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ABSTRACT

This paper addresses a mixed differential game
with three players: Target, Attacker and Defend-
er,where the Attacker aims to capture the Target
whilst avoiding being captured by the Defend-
er. At this point, there are two pursuit-evasion
problems in this game,and two focuses should be
considered: one is the cooperation between the
Target and the Defender; the other one is the role
changes between pursuer and evader of the At-
tacker. This paper discusses the mixed differen-
tial game analytically, obtains the optimal strate-
gies of the three players, and provides numerical
solutions for different initial states.

1 INTRODUCTION

Multi-agent pursuit-evasion games has become a research
hotpot in the fields of aerospace, control, and robotics. In
this paper, we consider a particular differential game, called
Target-Attacker-Defender game, where the Attacker chases
the Target while avoids being captured by the Defender. Op-
positely, the Target should cooperate with the Defender in
order to escape from the Attacker whilst acting a bait to
help the Defender capture the Attacker. Thus, there are two
pursuit-evasion problems in this game: Attacker-Target and
Defender-Attacker, so we call it as a mixed differential game.

The literature contains a large number of work on pursuit-
evasion games, including the problem formulations and solu-
tion techniques of single pursuer-single evader problem [1–3]
, and the determination of the role assignments of pursuer and
evader in [4, 5].

Pursuit-evasion games with two players cooperating to
antagonize to the other player are also covered in the liter-
ature [6–8]. For example, a so-called ”fishing game” with
point capture is proposed in [6]. The authors construct a bar-
rier by using the method of explicit policy in the game of
kind and solve the players’ optimal strategies in terms of the
game of degree. Cooperation between two agents with the
goal of avoiding captured by a single pursuer is addressed
in [7] where the agents’ strategies should trade off evasion
and herding. In [8], inspired by hunting and foraging be-
haviors of various fish species, the authors present a novel
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multi-phase cooperative strategy in which the pursuers move
in specific formations and confine the evader to a bounded
region.

Recently, the Target-Attacker-Defender problem has been
concerned by Gutman [9, 10], Shima [11, 12], David and
Pachter [13–16]. The problem without cooperation between
the Target and the Defender is addressed in [9, 10] where
linearization-based Attacker maneuvers are presented to e-
vade the Defender and continue pursuing the Target. Differ-
ent types of the cooperation between the Target and the De-
fender are considered in [11–18], where the Target represents
an aircraft trying to evade an Attacker and the Defender is a
pursuer in order to intercept the Attacker. These articles only
consider on target set that the interception point between the
Defender and the Attacker is closer to the Target’s position.
In other words, the Attacker only aims to capture the Target
but not regard the threat from the Defender. And the game
terminates only when the Target is captured by the Attacker.

In this paper, we consider two focuses on the Target-
Attacker-Defender problem: one is the cooperation between
the Target and the Defender; the other one is the role changes
between pursuer and evader of the Attacker. Specifically, as
a pursuer, the Attacker attempts to capture the Target; while
as a evader, the Attacker should avoid being captured by the
Defender. We obtain the analytical solutions of this mixed
differential game, and derive out the optimal strategies of the
three players. In addition, we provide the numerical solution
of this game for different initial states.

This paper is organized as follows. Section II describes
the engagement scenario. In section III optimal control s-
trategies are achieved. In section IV, numerical solutions of
the differential game are provided and the examples are giv-
en. Finally concluding remarks are made in section V.

2 THE PROBLEM STATEMENT

The Target-Attacker-Defender differential game is shown
in Figure 1. The speeds of the Target, Attacker, and De-
fender are denoted by VT , VA, VD, respectively, which are as-
sumed to be constant. The dynamics of the Target-Attacker-
Defender in the realistic game space are given as follows:

ẋT = VT cos φ̂, ẏT = VT sin φ̂ (1)

ẋA = VA cos χ̂, ẏA = VA sin χ̂ (2)
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Figure 1: Reduced state space

ẋD = VD cos ψ̂, ẏD = VD sin ψ̂ (3)

where the φ̂ = φ+λ, χ̂ = λ+θ−χ, and ψ̂ = ψ+θ+λ−π.
The speed ratio parameters are defined as α = VT

VA
and

β = VD
VA

. In this paper, we consider that the speed of the
Attacker is faster than the Target and the Defender, so that
α, β < 1. The parameter RAT represents the distance be-
tween the Target and the Attacker. The parameter rDA rep-
resents the distance between the Attacker and Defender. The
positive constant Rc represents the capture radius of the At-
tacker and the positive constant rc represents the capture ra-
dius of the Defender. This game contains two pursuit-evasion
games: the Attacker pursues the Target and the Defender pur-
sues the Attacker. As a result, the Attacker plays two roles,
purser for the Target and evader for the Defender. Naturally,
in order to win the game as far as possible, the Target and the
Defender should cooperate as a team.

3 THE DIFFERENTIAL GAME

In this section, we describe the corresponding dynamics
of the three-player engagement using a reduced state space
formed by the ranges RAT and rDA, and the angle between
them , denoted by θ. The objective of the Attacker is to
choose an optimal heading angle, denoted by χ, such that
the distance RAT is minimum and the distance rDA is max-
imum. On the contrary, the objectives of the Target and the
Defender are to adopt the optimal heading angles, denoted by
φ and ψ respectively, such that RAT is maximum and rDA
is minimum. When the distance RAT (t1) = Rc or the dis-
tance rDA(t2) = rc , the differential game terminates. The
tf , denotes the game terminal time, is equal to min{t1, t2}.

We transform the relative heading angles to the heading
angles in the reduced state space with respect to the fixed co-
ordinate axis x using the line of sight angle from the Attacker
to the Target, denoted by λ. For the convenience of notation,
we denote RAT as R and denote rDA as r. The dynamics in
the reduced state space are as follows:

Ṙ = α cosφ− cos(θ − χ) (4)

ṙ = − cosχ− β cosψ (5)

θ̇ = −α
R

sinφ+
1

R
sin(θ − χ)− β

r
sinψ +

1

r
sinχ (6)

R(t0) = R0

r(t0) = r0

θ(t0) = θ0 (7)

The objective of the Attacker is to minimize the distance
Rmaximize the distance r at the terminal time tf , where tf is
free. The objective of the Target and the Defender is to maxi-
mize theR and minimize the r. Thus, the payoff function can
be indicated as

max
φ,ψ

min
χ
J = max

φ,ψ
min
χ

∫ tf

t0

w1Ṙ− w2ṙdt (8)

where the parameters w1 and w2 are the weighting coeffi-
cients.

Then from the differential game theory [1] [2], the Hamil-
tonian function is given by

H(λ, φ, ψ, χ, t) = w1Ṙ− w2ṙ + λRṘ+ λθ θ̇

= w1(α cosφ− cos(θ − χ))− w2(− cosχ− β cosψ)

+λR(α cosφ− cos(θ − χ)) + λr(− cosχ− β cosψ)

+λθ(−
α

R
sinφ+

1

R
sin(θ − χ)− β

r
sinψ +

1

r
sinχ) (9)

The co-state dynamics are given by

λ̇R =
λθ
R2

(sin(θ − χ)− αsinφ) (10)

λ̇r =
λθ
r2

(sinχ− βsinψ) (11)

λ̇θ = −w1 sin(θ−χ)−λR sin(θ−χ)− λθ
R

cos(θ−χ) (12)

The game ends in two cases. In one case, we define
the team of the Defender and the Target wins the game and
the Attacker is captured. The terminal state r(tf ) is fixed
and equal to rc. The terminal states R(tf ) and θ(tf ) are
free, we define λR(tf ) = 0, λθ(tf ) = 0. The best so-
lution for this problem requires that the terminal condition
H(x∗(tf ), u

∗(tf ), λ
∗(tf ), tf ) = 0. In summary, the terminal

conditions are:
r(tf ) = rc

λR(tf ) = 0

λθ(tf ) = 0

w1α+ β(w2 − λr(tf ))

−
√
w2

1 + (w2 − λr(tf ))2 − 2w1(w2 − λr(tf ))cosθ(tf ) = 0
(13)
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In the other case, the Attacker wins the game, captures
the Target but not be captured by the Defender, the terminal
conditions are:

R(tf ) = Rc

λr(tf ) = 0

λθ(tf ) = 0

(w1 + λR(tf ))α+ w2β

−
√
(w1 + λR(tf ))

2
+ w2

2 − 2w2(w1 + λR(tf ))cosθ(tf ) = 0
(14)

Theorem 1: In the mixed differential game, the Target and
Defender optimal control angles are given by

sinφ∗ = − λθ/R√
(λθ/R)

2
+ (w1 + λR)

2

cosφ∗ =
w1 + λR√

(λθ/R)
2
+ (w1 + λR)

2
(15)

sinψ∗ = − λθ/r√
(λθ/r)

2
+ (w2 − λr)2

cosψ∗ =
w2 − λr√

(λθ/r)
2
+ (w2 − λr)2

(16)

The optimal control angle of the Attacker is given by E-
qs(17)(shown on the top of the next page).

Proof: The analytic solution of differential game can be
obtained by:

(1) Differentiating the Hamiltonian function in φ and set-
ting the derivative to zero:

∂H

∂φ
= α[−λθ

R
cosφ− (w1 + λR)sinφ] = 0 (18)

Using the trigonometric identity

sin2φ+ cos2φ = 1

we can conclude Eqs(15).
The second partial derivative of the Hamiltonian function

in φ :

∂2H

∂φ2
= α[

λθ
R

sinφ− (w1 + λR)cosφ] =

−α[ λ2θ +R2(w1 + λR)
2

R2

√
(λθ/R)

2
+ (w1 + λR)

2
] < 0 (19)

which means that φ∗ maximizes the payoff J ; That is to say,
it maximizes the final distance R(tf ) and minimizes the dis-
tance r(tf ).

(2) With regard to ψ ,we can obtain the optimal heading
of the Defender in a similar way.

∂H

∂ψ
= β[−λθ

r
cosψ − (w2 − λr)sinψ] = 0 (20)

and conclude Eqs(16).
The second partial derivative of the Hamiltonian function

in ψ :

∂2H

∂ψ2
= β[

λθ
r

sinψ − (w2 − λr)cosψ] =

−β[ λ2θ + r2(w2 − λr)2

r2
√
(λθ/r)

2
+ (w2 − λr)2

] < 0 (21)

which means that ψ∗ maximizes the payoff J ; that is to say,
it maximizes the final distance R(tf ) and minimizes the dis-
tance r(tf ).

(3) The optimal heading χ∗ of the Attacker can also be
solved by differentiating the Hamiltonian function in χ and
setting the derivative to zero:

∂H

∂χ
=

(
(w1 + λR)cosθ − (w2 − λr)−

λθ
R

sin θ

)
sinχ

−
(
(w1 + λR)sinθ +

λθ
R

cos θ − λθ
r

)
cosχ = 0 (22)

Letting

a = (w1 + λR)sinθ +
λθ
R

cos θ − λθ
r

b = (w1 + λR)cosθ − (w2 − λr)−
λθ
R

sin θ

Then, we can obtain

sinχ∗ =
a√

a2 + b2

cosχ∗ =
b√

a2 + b2
(23)

Furthermore, we have

∂2H

∂χ2
= b cosχ+ a sinχ =

b2√
a2 + b2

+
a2√
a2 + b2

> 0

(24)
It shows that the optimal heading of the Attacker mini-

mizes the payoff J , which is equivalent to minimizing the
distance R(tf ) and maximizing the distance r(tf ).
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sinχ∗ =
(w1 + λR)sinθ +

λθ
R cos θ − λθ

r√(
(w1 + λR)sinθ +

λθ
R cos θ − λθ

r

)2
+
(
(w1 + λR)cosθ − (w2 − λr)− λθ

R sin θ
)2

cosχ∗ =
(w1 + λR)cosθ − (w2 − λr)− λθ

R sin θ√(
(w1 + λR)sinθ +

λθ
R cos θ − λθ

r

)2
+
(
(w1 + λR)cosθ − (w2 − λr)− λθ

R sin θ
)2 (17)

4 NUMERICAL SOLUTIONS OF THE OPTIMAL
CONTROL PROBLEM

Eqs(4)-(14) represent a two point boundary value prob-
lem (TPBVP). In many cases, it is difficult to solve analyti-
cally. At present, there are some methods to solve this prob-
lem numerically [19], such as shooting method, difference
method and finite element method and so on. Regardless of
the methods, it is necessary to estimate the initial values of
the TPBVP. If the initial values are uncertain, obtaining an
ideal solution will be very difficult. That is the main chal-
lenge in solving TPBVP [20]. Since the co-state variable has
no obvious physical meaning, in this paper, we indirectly es-
timate the initial value of the co-state variables by setting the
control variables. Considering the cooperation of the Target
and the Defender, we assume that at the initial time the Target
moves toward the Defender and the Defender moves toward
the Target. The Attacker, aimed to capture the Target, moves
toward the Target initially.

Example1: Let the initial conditions be given by R0 =
5, r0 = 5, and θ0 = 1rad .The initial line-of-sight angle is
given by λ0 = 1rad. The Attacker initially located at the co-
ordinates (0, 0). The capture radiuses are given by Rc = 1,
and rc = 1 . The speed ratios are α = 0.6, andβ = 0.8 .
We obtain the initial value of the co-state variables using the
initial value of the control angles: λR(0) = 0.2235, λr(0) =
−0.2235, and λθ(0) = −6.6215 .The optimal control strate-
gies of three players are shown in Figure 2 and the optimal
states trajectories of three players are shown in the Figure 3.
The optimal motion trajectories of three players are shown
in Figure 4. The ’o’ and ’*’ respectively represent the initial
point and the terminal point of three players. We noted that
the Defender captured the Attacker at 4.6s. That is to say, the
Defender and the Target win the game.

Example2: We give the initial conditions r0 = 3, θ0 =
2.9rad, λ0 = 0.5rad, and the other parameters are same
as the parameters in example 1. Then we have λR(0) =
34.7858, λr(0) = −37.1870, and λθ(0) = −17.2051. The
optimal control strategies and the optimal states trajectories
are shown in Figure 5 and Figure 6, respectively. The optimal
motion trajectories of three players are shown in Figure 7. We
noted that the Attacker captured the Target at 10.5s. That is
to say, the Attacker win the game.

Example3: Based on the initial conditions of exam-

Figure 2: The optimal heading angles of three players in Ex-
ample1

Figure 3: The optimal state trajectories of three players in
Example1

ple1,we change the initial conditions r0 = 3, θ0 = 1.5rad,
and λ0 = 0.5rad. The results of game are shown in Figure 8,
Figure 9 and Figure 10. We noted that the game continues at
all times and no one can win the game.

5 CONCLUSIONS

In this paper, we formulate an Attacker-Target-Defender
mixed differential game and solve the optimal solutions. In
this game, two pursuit-evasion games are described and two
target sets are determined. The Attacker plays two roles, and
the Target and the Defender cooperate with each other. We
provide the optimal strategy for each player. By estimating
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Figure 4: The optimal motion trajectories of three players in
Example1

Figure 5: The optimal heading angles of three players in Ex-
ample2

Figure 6: The optimal state trajectories of three players in
Example2

the initial value of the control variables, we obtain the nu-
merical solutions of this problem and illustrate the simulation
results. In different initial conditions, three players adopt this
optimal strategies may cause different outcome: the Attack-
er or the team of Target and Defender wins the game, even
more no one wins the game. In the further, we will analyze

Figure 7: The optimal motion trajectories of three players in
Example2

Figure 8: The optimal heading angles of three players in Ex-
ample3

Figure 9: The optimal state trajectories of three players in
Example3

the winning conditions for each player involving the initial
position,speed ratio, capture radius and the weighting coeffi-
cients. Also, we will construct such a barrier to delineate the
winning region for each player and obtain a complete solution
for this game.
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Figure 10: The optimal motion trajectories of three players in
Example3
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