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ABSTRACT

In order to design the good controller for an un-
manned aerial vehicle (UAV), an accurate math-
ematical model of aircraft must be constructed
first. Geometry and mass of an aircraft are im-
portant factors in flight mechanics and in the cal-
culations of stability and natural frequencies of
its flight modes, which are of great importance
in controller designing process. In this paper,
comparison between the formulae of the large
aircrafts applied on small UAVs scale, XFLR5
as a numerical commercial vortex lattice method
(VLM) program and experimental data obtained
from flight tests is made to investigate their ac-
curacy.

NOMENCLATURE

c aircraft chord

CL airplane lift coefficient in steady state condition

CLα variation of airplane lift coefficient with angle of at-
tack

Cmα variation of airplane pitching moment coefficient
with angle of attack

Cmq variation of airplane pitching moment coefficient
with pitch rate

g gravitational acceleration

Ixx moment of inertia around fuselage axis

Iyy moment of inertia around wing axis

Izz moment of inertia around normal to X and Y axes

m aircraft mass
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Mα Pitch angular acceleration per unit angle of attack

Mα̇ Pitch angular acceleration per unit rate of change of
angle of attack

Mq Pitch angular acceleration per unit pitch rate

MTα Pitch angular acceleration per unit angle of attack
due to thrust

Mu Pitch angular acceleration per unit change in speed

r̄2z dimensionless MAV radius of inertia along the wing

S reference area

Tu Pitch angular acceleration per unit change in speed
due to thrust

U1 cruise velocity

Xα forward acceleration per unit angle of attack

Xu forward acceleration per unit change in speed

Zα vertical acceleration per unit angle of attack

Zα̇ vertical acceleration per unit rate of change of angle
of attack

Zq vertical acceleration per unit pitch rate

ZTu forward acceleration per unit change in speed due to
thrust

Zu vertical acceleration per unit change in speed

θ pitch angle

µ dimensionless aircraft density

ρ air density

φ roll angle

ψ yaw angle

ωn,lp natural frequency long mode

ωn,sp natural frequency short mode

1



1 INTRODUCTION

Since the UAVs (including mini and micro) are designed
according to the procedure used for the large aircrafts, the
stability calculations usually also follow the same formulae
derived for the large aircrafts, but the geometrical scale is
much smaller. So, the forces which affect the UAV change
their order of power nonlinearly and some assumptions for
the manned aircrafts cannot be valid in our case, and we are
to introduce new assumptions which are not valid for the
manned ones. The attempts of preliminary investigations
were conducted previously [1, 2] and now it is being investi-
gated in more detail.
It is well known from flight mechanics that if any disturbance
occurred to the aircraft (as gust wind or control surface
deflection) the stable aircraft try to damp this disturbance
and return to its initial state in a way similar to mass-damper-
spring system; oscillations are to be damped to zero. The
aircraft has two longitudinal independent oscillations; short
mode and long mode. Short mode oscillation is due to
variation of angle of attack and the long mode oscillation is
due to speed variation. So we can model these motions as
two different simple mass-damper-spring systems. In case of
damped vibrations, there are 2 definitions for the frequency;
the damped frequency and the undamped / natural frequency.
In this paper, the natural frequencies are considered.
In order to design a control system for an aircraft, the main
step is to make a mathematical model of flight mechanics for
the aircraft. The controller’s accuracy depends on the accu-
racy of the mathematical model with respect to the physical
model. Even a simple PID control could be used to make the
required response if the mathematical model was accurate
enough. The goal of this research is to understand how
accurate the calculations based on the traditional formulae
with respect to the experimental values are.
In this research, we investigate the formulae and some
assumptions of calculating the natural frequencies of the lon-
gitudinal short and long modes mentioned by J. Roskam[3],
D. Hull[4], and I. Ostoslavsky[5] and compare their results
with the numerical VLM calculations from XFLR5 which
is mainly designed for small UAVs[6] then these results are
compared to real measurements of the natural frequencies
obtained from UAV ”Sonic 185” at flight.

2 PROCEDURE

For an aircraft, we can model its longitudinal motion as
fourth order equation which - under some conditions - can
be divided into two second order equations, short and long
period modes. Roskam and Ostoslavsky considered this tech-
nique but with different procedure. Roskam’s procedure[3]
-and same for Hull[4] - starts from the aerodynamic coef-
ficients, then calculating the forces on the aircraft then cast
them together to create the coefficients of the main character-
istic equation. By deep understanding of the physics behind

the aircraft forces and their order of magnitude and vibra-
tions, Hull and Roskam have made an approximate solutions
for obtaining the natural frequency directly instead of solving
the main fourth order equation by linking the forces directly
to the natural frequency and damping ratio.
Ostoslavsky has derived the characteristic equation by a dif-
ferent method. Instead of calculating the forces, he used
directly the non-dimensional aerodynamic coefficients and
cast them together to get the coefficients of the characteristic
equation. By deep understanding of the mathematics behind
the characteristic equation, he decomposed the fourth order
equation into two second order ones, each one describe a sin-
gle flight mode under the fact that the natural frequency of the
short mode is much bigger than the long mode.
In numerical methods as VLM as used in XFLR5 - the air-
craft is divided into small panels. For each panel, a normal
vector is set to be perpendicular to the camber. Also a combi-
nation of source, doublet, and vortex are added in one quarter
of the panel, and a control point is added after three quar-
ters of the panel to achieve the no-penetration condition[7].
By solving N equations obtained from the N panels, the total
vortex strength is determined then the normal and tangential
forces acting on the aircraft are obtained then converting them
into non-dimensional coefficients. The next step is to import
these values which are depend on the angle of attack - into
the state space matrix and obtain the eigen values of the ma-
trix which are a combination of natural frequency and damp-
ing ratio and they can be separated easily. XFLR5 is used
because it is open source and used widely for UAV design
process and also has the ability to obtain the natural frequen-
cies and damping ratios.
Experimental data are obtained from real flight measurements
using two different devices; the gyroscope of ArduPilot[8]
with low sampling frequency and SmartAP[9] which has
higher sampling frequency. Two methods are used in measur-
ing the pitch angle; Euler angles from the gyroscope directly
and quaternions to investigate the error between them. More
details are in section 4.

2.1 The aircraft
The UAV used in this research is Sonic 185 of

DYNAM[10]. Aircraft parameters and geometry are
measured and listed in tables 1 and 2.

2.2 Airfoil
There is no data about the airfoils used in the wing and

empennage of the airplane investigated. So, it was decided to
find nearly similar profile from the known ones. Estimation of
the airfoil is based on measurements of the thickness to chord
ratio and the position of maximum camber and searching for
a similar airfoil. Given that thickness to chord ratio is 10.7%
at 39%, this leads to choose the airfoil E231 of Eppler series
which shows good convergence as its thickness to chord ratio
is 12.3% at 39.4%. For the empennage, NACA 0006 is used.



Property value
Mass [kg] 1.183
Ixx [kg.m2] 0.108
Iyy [kg.m2] 0.065
Izz [kg.m2] 0.122
Cruise velocity [m/s] 8
Aspect ratio 10.295
Span [m] 1.85
Wing area [m2] 0.33
Center ofmass from leading 0.07
edge of root section [m]

Table 1: Aircraft parameters.

Property Wing Horizontal Vertical
Tail Tail

Aspectratio 10.295 4.92 2.03
Rootchord [m] 0.205 0.125 0.2
Tipchord [m] 0.06 0.02 0.115
Mean chord [m] 0.189 0.1 0.16
Span [m] 1.85 0.48 0.16
Area [m2] 0.33 0.046 0.03
Sweep angle from 6.71 18.17 23.25
Leading edge [degree]

Table 2: Sonic 185 geometry.

3 CALCULATIONS

3.1 Aerodynamic coefficients

The aerodynamic and stability coefficients are calculated
according to Roskam procedure[11] and the results are
shown in table 3. It is noticed that Cmq in Roskam formulae
is twice the one in Ostoslavsky formulae by definition.

Derivative Lift coeff. Drag coeff. Moment coeff.
α 5.253 0.377 -0.47
q 7.312 0 Roskam:-8.59

Ostoslavsky: -4.295
α̇ 4.655 0 -4.1337

Table 3: Aerodynamic derivatives

3.2 Roskam and Hull procedure

In this section we will consider the procedure of Roskam
(exact and approximate) and Hull together because they have

quite similar formulae and results as a sequence.
The characteristic equation of Roskam[3] is

Ax4 +Bx3 + Cx2 +Dx+ E = 0 (1)

where;
A = U1 − Zα̇ (2)

B = (−(U1 − Zα̇)(Xu +XTu +Mq) − ZαMα̇(U1 + Zq)
(3)

C = (Xu +XTu)[Mq ∗ (U1 − Zα̇) + Zα +Mα̇(U1+
Zq)] +MqZα − ZuXα +Mα̇g sin θ1−

(Mα +MTα)(U1 + Zq)
(4)

D = g sin θ1[Mα +MTα −Mα̇(Xu +XTu)]+
g cos θ1[ZuMα̇ + (Mu+MTu)(U1 − Zα̇)]+

(Mu +MTu)[−Xα̇(U1 + Zq)] + ZuXαMq+

(Xu +XTu)[(Mα +MTα)(U1 + Zq) −Mq ∗ Zα]

(5)

E = g cos θ1[(Mα +MTα)Zu − Zα(Mu +MTu)]+
g sin θ1[(Mu +MTu)Xα − (Xu +XTu)(Mα +MTα)]

(6)
After analysis, the results showed that ωn=1.0066 Hz for

the short mode, and 0.178 Hz for the long mode. It is impor-
tant to mention that the damping ratio of the short mode is
0.96.
The approximate solution for the natural frequency of the
short and long modes according to Roskam are:

ωn,sp =

√
Zα ∗Mq

U1
−Mα (7)

ωn,lp =

√
−Zu ∗ g
U1

(8)

The results are: ωn=1.0501 Hz for the short mode, and 0.2835
Hz for the long mode.
According to Hull method[4], the approximate formulae for
short mode and long mode are

ωn,sp =

√
Zα ∗Mq −Mα ∗ (U1 + Zq)

U1 + Zα̇
(9)

ωn,lp =

√
−Zu ∗ g
U1 + Zq

(10)

The results are quite similar to the approximate Roskam for-
mulae as shown: for short mode,ωn=0.9888 Hz and for long
mode ωn=0.302 Hz.

3.3 Ostoslavsky procedure
Ostoslavsky method [5] is good method for direct deter-

mination of what parameters affect the frequencies. He in-
troduced the characteristic equation of the system as fourth
order function in its eigen values as:

F = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 (11)



where the coefficients of this equations under the steady
state condition are:

a1 = CLα − Cmα̇ + Cmq

r̄2z
(12)

a2 =
Cmα ∗ µ+ CLα ∗ Cmq

r̄2z
(13)

a3 =
−2CL[(CL − CDα) ∗ Cmq + CL ∗ Cmα̇]

r̄2z
(14)

a4 =
−2C2

L ∗ µ ∗ Cmα
r̄2z

(15)

and
r̄2z =

Iyy
m ∗ c2

(16)

µ =
2m

ρ ∗ S ∗ c
(17)

By solving equation (11), we obtain the eigen values of the
system which indicate their natural frequencies and damping
ratios.
In order to simplify the decomposition of the characteristic
equation, Ostoslavsky supposed that the eigen values of the
long mode is negligible with respect to the short mode, and
finally the natural frequencies of the short and long modes
can respectively obtained from:

λ2 + a1λ+ a2 = 0 (18)

λ2 +
a2a3 − a1a4

a22
λ+

a4
a2

= 0 (19)

The results for the exact equation are ωn = 0.1787 Hz for the
long mode but for the short mode the eigen values were real
which means that the short mode vibration is over damped.
The results of the simplified equations are ωn=0.1758 Hz for
the long mode and the short mode also is over damped.

Another approach is used to identify the natural frequency
in this case. It is well known from the definition of the eigen
value that:

λ = −ωn ∗ ζ ±
√

(ωn ∗ ζ)2 − ω2
n (20)

so the natural frequency can be calculated from the analysis
of the left and right parts individually and comparing them
with the formula of the roots of the second order equation.
Using this ’equation-similarity’ approach, the natural fre-
quency is calcuated and the result is 1.0605 Hz. This is close
to the result obtained by Roskam procedure.

3.4 XFLR5 Calculations
The UAV is drawn on XFLR5 using the measurements

from tables 1 and 2 as shown in figure 1 . It should be noted
that there is no fuselage in this model.
Calculation done shows that ωn=1.129 Hz for the short mode,
and 0.178 Hz for the long mode.

Figure 1: Sonic 185 drawing in XFLR5

3.5 Experiment and Experimental Data

The experiment was conducted for the steady cruise flight
of the aircraft with two measuring devices. To prevent the
additional disturbances, the plane was controlled in manual
mode without autopilot stabilization. During the flight the
aircraft was balanced so as it moves straight at the constant
altitude and with the constant velocity. Flight parameters
were controlled form the ground station of Ardupilot by
means of telemetry link.
Two sets of sensors were used independently for more accu-
racy and doubling the amount of data and also to notice the
difference between results for different sampling frequency
and different ways to measure flight angles. First set is the
data obtained from the gyroscope of the autopilot of type
ArduPilot Mega which measure pitch, roll, and yaw angles
of the aircraft and has sampling frequency of 3.7 Hz. The
second set of data is from SmartAP that can measure with
sampling frequency up to 250 Hz and use quaternions which
provide a convenient mathematical notation for representing
rotations and orientations of objects in three dimensions. It
has some benefits compared to Euler angles; they are simpler
to compose and avoid the problem of gimbal lock. Compared
to rotation matrices they are more numerically stable and
efficient[12].
In order to convert quaternions to pitch, roll, and yaw,
transformation of equation (21) [13] is used. Quaternions
and their equivalent Euler angles are shown in figures 2 and
3 respectively.

 φ
θ
ψ

 =

 tan−1 2(q0q1+q2q3)
1−2(q21+q22)

sin−1 2(q0q2 − q1q3)

tan−1 2(q0q3+q1q2)
1−2(q21+q22)

 (21)



Figure 2: Quaternions estimated during flight.

Figure 3: Euler angles calculated from quaternions.

Both data sets retrieved are processed by Fast Fourier
Transform[14] once without filter and another time with
filter. While examining the signal without filter, it is taken
into account the signal first and last points have the same
values to prevent aliasing as illustrated in figure 4.

Figure 4: Sample for a signal which first and last points have
the same values to prevent aliasing.

Data are filtered by Hanning filter[15, 16] to prevent leak-
age in the transform[17]. Such filter is chosen for this case
because:

1. we are investigating a random signal with unknown fre-
quency.

2. the vibrations are within narrow band.

3. the exact amplitude is not as important as the value of
the frequency itself.

4. overcome the noise and get the mean value of the fre-
quency.

For these four reasons, the most suitable filter is Hanning
filter[17]. Data signal of pitch angle are shown in figure 5.

Figure 5: Pitch angle during flight.

Fast Fourier Transform -or simply FFT- is used to convert
discrete time samples from time to frequency domain. After
processing and filtering, some frequencies appeared close to
each other with comparable amplitudes. After some averag-
ing, the results show a freq of 0.18±0.01 Hz. Vibrations due
to motor are not captured because its frequency is rather high
but it act at noise all over the signal. Figures 6 to 8 show
samples of the obtained results at different periods of time.

Figure 6: Sample 1 of the processed signal .



Figure 7: Sample 2 of the processed signal .

Figure 8: Sample 3 of the processed signal .

4 ANALYSIS AND DISCUSSION

Concerning the mismatch of Cmq definition between
Roskam and Ostoslavsky, although this conflict may be a
problem but the Cmq used in the formula of Roskam for the
natural frequency is divided by factor of 2, so the result is the
same as Ostoslavsky. This shows that every procedure must
follow its own definition for the aerodynamic and stability
coefficients.

It is noticed that approximate methods of Roskam and
Hull overestimate the long mode frequency. This is because
they neglected some terms under the assumption that µ
-which indicates the mass of the aircraft - is rather big
compared to CLα ∗ Cmq but this condition is not applicable

in the UAVs.

Considering the devices used in the experimental mea-
surement, the low-frequency device could not measure
frequencies more than 2 Hz because it need more sampling
frequency. The signal of the pitch angle from the gyroscope
and the transformed one are quite similar as shown in figure
(9) except in the peak points since the high frequency device
can capture it better.

Figure 9: Sample from both signals together.

By comparing the calculations with the experimental
results (table 4), it is obvious that the long mode frequencies
obtained from Roskam exact formula, Ostoslavsky formulae
and XFLR5 are within the allowable region of the experimen-
tal result. For the short mode frequency, Ostoslavsky method
shows that this motion has no oscillations, Roskam methods
also shows that the damping ratio is 0.96, so even if it exists,
it will be rather difficult to be observed since the damping
ratio decrease the amplitude in the frequency domain. In
order to clarify this point, this problem will be considered
again with additional calculations and measurements.

Method Short Long
Roskam - exact 1.0066 0.178
Roskam - approx 1.0501 0.2835
Hull (approx) 0.9888 0.302
Ostoslavsky - exact – 0.1787
Ostoslavsky - approx 1.06051 0.1758
XFLR5 1.12 0.178
experiment – 0.18 ± 0.01

Table 4: Results of natural frequencies of all methods.

. Regarding the assumption of that the long mode
frequency is much lower than the short mode frequency,
these two frequencies obtained from the results are compared

1using the ’equation-similarity’ approach in subsection 3.3



to each other. In Roskam case, the long mode frequency is
17.7% of the short mode. In XFLR5, long mode frequency
is 15.9% of the short mode so we can conclude that the
assumption of short mode is much bigger than the long mode
is valid for small UAVs.

5 CONCLUSION

This research compares the natural frequencies of longi-
tudinal motion calculated by the usual methods of estimation
for the manned aircrafts found in the references of Roskam,
Hull, and Ostoslavsky, and the numerical VLM program
XFLR5 with experimental values of real flight measured by
two different devices with different sampling frequencies
and methods of measuring the angles. It is found that there
is no dependence of the experimental data on the method of
measuring the flight angles or on sampling frequency. The
assumption of long mode can be neglected with respect to
the short mode is valid. For the long mode, exact Roskam,
Ostoslavsky, and XFLR5 estimate the frequency within range
of the experimental results while the methods of Roskam
approximation and Hull are not correct in case of small
UAVs. As for the short mode, we encountered the situation
that our data are near the critical point and a set of additional
analysis and experiments must be provided. It is noted
that results from analytical methods are valid only for the
aerodynamic coefficients defined in the same procedure.
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