
A 3D Rotating Laser Based Navigation Solution for Micro Aerial
Vehicles in Dynamic Environments

Hailong Qin2, Mo Shan1, Yingcai Bi2, Jiaxin Li2,Menglu Lan2

F. Lin1, Y.F. Zhang 3 and Ben M. Chen2

Abstract— In this article, a 3D rotating laser-based navigation
framework for a micro aerial vehicle (MAV) to fly autonomously
in the dynamic environment is presented. The proposed nav-
igation framework consists of a 6-degree of freedom (DoF)
localization module and a 3D dynamic mapping module. By
extracting and aligning 3D point cloud features from a dense
point cloud which generates by a self-designed rotating 2D
laser setup, we are able to solve the laser distortion issue while
estimating the 6-DoF pose of MAV. In addition, the dynamic
mapping module could further eliminate the dynamic trail so
that a clean dense 3D map can be reconstructed.

Our proposed navigation framework detects the dynamic
target based on the spatial constraints and propagates without
dense point cloud clustering. Through filtering the detected
dynamic obstacles, the proposed localization approach is proven
to be robust to the environment variations.

We demonstrate the utility of our proposed framework in
both real indoor environment with highly dynamic obstacles
using a customized MAV platform.

I. INTRODUCTION

The applications of MAV on autonomous tasks have been
intensively studied [1] [2] [3]. The fundamental requirements
for automation of MAV are (1) Onboard sensing capability.
The MAV should utilize the onboard sensors such as Laser
scanner [4], vision [5]and other sensors (sonar and radar)[6]
to obtain the information about an unknown environment.
(2) Onboard processing capability. Based on the sensing
information, the onboard processor should achieve state
estimation for control and environment mapping for planning
[7]. (3) Onboard state feedback capability. the state estima-
tion from external sensors should be fused with onboard
inertial measurement unit (IMU) or the other sensors for a
closed feedback control loop [8]. The above capabilities are
critical to the safety navigation of MAV. More importantly,
they are in fact interdependent, performance deterioration
of single component could degrade the whole autonomous
system. We can formalize the mentioned capabilities into
sensing, perception(includes state estimation and mapping)
and control modules correspondingly.
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The sensing and perception modules are challenging for
MAVs because of the size and computational power con-
straints. To full fill the autonomous navigation requirements,
the following sensor setup is selected in general:

1) Laser, usually known as laser range finder (LRF) is a
highly precise active sensor which can provide planarly
range measurement to a large range field. Comparing
with the passive sensor such as cameras, the laser range
finder is still effective in low illumination environment.
And the commercial product such as Hokuyo UTM-
30LX-EW 2D laser scanner is able to achieve a 30 Hz
measurement update which is beneficial to the state
estimation. However, the 2D LRF itself cannot measure
the 3D environment completely due to the limited
vertical measurement [9]. This disadvantage could lead
to the failure of MAV autonomous tasks because of the
absent of information about the environment for state
estimation and obstacle avoidance.

2) Camera, either monocular or multiple camera system
is considered as an alternative to the active LRF sensor.
The camera system is low in both weight and power
consumption makes it promising to the MAV platform.
And the camera system is a natural 3D sensing device
which full of texture and color information [10]. Yet,
the information from camera system is still insufficient
to the MAV platform in certain conditions such as
illumination variation and low texture environment
[11].

Regarding the execution of autonomous task of MAVs, the
key requisite is to locate itself in a GPS-denied environment.
Moreover, the obstacles should be reliably detected in real
time to generate an obstacle-free path for flying [12]. Howev-
er, it is still challenging to achieve these requirements by the
previously mentioned sensor setup individually. Therefore, a
combination of these two sensors [13]or the RGBD camera
[14]is proposed. Among all the proposed solutions, the
vision-based approach is selected as the basic module in the
algorithm which still could not resolve the illumination issue
[15].

Beyond the sensor setup choice, the perception module
is not longer dealing with the static environment alone.
Traditionally, the basic assumption for the simultaneous
localization and mapping (SLAM) is the static environment
due to the reason that the current map measurement should
be registered into previous global map. The realistic condi-
tion includes a lot of moving target which could confuse the
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perception algorithm. Even though the vision based approach
could reject the moving target in the motion estimation phase
through iterative process [16]. However, this approach is not
very effective to the slow moving target. In addition, this pro-
cess is computationally expensive. To the whole autonomous
system, the moving target could degrade the performance
in following conditions: (1) If the perception module still
works (can estimate the ego-motion of MAVs), then the map
cannot update properly in the dynamic environments and
leave dynamic trails [17]. The dynamic trails could further
affect the planning since the obstacles cannot be properly
detected. (2) The worst condition is the failure of perception
module because of the environment is no longer static,
the ego motion of MAVs could not be estimated anymore.
Burgard et al. [18] propose to differentiate the dynamic and
static cells in 2D grid map by evaluating the expectation
maximization. This approach is straightforward to extend to
3D but expensive in computation due to the ray-tracing.

In this article, we present a complete customized and in-
tegrated system consisting of a MAV platform with onboard
processor, a rotating laser-based localization module and a
dynamic mapping module. The MAV platform could provide
onboard computation and flying capability. The localization
module could utilize the continuous rotating laser scans to
achieve a high frequency motion estimation update. And
the dynamic mapping module could detect and eliminate
the moving target for both localization and further real-
time mapping. The developed techniques allow for reliable
motions estimation and efficient dynamic map update. The
robustness of the proposed framework is evaluated in multi-
ple dynamic environments.

II. RELATED WORKS

The demanding of MAVs to fly autonomously in typical
GPS-denied environments such as indoor and forest are
rapidly growing. Based on the different platforms and sensors
for perception, several research groups have carried out some
demonstrations for practical applications. Stephan Weiss et
al. [7] use an MAV from ASL and onboard monocular
camera together with IMU achieved a flight height of 70m.
However, in contrast to our work this computationally con-
strained solution could not handle the 3D navigation properly
since that the obstacle cannot be reliably detected from
sparse points. Similarly, Forster et al. [19] use same sensor
setup but a semi-dense image registration approach. The
proposed approach for MAV high altitude fly shows that the
motion estimation of UAV can be efficient and robust through
pixel intensity based alignment. However, computational
expensive dense mapping module is required for a complete
3D navigation [20]. To observe the points depth directly,
some groups utilize the stereo camera [21]. However, this
approach could fail in low feature or texture environment.
The RGBD camera is well-suited for the MAVs’ indoor
navigation task which measures the depth from projecting
infrared pattern [2]. Comparing with passive camera systems,
the infrared pattern can estimate the depth on the textureless
condition such as the white wall. Yet the view field of the

infrared pattern is limited which could cause problems when
the obstacles are out of MAV view field. To cope with
this issue, it is straightforward for the MAVs to equip with
multiple RGBD cameras. However, the computational cost
rises correspondingly.

The laser-based state estimation technologies are largely
adopted by unmanned ground vehicle (UGV). For instance,
the utilization of 2D LRF on UAV and small size UGV -
Hector SLAM which estimates the 2D motion [22]. Together
with the height measurement, a 3D Octomap can be con-
structed for obstacle detection. However, this approach relies
on the reliable and fast height measurement or else will result
in an inconsistent 3D map. Similar to this approach, Morris
et al. [23] utilize the sparse visual features together with the
2D LRF for motion estimation. Yet, it is still not a direct 3D
measurement. In contrast to this approach, our motor driving
2D LRF can directly measure the depth of 3D environment.

Different from 2D LRF, the 3D LRF could provide an
accurate 3D dense range measurement regardless of the illu-
mination variation. The sensing capability of 3D LRF makes
it possible for UGVs to detect obstacles in all directions
[17]. Combined with camera systems for state estimation,
the sensing and perception modules are robust and effective.
Considering the size and weight limitations, the 3D LDFs are
rarely utilized on UAVs. Besides that, the power consumption
of 3D LRF could lead to the reduction of endurance.

A combination of visual for localization and laser for
obstacle detection is considered as a good choice: Either
monocular camera or stereo camera can provide an 6 DoF so
that the state estimation is not limited to 2D planner space.
Based on the state estimation information, either the static or
rotating LRF can construct a 3D map. A similar approach is
proposed by Cover et al. [15] use vision for localization and
laser for obstacle detection. However, this combination could
not work in dark environment and obstacles out of view.

Similar to our approach, Hovermap [24] utilizes a con-
tinuous rotating laser on a Micro Aerial Vehicle for state
estimation and mapping. However, the GPS signal is fused
for a better motion estimation. And more importantly, s-
cenario with moving target is not considered. Matthias et
al. [4] build a MAV platform with the camera system for
odometry and rotating laser to detect obstacles. Similar to
vision-based approach, illumination variation and textureless
cause the failure of motion estimation.

The other important issue is dynamic map update. Hahnel
et al. [25] consider the moving target as outliers and removed.
Yet, this approach is not a correct representation of the map
at each time instant due to the lack of moving target. Similar
strategy has adopted by [26] [27].

III. SYSTEM CONFIGURATION

The MAV platform is designed by NUS UAV Group with
the capability of wind resistance and heavy payload. The
platform has a 128 cm tip to tip length and a maximum
take-off weight with the 2 kg payload. A self-designed power
distributor module provides multiple power sources including
3.3 V, 5 V and 12 V for on-board electronics. The on-board
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flight controller is Pixhawk with customized flight control
algorithms. For the mission control computer, we use the
Intel-NUC board. The powerful NUC board equipped with a
5th Generation Intel Core i7-5557U processor. The optimized
size is and the optimized weight is only 200 g including a
cooling fan. The platform is shown in Fig. 1.

Fig. 1: MAV platform.

IV. TERMINOLOGY AND NOTATION

In this article, we define the body frame of UAV platform
as U and local laser coordinate as L. For the rotating laser
device, one rotation of the laser range finder is from −90 ◦

to 90◦ in CW or 90 ◦ to −90 ◦ in CCW as denoted (θ ) in
Fig. 2 while the x-y plane is the 0 ◦ planar plane. Thus for
kth rotation, the laser coordinate is expressed as Lk. The
global coordinate is O. For a single laser point p(x,y,z) in
kth rotation, the coordinate is expressed as XU

k,l,p, XL
k,l,p and

XO
k,l,p correspondingly.

Fig. 2: Rotating angle illustration in front view and isometric
view.

V. ALGORITHM OVERVIEW

In this article, a sensing and a perception modules for
MAV in dynamic environments are presented. The proposed
algorithm contains following components:
• Feature extraction and alignment: extract the defined

feature from 2D laser scan and align the scans in 3D
point cloud sequence.

• Motion estimation: estimate the motion based on the
optimization of feature alignment error metric.

• dynamic mapping: update the 3D map for dense map-
ping and motion estimation refinement.

The following section will describe the above components
in detail.

VI. FEATURE EXTRACTION AND FEATURE
ALIGNMENT

To solve the motion estimation problem efficiently, we
select the feature points p(x,y,z) in each scan instead of
all the points to build the correspondence between neigh-
bouring scans. The natural properties of laser scan in real
environment is large amounts of data, noisy and contains of
outliers which makes the feature extraction quite difficult as
described by Abdul [28] . In their work, outlier rejection and
robust fitting is applied to extract reliable feature from point
cloud. For 2D laser scan, variation of a scanning point in a
local neighborhood is used to select the feature point. For a
point p in a single scan l of kth rotation, the average length
of the edges lavg,p incident to it in a local neighborhood:

lavg,p =
1
N ∑

qεN(i)
||XL

k,l,p−XL
k,l,q || (1)

Where N stands for total number of points adjacent to
p and q stands for the neighbor point of p. A relative
variation ratio Rk,l,p is defined to select edge point ek,l,i(with
a variation ratio larger than threshold) or flat point fk,l,i (with
a variation ratio smaller than threshold).

Rk,l,p =
lavg

||XL
k,l,p ||

(2)

In our work, since we have extracted feature points as
edge points and flat points, two Euclidean distance based
relationship will be built accordingly to associate the feature
points in different rotations.
• To a edge point p in kth rotation, we can search for the

nearest neighbor point of p, m in (k+1)th rotation from
the beginning of (k+1)th rotation through reprojection.
In order to build a point to line correspondence, we
further search for a neighbor point of m in consecutive
scan and denote it as n. We can calculate the distance
from the edge point p to its corresponding line by the
following equation:

de =
|vl× ve|
|vl |

(3)

Where vl stands for (XL
k+1,l,m−XL

k+1,l,n) and ve stands
for (XL

k,l,p−XL
k+1,l,m) as shown in Fig. 6.

• To a flat point q in kth rotation, we need to search for
the nearest neighbor point of q, r in (k+1)th through
reprojection. After that, another two neighbor points
of r, s and t need to be searched so that three non-
collinear points can construct a plane. The objective is
to minimize the distance from the flat point q to its
corresponding plane. The unit normal of plane can be
calculated as :

n =
vp1× vp2∣∣vp1× vp2

∣∣ (4)
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Where vp1 is (XL
k+1,l,s−XL

k+1,l,r) and vp2 is (XL
k+1,l,t −

XL
k+1,l,r). The distance from flat point q to its corre-

sponding plane can be calculated as

dp = n · vp (5)

where vp stands for (XL
k,l,q−XL

k,l,r).

VII. MOTION ESTIMATION

Translation and rotation of a 3D point p in (k+1)th rota-
tion XL

k+1,l,p with respect to last laser frame Lk is expressed
by,

Xk,l,p = X̂L
k+1,l,p = Rk

k+1XL
k+1,l,p +Pk

k+1 (6)

Where

Rk
k+1 =

1 0 0
0 cα −sα

0 sα cα

 cβ 0 sβ

0 1 0
−sβ 0 cβ

cγ −sγ 0
sγ cγ 0
0 0 1


Pk

k+1 =

px
py
pz


α,β and γ are the UAV body Euler angle corre-

spondingly. Based on the transformation relationshipT k
k+1 =

(Rk
k+1,P

k
k+1).We can further express the transformation rela-

tionship as a nonlinear function f ,

f (XL
k+1,l,p) = Xk,l,p (7)

Consider the point to line correspondence in equation (3).
To estimate the motion between (k+ 1)th rotation and kth
rotation, we need to minimize the distance de to 0 as
described in following function.

de = w1( f (Xk+1,l,m), f (Xk+1,l,n))→ 0 (8)

Similarly, the point to plane distance dp can be expressed
by,

dp = w2(XL
k,l,q), f (Xk+1,l,r), f (Xk+1,l,s), f (Xk+1,l,t))→ 0 (9)

Through combining the feature point correspondence, we can
build a nonlinear function w(T k

k+1) = d to express (8) and
(9). Therefore, the square error function can be established
as

S = (w(T k
k+1))

2 (10)

Since the objective value of w(T k
k+1) is 0. To minimize

the objective function, mainly two methods can be adopt-
ed for real time application, Levenberg-Marquardt(LM)
[29] method and Trust-Region-Reflective method (TRR)[30].
Compared with the LM approach, TRR is more accurate and
less costly when the incrementally updated result is far away
from solution. The update step σi = (T k

k+1)i+1− (T k
k+1)i can

be obtained by solving

min
σ∈Nψi(σ) (11)

s.t.‖σ‖2 ≤ ∆k (12)

Where ψi(σ) = gT σ + 1
2 σT Hσ and g and H are the gradient

and Hessian, respectively of w evaluated at (T k+1
k )i and

∆k > 0 is the trust region radius. We can further define the
acceptable ratio by

rk =
(ψ(0)−ψi(σi))

(w(T k
k+1)−w(T k

k+1 +σi))
(13)

Which is used to decide the iteration of trial step σi.

VIII. DYNAMIC MAPPING

The safety of autonomous navigation of MAVs requests
the 3D map updating with dynamic obstacles detection.
Once when the dynamic obstacles are properly detected
and removed, the perception module could perform a good
localization based on the static objects. In the proposed
framework, an efficient structure is kept for dense 3D map
so that it could maintain a consistent dense representation
in long term. In this article, we only discuss the 3D map
without dynamic objects for perception.

The fundamental assumption to identify the dynamic ob-
jects is the consistency of visibility: in the continuously
updating environment, if a point along the laser ray is
visually blocked by a point that we previously observed, then
the previously point could be further considered as dynamic
moving target. Instead of directly adopting the ray-tracing
for visibility validation [31], the point cloud representation
for the map is utilized to ensure a smooth information
flow. Moreover, the spherical coordinates representation is
introduced to represent the geometrical information. The
usage of spherical coordinate allows to store the depth of
point in a 2D distance map format [32] so that the dynamic
obstacles can be efficiently detected. To a point p(x,y,z) in
one point cloud set, its corresponding spherical coordinate
form is

ρ =
√

x2 + y2 + z2 (14)

θ = atan2(y,x) (15)

φ = arccos(
z
ρ
) (16)

To a point cloud set which generated by the kth rotating
of laser V o

k in global coordinate, its associated spherical
coordinate form is V s

k . Initially, we assume that most of the
points in V s

k are static. The spatial difference between a point
X s

k+1,l,p and X s
k,l,p is calculated by∥∥X s

k+1,l,p−X s
k,l,p

∥∥ (17)

The spatial difference serves to distinguish between the dy-
namic points and static points. Moreover, the angle between
X s

k+1,l,p and upcoming new point in local spherical coordinate
could further propagate the knowledge on the points. The
greater the angle difference, the less the previous knowledge
changed. Through this approach, the dynamic points are
removed so that the motion could be correctly updated. The
whole localization and dynamic mapping workflow can be
described by Fig. 3.
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Fig. 3: System workflow.

IX. EXPERIMENTAL RESULTS

The proposed framework is verified in the real environ-
ment directly instead of simulated environments to show the
robustness and efficiency of the solution. In the designed
experiment, the MAV has a maximum flying speed of 1.5m/s
in clustered indoor corridor. The onboard stereo camera is
setup for online visualization of the scene.

A. Flying in corridor environment

This experiment is designed to verify the accuracy of
the motion estimation module and mapping module without
dynamic obstacles. Since the ground truth of the motion
estimation is not available, the accuracy of the motion
estimation is evaluated by the reconstructed environment. For
instance, the vertical wall should keep upright. The result is
shown in Fig. 4.

(a) (b)

Fig. 4: Reconstructed corridor environment.

From the reconstructed environment we can see that the
accuracy of motion estimation is good since the reconstructed
environment well represented real condition.

B. Hovering with dynamic obstacles

This experiment is designed to test the dynamic module
specifically. The MAV is controlled by the information from
the motion estimation module in the presence of moving
obstacles. The failure of the map updating could lead to the
dynamic trails as shown in Fig. 5. Based on the experiment

result, the dynamic mapping module removes the continuous
moving obstacle(target in black rectangle) successfully and
keeps a static map for further motion estimation refinement
as shown in Fig. 6 .

Fig. 5: Moving obstacles caused dynamic trails.

Fig. 6: Dynamic obstacles filtering.

X. CONCLUSION

In this article, we present a novel rotating laser based mo-
tion estimation and dynamic mapping framework to achieve
MAV autonomous navigation in a GPS-denied environment.
The proposed framework solves the laser distortion issue by
feature-based motion estimation and dynamic trails through
by point based filtering instead of voxel grid based ray-
tracing. Further, we show the accuracy and robustness of our
proposed framework in the experiments. The rotating laser
based framework estimates the ego-motion of MAV while
filtering the dynamic obstacles successfully.
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