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ABSTRACT

Monocular vision is increasingly used in Micro
Air Vehicles for navigation. In particular, op-
tical flow, inspired by flying insects, is used to
perceive vehicles’ movement with respect to the
surroundings or sense changes in the environ-
ment. However, optical flow does not directly
provide us the distance to an object or velocity,
but the ratio of them. Thus, using optical flow
in control involves nonlinearity problems which
add complexity to the controller. To deal with
that, we propose an algorithm to use an extended
Kalman filter to estimate the distance and veloc-
ity of the vehicles from optical flow while ap-
proaching a surface, and then use these estimates
for control. We implement and test our algorithm
in computer simulation and on-board a Parrot
AR.Drone 2.0 to demonstrate its feasibility for
MAVs landings. Both results show that the algo-
rithm is able to estimate height and velocity of
the MAV accurately.

1 INTRODUCTION

Micro air vehicles (MAVs) have been widely used due to
its small size and enormous capabilities. These two advan-
tages are also two of the biggest challenges to the MAVs as
the amount of payloads can be carried on-board and the com-
puting power are limited [1]. Therefore, light-weight sensors
which can provide rich information about the surrounding of
the MAVs are highly desired. In addition, effective and ef-
ficient algorithms are needed to estimate useful inputs to the
MAVs from the sensory information [2].

In fact, flying insects have the capabilities to perform
complex tasks by only using their bare eyes and a tiny brain.
For instance, honeybees heavily use optical flow to perceive
the environment and avoid dangerous objects while flying
[3, 4]. Optical flow refers to visual relative motion of the
observer’s eyes or a camera with respect to the objects in the
scene [5]. This information tells us not only how fast the
camera moves, but also how close it is relatives to the things
it sees. However, optical flow does not give us the absolute
distance to a surface or velocity of the camera directly.

For a particular case when an MAV is approaching the
ground during landing, a downward-facing camera on-board
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the MAV perceives divergent pattern of the optical flow, or so-
called flow divergence. Flow divergence is the ratio of veloc-
ity to distance to a surface in the same direction and it is the
reciprocal to time-to-contact. By only keeping the flow diver-
gence constant, the MAV is able to perform smooth landing
using a monocular camera [6, 7, 8, 9]. In fact, using directly
the flow divergence in control involves the problem of non-
linearity in the controller which is complex, and is sensitive
when the MAV is close to the ground [10, 11].

The common state estimation techniques using a visual-
inertial system in MAVs combined the advantages of using
an Inertial Measurement Unit (IMU) and a camera sensor for
real-time computation [12, 13, 14]. Although these sensors
are usually installed on-board the MAVs, it is definitely an
added advantage for MAVs if only a monocular camera is
used for navigation. Some recent approaches used ‘efference
copies’ or available control input information fused with flow
divergence, to estimate distance in a constant flow divergence
control [15, 16]. In [15], they used the flow divergence and
the control input that moved a camera along a track toward
an image scene to first estimate the initial distance. Since
the constant flow divergence control will result in exponen-
tial decay of distance, they simplified the estimation prob-
lem to exponential propagation of distance after obtainingthe
initial value. In [16], a stability approach that detects self-
induced oscillation caused by high controller gains and uses
these gains to estimate distance was introduced.

The main contribution of this paper is to estimate height
(distance to ground) and vertical velocity of an MAV using
a monocular camera while approaching a surface, e.g. in the
landing phase. The difference from the above-mentioned ap-
proaches is that we propose a straightforward algorithm that
uses an extended Kalman filter (EKF) to ‘split’ the height and
vertical velocity of an MAV from flow divergence. The sig-
nificant advantage of this method is that we simplify the non-
linear control of the constant flow divergence to a linear con-
trol that uses height and velocity estimates. Thus, this pro-
vides the possibility of using some optimization techniques
with vision output from a monocular camera to improve the
performance of the control.

The remainder of the paper is set up as follows: In Sec-
tion 2, we provide some knowledge about flow divergence
and constant flow divergence guidance and control strategy.
Section 3 describes the proposed EKF-based height and ve-
locity estimation using flow divergence and vision algorithms
used to estimate flow divergence with a monocular camera.
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Then, Section 4 shows the results of estimation in computer
simulation while in Section 5 we also show the estimation
results and landing using the estimates in flight. Finally, a
conclusion with future works is drawn in Section 6.

2 BACKGROUND

2.1 Flow Divergence

For vertical landings of an MAV, flow divergence (D) or
visual looming as shown in Fig. 1 can be computed as the
ratio of its vertical velocityVZ to height from the groundZ:

D =
VZ

Z
. (1)

When the MAV is approaching the ground, we measure pos-
itive Z, negativeVZ , and thusD < 0 according to the coor-
dinate systems shown in Fig. 2. Camera coordinate system is
assumed to be coincided with the body coordinate system.

Figure 1: Divergence of optical flow vectors (flow diver-
gence) when the observer is approaching a surface.
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Figure 2: MAV body (xb, yb, zb) and world (xw, yw, zw)
coordinate systems.

2.2 Constant flow divergence Guidance and Control

Constant flow divergence approach has been used for ver-
tical landing of the MAVs. This approach controls the verti-
cal dynamics of the MAVs by tracking a constant flow diver-
gence. WhenD equals to a constantc, we can derive from
Eq. 1 the heightZ = Z0e

−ct, and velocityVZ = −cZ0e
−ct,

whereZ0 is the initial height. This shows that both height

and velocity will decrease exponentially and eventually be-
come zeros when touching the ground.

A proportional feedback controller is used to track the de-
sired flow divergenceD∗ or c as shown in Eq. (2):

µ = Kp(D
∗ −D), (2)

whereKp is the gain of the proportional controller.
A double integrator system is used to model the dynamics

of an MAV towards the ground in one dimensional space. The
continuous state space model can be written as:

ṙ(t) = f
(
r(t), µ(t)

)
= A · r(t) +B · µ(t)

=

[
0 1
0 0

]
r(t) +

[
0
1

]
µ(t), (3)

y(t) = h
(
r(t)

)
= [r2(t)/r1(t)] = D, (4)

wherer = [r1, r2]
T = [Z, VZ ]

T andµ is the control input.
It is clear that the model dynamics in Eq. (3) are linear

but the observation in Eq. (4) is nonlinear. Fig. 3 shows a
time response of the system when tracking a constant flow
divergence. In this figure, we can see that the MAV accel-
erates in the first2.5 s and then decelerates to zero velocity
to touch the ground. Both height and velocity of the MAV
descrease exponentially to zero in the end.
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Figure 3: HeightZ, velocityVZ , and flow divergenceD of an
MAV during landing using constant flow divergence strategy
(D∗ = −0.3 s−1) with control inputµ.

3 EKF-BASED HEIGHT AND VELOCITY ESTIMATION

AND CONTROL USING FLOW DIVERGENCE

An overview of the methodology is presented in Fig. 4.
Images captured from a camera are served as the inputs to
the software while the control input commands the actuator
to control the MAV. In this section, we describe: (1) the ex-
tended Kalman filter (EKF) algorithm using flow divergence
and efference copies to estimate height and velocity of an
MAV for landing control, (2) the vision method to compute
flow divergence, and (3) the controller.
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Figure 4: An overview of the methodology.

3.1 Extended Kalman Filter

In practice, the flow divergence is computed using an
on-board processor. Therefore, we used a discrete-time ex-
tended Kalman filter to estimate the height and vertical ve-
locity of the MAV. The system model and observation model
are shown in Eq. 5 and 6, respectively.

ẋ(t) = f
(
x(t), µ(t)

)
+w(t). (5)

zk = h
(
xk

)
+ vk. (6)

wheref(·) andh(·) are the system matrix and the observation
matrix which are obtained from Eq. 3 and 4.w(t) andvk

are the system noise and observation noise which are both
assumed to be zero mean multivariate Gaussian process with
covarianceQ andR, respectively.

Several computational steps taken in EKF when the up-
date of flow divergence is obtained are shown below:
a) One-step ahead prediction:

x̂k|k−1 = x̂k−1|k−1 +

tk∫

tk−1

f
(
x(τ), µ(τ)

)
dτ (7)

b) Covariance matrix of the state prediction error vector:

Pk|k−1 = ΦkPk−1|k−1Φ
T
k + ΓkQΓ

T
k (8)

whereΦ andΓ are discretized matrices ofA andB, and can
be computed as below:

Φk =

[
1 tk − tk−1

0 1

]
, Γk =

[
(tk − tk−1)

2/2
tk − tk−1

]
(9)

c) Kalman gain:

Kk = Pk|k−1H
⊤
k

(
HkPk|k−1H

⊤
k +R

)−1
(10)

where

Hk =
∂h

∂x

∣∣∣∣
x̂
k|k−1

=
[
−

x̂2
k|k−1

x̂2
1
k|k−1

,
1

x̂1
k|k−1

]T
(11)

d) Measurement update:

x̂k|k = x̂k|k−1 +Kk

(
zk − h(x̂k|k−1)

)
(12)

wherezk − h(x̂k|k−1) is called the innovation of EKF.
e) Covariance matrix of state estimation error vector:

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T +KkRK

T
k (13)

3.2 Features-based flow divergence estimation

In computer simulation, we used Eq. 1 to compute flow
divergence, while in flight tests, we estimate flow divergence
using Eq. 14 (Proof can be found in [11].). For each image
captured from an on-board camera, corners were detected us-
ing FAST algorithm [17, 18], and tracked in the next image
using Lucas-Kanade tracker [19]. Then, the image distances
between every two corners at one image,d(t−∆t),i and at the
next image,dt,i were computed. By further computing the
ratio ofd(t−∆t),i − dt,i to d(t−∆t),i, we can measure the ex-
pansion and contraction of the flow. We take the arrange of
these ratios and with known time interval between these two
images∆t, we estimated divergence using Eq. 14:

D̂ =
1

n
·
1

∆t

n∑

i=1

[
d(t−∆t),i − dt,i

d(t−∆t),i
], (14)

wheren is the total number of tracked corners. In practice,
the vision output is often noisy. Therefore, we used a low
pass filter to reduce the noise in the estimation.

3.3 Controller

Consider the common way using flow divergence to con-
trol the vertical dynamics of an MAV as shown in Eq. 2, it
involves nonlinearity in the observation (D = VZ/Z). In
MAVs landings, the closer the MAV to the ground, the more
sensitive the flow divergence is. Therefore, a nonlinear con-
troller or a gain-scheduling method with the knowledge of
initial height is needed to deal with the problem.

By using the proposed EKF algorithm, we are able to
‘splits’ the flow divergence into height and velocity. These
two states can then be used to land MAVs using a linear PI
controller as shown in Eq. 15.

µk = KZ1
(x̂1,tk −x∗

1,tk
)+KZ2

k∑

i=1

(x̂1,ti −x∗
1,ti)·∆t. (15)

whereKZ1
andKZ2

are the PI controller gains for tracking
the desired heightx∗

1. A desired landing profile can be cho-
sen by assigning the values ofx∗

1. Note that after obtaining
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both height and velocity, it is possible to improve the control
performance using gain optimization or a linear robust con-
troller.

4 COMPUTER SIMULATION

Before performing flight tests, we simulated the proposed
algorithm presented in Subsection 3.1 in MATLAB to show
the feasibility of the algorithm.

4.1 Landing simulation with simulated control inputs

In the simulation, we generated3000 data (height and ve-
locity) with a timestamp of0.05 s using a set of control in-
puts,µ as shown in Fig. 5e. These data were served as ground
truth for validation. The flow divergence measurement was
generated using Eq. 1 with measurement noise standard devi-
ation of0.001 s−1 as illustrated in Fig. 5d.

By using the control input,µ and the flow divergence
measurement,D, we estimated the height,Z and the velocity,
VZ with the proposed EKF algorithm. Fig. 5 shows estimated
states (Z andVZ ) and their ground truth, innovation of the
EKF, flow divergence measurement, and the control inputs.
In this simulation, we can observe that the estimated height
and velocity converge and follow the ground truth after a few
seconds, even with different initial conditions (Z0 andVZ0

)
than the actual values. In addition, the innovation of EKF
has zero mean meaning that the filter is working correctly.
Simulation results show that the proposed algorithm is able
to estimate the distance to the ground and velocity accurately.

5 EXPERIMENTS AND RESULTS

We implemented the EKF algorithm and vision algo-
rithms presented in Section 3 in Paparazzi Autopilot, an
open source autopilot software [20]. A Parrot AR.Drone 2.0
equipped with a downward-looking camera was used as a
testing platform and all algorithms were running on-board the
MAV. We used anOptiTracksystem to track the position of
the MAV in order to provide the ground truth of its height and
velocityonly for validation purposesand these measurements
were not used in the estimation. In this section, we show the
feasibility of the algorithm by performing two different con-
trol strategies for MAVs landings.

5.1 Landing using constant flow divergence

The first strategy we used in the flight tests is the constant
flow divergence. A flow divergence setpoint was tracked for
the whole landing. Instead of using P controller as described
in Section 2, we used a PI controller to compensate the steady
state error of the tracking. During the landing, the EKF al-
gorithm was running in real-time to estimate the height and
velocity of the MAV.

Fig. 6 shows the estimation results of the landing with
a constant divergence of−0.3 s−1. The initial value of the
height for EKF was set to bêZ0 = 3m which was different
than the true initial height, i.e.Z0 ≈ 2m. In the figure, we
can see that the height estimate converges to the true height,

Time (s)

Z
(m

)

true
estimate

0 50 100 150
0

10

20

(a) Height.

Time (s)

V
Z

(m
/
s
)

true
estimate

0 50 100 150

-0.1

0

0.1

(b) Velocity.

In
n

ov
at

io
n

(1
/
s
)

Time (s)
0 50 100 150

-4

-2

0

2

4×10−3

(c) Innovation.

D̂
(1
/
s
)

Time (s)
0 50 100 150

-0.08

-0.06

-0.04

-0.02

0

0.02

(d) Flow divergence.

µ
(m

/
s
2
)

Time (s)
0 50 100 150

-0.2

-0.1

0

0.1

0.2

0.3

(e) Control input.

Figure 5: EKF-based height and vertical velocity estimation
from flow divergence for landing control.
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even though the initial value is different. In addition, theve-
locity estimate also matches well with the true velocity.

From the landing results, we can observe that this strategy
exponentially decreases both height and velocity to nearly
zero by only tracking a constant flow divergence. In fact,
the drawback of vision algorithms is that when the image is
too dark, the algorithms will not work properly. For instance,
when the camera is too close to the ground, the flow diver-
gence estimate becomes incorrect. To deal with that, we con-
stantly decrease the trim throttle when the MAV is very close
to the ground (Z < 0.2m) to allow the MAV for touchdown.
Another fact is that the flow divergence (D = VZ/Z) will be-
come sensitive whenZ is small. A fine-tuned control gain or
a gain-scheduling method adapted with height is then needed
to solve the sensitivity issue which might cause instability to
the MAV. This issue can be seen from the measured flow di-
vergence in Fig. 6d when the MAV is close to the ground.

To show the reliability of the proposed algorithm, we per-
formed multiple landings with different flow divergence set-
points (D∗ = −0.1 s−1,−0.2 s−1,−0.3 s−1) at different
initial heights (Z0 ≈ 2m, 3m). The same initial guess of the
height (3m) was used in the EKF algorithm for these flight
tests. Fig. 7 shows the height and velocity estimates using
EKF algorithm in different landings. In this figure, we can
see that both height and velocity estimates match well with
the true values. With a larger setpoint, the MAV landed faster
with the exponential decrease in both height and velocity. Be-
sides, these results also show that a good guess of the initial
height has a faster convergence of the estimates.

The height and velocity estimated from EKF can then be
adapted to tune the controller gain in real-time for the con-
stant divergence landing. By doing that, oscillations due to
improper chosen gain can be reduced, and thus a smooth land-
ing can be achieved by only using a monocular camera.

5.2 Landing using height and velocity from EKF

The second strategy we used for landing is tracking a
height profile using the estimates from EKF. To this end, the
landing begins by (1) giving an initial excitation to the MAV,
or (2) using constant divergence strategy, for the first few sec-
onds. This can ensure that the EKF converges and the con-
troller tracks the right height estimate.

This first initialization was performed in an indoor flight
test by giving a block input as the excitation as shown in
Fig. 8e to the MAV for the first0.5 s. This allowed the MAV
to go down or move in order to ‘observe’ flow divergence and
initialize the EKF algorithm. After that, the controller used
the estimates from the EKF to track a desired profile or set-
points for landing.

Fig. 8 shows the height and velocity estimates from EKF
compared with their ground truth, innovation of EKF, flow
divergence from vision algorithms and from the ground truth,
and the control input. After giving the initial excitation,
the MAV started to track a height profile represented by the
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Figure 6: Landing with constant flow divergence (D∗ =
−0.3 s−1) with EKF-based height and velocity estimation.
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Figure 7: Multiple landings with different flow divergence setpoints (D∗ = −0.1 s−1,−0.2 s−1,−0.3 s−1) at different initial
heights (Z0 = 2m, 3m). The estimates are shown with blue lines while their true values are represented by red lines.

black dash-dot line. This profile was generated usingx∗
1,k =

x∗
1,k−1 + x∗

2 ·∆t with x∗
1,0 = Ẑ0 andx∗

2 = −0.2ms−1. The
results show that the height and velocity can be estimated ac-
curately using the proposed EKF algorithm and further used
in the controller for landing. The zero mean innovation of the
EKF also tells us that the filter was working properly.

The second initialization was conducted in an outdoor
flight by tracking a desired divergence for the first few sec-
onds as shown in Fig. 9. SinceOptiTracksystem is not avail-
able for outdoor flight, we can only use the onboard sensor,
such as Sonar, to provide the true height and velocity (dZ/dt)
for accuracy comparison.

The landing started at5 m and the desired divergence of
−0.2 s−1 was tracked. After2 s, the controller was switched
to track a height profile as presented in Fig. 9a which was gen-
erated based on the velocity estimate at the instance when the
controller was switched (≈ −0.8 ms−1). In fact, the height
profile can also be created based on a desired velocity (see
Fig. 8). The results show that both height and velocity es-
timates are accurately estimated, compared to the measure-
ments from Sonar. In addition, the height estimate can also
be used in landing control. It can also be observed from Fig. 9
that the estimates converge soon after the landing starts, thus
the time interval for initialization can also be shortened.Note
that the previous indoor flights were performed to validate the

proposed algorithm using the highly accurateOptiTracksys-
tem while outdoor flight was conducted to show the robust-
ness of the algorithm to the challenging outdoor environment.
Some videos of the flight tests are available online1.

6 CONCLUSION

In conclusion, we proposed an algorithm to use an ex-
tended Kalman filter (EKF) to estimate height and vertical
velocity of an MAV from flow divergence while approaching
a surface, and use these estimates for landing control. This
algorithm was tested in computer simulation as well as in
flight tests. The results show that the proposed EKF approach
managed to estimate accurately the height and velocity of the
MAV compared to the ground truth provided by the exter-
nal cameras. In addition, the estimates were used in the con-
troller to land the MAV. The proposed approach avoids the
complexity of having nonlinearity in the constant flow diver-
gence based landing by ‘splitting’ the flow divergence into
height and velocity which allows the use of the linear con-
trollers. For future works, adaptive Kalman filter can be used
to improve the estimation when vision data is hardly observ-
able and strong external disturbances are involved. Also, the
algorithm opens up the possibilities to use gain optimization
techniques to improve the performance of the control.

1Experiment videos:https://goo.gl/KiJurr
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Figure 8: Landing with a linear controller using estimates
from EKF (Indoor Flight).
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Figure 9: Landing with a linear controller using estimates
from EKF (Outdoor Flight).
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