “chicken and egg” problem, i.e., localization and mapping
are highly interrelated. A map is needed for accurate localiza-
tion, while localization is needed for mapping. Or in another
word, mapping or localization can be solved if one of them
is known accurately. Therefore, current Visual Odometry al-
gorithms typically include the mapping function as well, al-
though the map may not be suitable for path planning or other
applications. The only difference between modern odometry
and SLAM is whether loop closure, or global map optimiza-
tion is available [1].

Classical SLAM methods in Section 4 prefer to jointly es-
timate pose and map. Later more advanced methods in Sec-
tion 5 usually employ the interleave idea of Parallel Tracking
and Mapping (PTAM) [2] and put localization and mapping
into two parallel threads.

2 RELATED WORKS

Proposed by the recent review by Cadena et al. [1], the
history of SLAM can be roughly divided into three ages. In
the classical age, 1986 - 2004, the mainstream of the commu-
nity is the probabilistic formulation and filtering techniques.
Reviews of first 20 years’ research were published by Durrant
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Whyte and Bailey [3, 4]. The subsequent period, 2004-2015,
is called the algorithm analysis age, where the fundamental
properties, including observability, convergence and consis-
tency, were investigated [5]. Many theories from the Com-
puter Vision community, such as the SfM, were widely used
by SLAM algorithms. Optimization based methods were
developed, and believed to outperform the classical filter-
ing based SLAM. The community was creating many open-
source projects and pushing SLAM to practical applications.
Currently the community is entering the third period, the ro-
bust perception age, where robust performance and high-level
environment understanding are the focal points.

At the crossing of the algorithm analysis age and the
robust perception future, emerging SLAM algorithms are
marching towards the edge of real world application. The
ORB-SLAM and LSD-SLAM published in the last two year
are regarded as the most promising SLAM that can be applied
on UAVs. Current reviews of SLAM are either outdated to
include such recent progress [3–6], or focus on the theory de-
velopment [1]. A survey introducing the real-time SLAM al-
gorithms will provide the researchers in robotics with a clear
picture, and help to apply or improve SLAM in the context of
UAV.

This paper focuses on the milestones that can achieve
real-time robust performance on UAV platforms, using either
laser scanners or cameras. We starts by describing the modern
architecture of SLAM in Section 3. Section 4 and 5 follows
the anatomy of [1], to summarize the the classical and modern
SLAM algorithms.

3 MODERN FRAMEWORK

A SLAM system can be partitioned into two parts, the
front-end and back-end, shown in Figure 1. Usually the front-
end requires techniques of computer vision and signal pro-
cessing, in order to abstract the geometry information into
mathematical model and feed it into the back-end. The back-
end is in charge of optimizing the model, often called factor-
graph, to refine the pose and map.

The sensor dependent front-end takes raw data from the
sensors and pre-processes it. The pre-processing includes
feature extraction, short term and long term data association,
etc. In the case of featured-based visual SLAM in Section
5.2, detected image feature points are associated to 3D geo-
metrical points. For direct tracking methods in Section 5.3,
tracking between frames are conducted by front-end as well.

In Section 5, the output of front-end is usually modeled
as a factor graph, where positions and space structures serve
as nodes, and the rigid body transformation T as the edges
connecting the nodes. Mathematically, this is a Maximum
A Posteriori (MAP) problem formulated as 1. Measure-
ments Z = zk : k = 1, · · · ,m are expressed as a function
of X = xk : k = 1, · · · ,m, zk = hk(xk) + ϵk, where xk
represents the unknown variable like position or space struc-
ture, i.e. the nodes in the factor graph. Under the assump-

tion of zero mean Gaussian noise ϵk, (1) becomes (2), which
can be optimized with iterative Gauss-Newton or Levenberg-
Marquardt algorithms. The detailed formulation of the MAP
problem can be found in [1].

X∗ = argmax
X

P(X|Z) = argmax
X

P(Z|X)P(X) (1)

X∗ = argmin
X

m∑
k=0

1

2
∥hk(xk)− zk∥2Ωk

(2)

For classical SLAM in Section 4, instead of constructing
such MAP problem, nonlinear filtering approaches including
Extended Kalman Filter (EKF) and Particle Filter (PF) are
used to jointly estimate the position and map. A systematic
review can be found in [3, 4].

According to some research [7], the accuracy of MAP
estimation is believed to be better than that of the filter-
ing method. But some advanced filtering systems may have
equivalent performance as well, such as the Multi-State Con-
straint Kalman Filter [1].

4 FILTERING BASED METHODS

The idea of explicitly formulating SLAM as the proba-
bilistic problem originated at the 1986 IEEE Robotics and
Automation Conference [3]. Similar to the modern architec-
ture of Section 3, the features and landmarks are extracted
by the front-end, and the back-end is the joint estimation of
localization and landmark maps. Later, EKF and PF were
widely used in the back-end.

4.1 Probabilistic Formulation
At time instant k, the unknown variables are explicitly de-

fined into position and orientation xk, landmark location mk.
Control vector uk defines the drive of transition from xk−1 to
xk. Measurement zk is the observation of mk at the state of
xk. In addition, the variable sets are defined in (3). Under the
probabilistic formulation, the SLAM is implemented in an it-
erative time-update (4) and measurement update (5) fashion,
where motion model is described by P (xk|xk−1, uk) and ob-
servation model described by P (zk|xk,m). The visualization
of the filtering inference is shown in Figure 2(a).

Xk = {x0, x1, · · · , xk} = {Xk−1, xk}
Uk = {u0, u1, · · · , uk} = {Uk−1, uk}
m = {m1,m2, · · · ,mn}
Zk = {z0, z1, · · · , zk} = {Zk−1, zk}

(3)

P (xk,m|Zk−1, Uk, x0) =∫
P (xk|xk−1, uk)P (xk−1,m|Zk−1, Uk−1, x0)dxk−1

(4)

P (xk,m|Zk, Uk, x0) =
P (zk|xk,m)P (xk,m|Zk−1, Uk, x0)

P (zk|Zk−1, Uk)

(5)
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Figure 1: Modern architecture of SLAM consists of front-end and back-end.
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Figure 2: (a) Visualization of inference under the filtering
framework. All landmarks m, and their correlation are main-
tained and updated. (b) Inference of the keyframe-based
method. Only motion and map of keyframes are maintained.

4.1.1 EKF SLAM

The most intuitive way to simplify (4) and (5) is to employ
EKF with the linear Gaussian assumption. Motion model and
observation model are linearized so that EKF is applicable,
and real-time performance can be achieved. However, the
linear Gaussian assumption is usually not the practical case,
and may lead to divergence, or significant estimation error.
Also, EKF filtering is fragile to incorrect data association.

4.1.2 FastSLAM

To overcome the fragile linear assumption of EKF SLAM,
FastSLAM was introduced by Montemerlo et al. [8]. In-
stead of linearizing the motion model P (xk|xk−1, uk), the
non-Gaussian motion model is estimated with Monte Carlo
sampling, i.e. Particle Filter. Direct sampling with m and Xk

is computational infeasible because of their high dimension.

Rao-Blackwellization is used to partition the joint estimation
of m and Xk into product of independent Gaussian distribu-
tions, so that the sampling is greatly accelerated. The detailed
derivation of FastSLAM can be found in [3, 8].

4.2 Laser SLAM
Proved by research like [9], the above probabilistic archi-

tecture is able to achieve practical performance with 2D laser
scanner. A significant issue in filtering based laser SLAM,
is the feature extraction and data association problem. Tradi-
tional features are modeled as lines, circles, corners, etc [10].
The major problem of such geometric features is that they are
environment sensitive. For example, features relying on cor-
ners will fail in a mess environment, where walls can not be
scanned by the laser. An improvement is the scan correlation,
which regards the raw laser scan as the feature, and the align-
ment of the raw scans can be efficiently solved with Iterative
Closest Point (ICP) [11].

In practice, the mapping between measurements and land-
marks is rarely known [12]. In EKF SLAM, maximum like-
lihood estimation for each observation is commonly used to
solve data association. Some enhanced algorithms solve the
best association of all observations at the same time [13].
Compared to EKF, FastSLAM is much less prone to inaccu-
rate data association. Actually, FastSLAM can be extended
to sample on data associations, so that it can be estimated si-
multaneous with robot paths [12]. In [12], Montemerlo and
Thrun showed an impressive SLAM result with FastSLAM
using a single 2D laser. In the experiment of driving for over
4km, the position error was less than 10 meters. In conclu-
sion, it is proved that FastSLAM is much better than EKF
SLAM in terms of accuracy and robustness.

4.3 Visual SLAM
Compared to the success of filter based laser SLAM,

vision-only SLAM remained unsolved, because of scarcity
of computational power, lack of depth information, and the
difficulty of extracting or associating features. Various fil-
tering techniques, including EKF [14], Unscented Kalman
Filter (UKF), Particle Filter, sparse information filter, were
attempted under the filtering framework mentioned above.

Stereo cameras are used to overcome the depth problem
[15]. Davison and Murray [15] achieved 5Hz SLAM using
fixating active stereo, and proved that a small number of land-
marks is enough to provide accurate pose estimation. In some
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work, plane assumption was applied on downward looking
cameras, to further simply the depth estimation.

Feature detector and descriptors like SIFT, SURF are
widely used nowadays because of their robustness and conve-
nience for data association, i.e. matching landmarks with im-
age measurements. However, these features were computa-
tional too expensive before 2006. As the workaround, salient
image patches, line segments were popular.

MonoSLAM by Davison et al. [14] is a significant mile-
stone of Visual SLAM, because it is the first real-time monoc-
ular SLAM that achieve the speed of 30Hz with adequate
accuracy and robustness for robotics. MonoSLAM is under
the EKF frameworks where the state vector contains position,
orientation, linear velocity, angular velocity, and the 3D posi-
tion of landmarks. Using the famous good-feature-to-track
detector by Shi and Tomasi, a landmark is represented by
a salient image region, the depth of the patch, the orienta-
tion of its norm, and the uncertainty of its position. Efficient
data association is achieved by searching features with a pre-
calculated area, instead of in the whole image.

5 ANALYSIS BASED METHODS

Poor scalability is the main drawback of filtering SLAM.
Because the joint distributions of all landmarks have to be
maintained and updated all the time, the computational cost
become unacceptable eventually, shown in Figure 2(a). This
scalability problem is serious for Visual SLAM because im-
ages contain much more features than laser scans.

To mitigate such limitation, analysis based methods, or
the so called optimization based methods, are proposed to
maintain only a small subset of motions and maps. These
subsets that represent the trajectory and map are called
keyframes. Shown in Figure 2(b), although the number of
nodes in the graph is larger, the interconnections between
nodes remain sparse. Keyframe based graph can be optimized
efficiently even if there are large number of motions and fea-
tures. In computer vision, graph of Figure 2(b) is referred
as Bundle Adjustment (BA). In many SLAM algorithms, the
graph consists of only positions x. In that case, by apply-
ing the MAP formulation in Section 3, open-source libraries
including g2o are able to optimize a graph with tens of thou-
sands of nodes within one second.

By making a systematic comparison between filtering
based and analysis based Visual SLAM methods, Strasdat et
al. [7] came to the conclusion that keyframe based BA out-
performs filtering SLAM in terms of accuracy, robustness and
speed.

5.1 Laser SLAM
Research on 2D laser SLAM has been decreasing since

2006, mainly because of the success of algorithms like Fast-
SLAM, lack of 3D information, and the significant progress
of Visual SLAM. However, filtering based laser SLAM is
mainly designed for 2D motions in structured environment. It
is still impractical to apply it on UAV. New algorithms adopts

the frontend-backend structure in Figure 1. Researchers con-
centrate on the front-end, while the back-end is kind of stan-
dardized as pose graph optimization. ICP [16] is a mature
choice of front end, while it suffers from the high compu-
tational cost. Polar Scan Matching (PSM) utilizes the polar
coordinates to perform scan matching. Normal Distribution
Transform (NDT) aligns laser scans to a mixture of normal
distributions.

Proposed by Kohlbrecher et al. in 2011 [17], Hec-
torSLAM is currently one of the most competitive 2D laser al-
gorithms. The front-end scan matching is achieved by align-
ing the laser scan with the map learned so far, using the
Gauss-Newton approach. To improve convergence, pyramid
like multi-resolution map is implemented with a coarse-to-
fine matching scheme. Kohlbrecher et al. showed that their
front-end was so accurate and robust that the back-end post-
graph optimization could be neglected in most situations. To
estimate the complete 6 DOF motion, a EKF is used to fuse
information from sensors like IMU, with the 2D laser SLAM.

5.2 Featured Based Visual SLAM

Representing the environment with landmarks or features
has been a popular choice since the 1980s when researchers
began working on SLAM. Feature based map is compact, so
that the requirement for computational power is significantly
reduces. Also, both salient image patches and modern fea-
ture detectors are robust, and data association can be done
efficiently with features. In the age of analysis based SLAM,
feature detectors, including ORB [18–22], FAST [2], SURF
[23], etc., were widely used in short-term tracking and loop
closure.

The beginning of analysis SLAM is marked with the pub-
lish of PTAM [2], who first proposed to replace the filter-
ing framework with a tracking thread and a mapping thread.
PTAM maintains a global map composed of 3D points and
the corresponding salient image patches. The tracking thread
consists of data association and motion only BA. Data as-
sociation, i.e. associating patches on a new frame with 3D
points in map, is done by a coarse-to-fine search. After data
association, motion only BA is conducted to refine the previ-
ously predicted motion. Simultaneously, the mapping thread
utilizes the tracking result, to triangulate unmatched features
into 3D points, which will be inserted into the global map.
Then the local BA is applied to refine both the tracking result
and the global map. The experiments showed that PTAM sig-
nificantly outperforms the MonoSLAM. Ever since PTAM,
most Visual SLAM algorithms adopted similar structure of
separated tracking and mapping.

Strasdat et al. [24] presented a monocular SLAM algo-
rithm where motion only BA was used for tracking. Within
the keyframe framework, [24] proposed three dimensional
information filters to initialize the 3D feature points. Loop
closure were conducted with 7 DOF similarity transforma-
tion, where the scales of keyframes were considered. In [25],
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Strasdat et al. proposed the idea of covisibility graph, and
tracking within a local map.

With stereo cameras, the depth of feature points can be tri-
angulated, which greatly simplifies the tracking and mapping
process. In libviso2 [23], SURF feature points are extracted
with triangulated depth. Efficient feature point matching is
achieved with coarse-to-fine searching. Visual odometry is
done by minimizing the projection error of 3D feature points
from the previous time instants into the current left and right
frames. With the motion estimated by visual odometry, dense
map construction is conducted with the ELAS stereo match-
ing. With similar strategy, libfovis [26] achieved real-time
SLAM on UAV with RGBD cameras, where loop closure was
implemented using Calonder randomized tree descriptors and
RANSAC.

In 2015, the paper [18] and source code of ORB-SLAM
were published, and is believed to be the best feature based
SLAM so far. ORB-SLAM is a complete system with func-
tions of tracking, mapping, loop closure, relocalization from
tracking lost. The ORB features, which can be extracted in
milliseconds, are used throughout the system in all functions.
Tracking is initialized from previous frame or global relo-
calization, and then refine with motion only BA in a local
map extracted from the covisibility graph. Local mapping is
done by inserting keyframes, optimizing using local BA, and
culling keyframes. Loop closure candidates are searched us-
ing the DBoW2 approach, which is also used for relocaliza-
tion from tracking lost. Similarity transformations between
current frame and loop candidates are computed similar to the
method of [24], and then fused into the covisibility graph and
essential graph. Global map optimization is achieved over
the essential graph. The ORB-SLAM has shown impressive
performance with monocular and depth cameras.

5.3 Dense Direct Visual SLAM

Despite that feature based methods have proved them-
selves to be effective, they are faced with two serious prob-
lems. The first is that, the features are far too sparse to repre-
sent the environment, which hinders further applications with
the environment, including semantic understanding, object
recognition, human interaction, etc. Secondly, they make use
of only the information of the features and discard all other
pixels of the images. In 2011, dense methods were proposed
to take advantages of all pixels, and build dense 3D map.

One of the pioneers is the Dense Tracking and Mapping
(DTAM) by Newcombe et al [27], which achieved real-time
performance with GPU support. Dense reconstruction is im-
plemented between any keyframe and many other nearby
frames. A regularized cost function is constructed with re-
gard to the inverse depth, in order to consider both photomet-
ric error and the smoothness of the estimated depth. By intro-
ducing a coupling term, the smoothness part is optimized in a
similar way of ROF image denoising, while the photometric
error part can be optimized simply using exhaustive search.

Paralleled with dense mapping, each RGB frame is tracked
against the densely built map by minimizing the photometric
error, in order to solve for the Lie algebra se(3) that defines
the 6 DOF motion.

The vision group from Technical University of Munich
(TUM) published a series of paper to demonstrate their dense
direct SLAM system. Kerl et al. [28] utilized the depth
from RGBD camera, and used a similar optimization scheme
with [27] to achieve odometry in 30Hz with CPU. In 2014,
the Large Scale Direct Monocular SLAM (LSD-SLAM) was
published by Engel et al. [29], and demonstrated impres-
sive capacity of densely reconstructing the environment ac-
curately. At the back-end, the map is continuously improved
with pose-graph optimization, and loop closure is done with
FAB-MAP [30]. Later, the stereo [31] and fisheye [32] exten-
sion of LSD-SLAM were released to make use of the known
depth, or the wide view angle.

KinectFusion by Newcombe et al. [33] is another mile-
stone for dense SLAM, though it is only real-time with GPU
support. Different from previous Visual SLAM where map
is represented with point clouds or grids, KinectFusion main-
tains a volumetric, truncated signed distance function (TSDF)
representation. Tracking is conducted with pyramid ICP.

5.4 Semi-dense Methods
In between the feature based and direct SLAM, some re-

searchers tried to take advantages of both methods. Semi-
direct Visual Odometry (SVO) is a popular visual odometry
algorithm put forward by Forster et al. [34]. The map is rep-
resented by 3D locations of FAST feature points, and the 4×4
image patches of the features. Whenever a keyframe is cre-
ated, FAST features are extracted and inserted into a depth
filter, which is in charge of updating depth and evaluating the
uncertainty. In the tracking thread, there are 3 steps. The
first is to initialize motion against the previous frame by min-
imizing the photometric error. In the second step, for each
projected feature in the current frame, its location is refined
by minimizing the photometric error between its patch and
the closest keyframe’s feature patch. In the third step, mo-
tion only BA or local BA is applied to refine the pose of the
current frame. Because of the semi-direct scheme, SVO is so
efficient that it can be implemented on embedded systems.

6 CONCLUSION

Over decades of development, 2D SLAM methods with
laser scanners are considered mature. Modern algorithms like
HectorSLAM [17] are adequately robust for UAV applica-
tions. Visual SLAM on UAV is still an open problem, mostly
because algorithms are fragile to UAV’s agile motion and the
unknown uncertainty of the environment. Recent algorithms
including ORB-SLAM and LSD-SLAM, are potential candi-
dates that can be applied on UAV.
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