
V-REP & ROS Testbed for Design, Test, and Tuning of a
Quadrotor Vision Based Fuzzy Control System for

Autonomous Landing
Miguel A. Olivares-Mendez∗, Somasundar Kannan, and Holger Voos

Automation Research Group
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg

ABSTRACT

This paper focuses on the use of the Virtual
Robotics Experimental Platform (V-REP) and
the Robotics Operative System (ROS) working
in parallel for design, test, and tuning of a vision
based control system to command an Unmanned
Aerial Vehicle (UAV). Here, is presented how to
configure the V-REP, and ROS to work in par-
allel, and how to use the developed packages in
ROS for the pose estimation based on vision and
for the design and use of a fuzzy logic control
system. It is also shown in this paper a novel
vision based fuzzy control approach for the au-
tonomous landing task on a static and on a mov-
ing platform. The control system is based on four
fuzzy logic controllers (FLC) working in parallel
on an external control loop based on the visual
information. All the controllers were designed
and tuned to command the vertical, longitudinal,
lateral, and heading velocities of the UAV.

1 INTRODUCTION

Simulation environments are always an important tool in
research, even more in the specific field of robotics. For
this research topic there are many of them, and each one has
its one limitations The Webots [1] is one of the most used,
but there is no free version for academia and the cost is not
that cheap. The toolbox of robotics for Matlab done by Pe-
ter Corke [2] is recommendable to understand many robotics
control problems and its vision based on outer control loop.
The disadvantage of this approach is that is difficult to make
any modification to adapt the environment to each user ne-
cessities because of its innumerable lines of code. Another
disadvantage of this approach is that there is not direct way to
use what is implemented in the toolbox with a real robot. This
is something that was solved with ROS [3]. The Robotic Op-
erative System provides an open source framework to develop
packages to interactive with real sensors, actuators, robots,
etc, using a publisher/subscriber system for the communi-

∗Corresponding author. E-mail address: miguel.olivaresmendez@uni.lu;
Tel.: +352 46 66 44 5478

cation between them. The main advantage of this pseudo-
operative system, is that is easy to use, to develop new pack-
ages and to communicate with existing packages. The big
number of users and developers in the ROS community make
this software more interesting indeed. This framework comes
with a 3D simulation environment called Gazebo 3D [4]. The
main advantage point of this software is that all the packages
(algorithms, control, etc) used in the virtual world of Gazebo,
can be used with minor changes in the real version of the sim-
ulated robot. This fact implies an enormous reduction of time
in the software implementation part of any research. The dis-
advantage of the Gazebo simulator is the high requirements
of CPU power and graphic card. The next step in 3D en-
vironment simulators is the software developed by Coppelia
Robotics, the Virtual Robotics Experimentation Platform (V-
REP) [5]. In comparison with the Gazebo software, this soft-
ware can be installed and run without a powerful graphic card
and does not required a powerful CPU. The V-REP comes
with a large number of robots, sensors and actuators models,
and several structures to create a virtual world just dragging
and dropping. This simulator allows to interact with the vir-
tual environment during the simulation running time. It is
very easy to check how the control system response against
disturbances, position changes of the target location or the
addition of more robots, objects, structures or sensors in the
scene. Another advantage of this software is the bridge with
ROS [6], allowing to use everything developed in the previ-
ously mentioned framework. All these characteristics make
the V-REP and the connection with ROS the ideal platforms
for learn, teach, research and developed with robots.

This work focuses on the vision based control system of a
quadrotor in the simulated environment to be used later with a
real aircraft. A specific task of autonomous landing on a mov-
ing target with a quadrotor has been defined to test the V-REP
and ROS connection, how the V-REP experimental platform
works with quadrotors, and how the developed ROS packages
works. There are many visual servoing applications present
on the literature. Different vision-based algorithms have been
used to follow a car from a UAV [7], [8],[9]. Visual terrain
following (TF) methods have been developed for a Vertical
Take Of and Landing (VTOL) UAV [10]. In [11] a descrip-
tion of a vision-based algorithm to follow and land on a mov-
ing platform and other related tasks are proposed. A cooper-

1



ative strategy has been presented in [12] for multiple UAVs
to pursuit a moving target in an adversarial environment. The
low-altitude road following problem for UAV using computer
vision technology was addressed in [13]. People following
method with Parallel Tracking and Mapping (PTAM) algo-
rithm has been developed in [14]. The autonomous landing
approach presented in this work is based on the control of
the lateral, longitudinal,, vertical, and heading velocities of
the quadrotor to modify its position to land on a predefined
platform.

The outline of this paper is structured in the following
way. Section 2 presents the configuration of the V-REP ex-
perimental platform. Section 3 shows the specific vision al-
gorithm used for the autonomous landing task. The fuzzy
control approach and the developed ROS package for this pur-
pose are explained in section 4. Section 5 shows the experi-
ments done with the developed testbed for tune the controls
system approach and to test it for the autonomous landing on
a static, and on a moving platform. Section 6 shows the con-
clusions and the future work.

2 V-REP SIMULATION ENVIRONMENT
CONFIGURATION

In this section is presented the mayor details of the sim-
ulation environment of V-REP, as well as the modifications
done, and the connects with ROS.

The V-REP presents an easy and intuitive environment to
create your own virtual world and to include any of the robots
that are provided, as well as objects, structures, actuators and
sensors. Also, it allows to create your own robot by adding
actuators, joints, sensors and basic forms. An example of a V-
REP environment is shown in Figure 7. On the left side of the
environment there is a list of robots, sensors, actuators, struc-
tures, etc that could be easily include in the simulation scene
by drag and drop (model browser). In the next column, there
is the scene hierarchy, where all the robots, sensors, graphs
and structures of the current scene are represented. A script
based on LUA script could be associated to each sensor and
robot to interact with them, inside the V-REP environment of
from the outside (e.g. C++ code or from a ROS package). The
central window could be divided in one or more views, we di-
vided it in four views, two external cameras (top and back),
and the representation of the velocities and the position of the
UAV. More detailed information about this robotics experi-
mental platform is found in [5].

The V-REP comes with a quadrotor model that is config-
ured to follow position commands. When a vision sensor is
used to control a robot the most common way is to use ve-
locity commands. In this work is presented a vision based
control system, also known as Image Based Visual Servoing
(IBVS), in which the control commands have to be velocity
commands. The existing QR model presents some stability
problems when the velocity commands are sent, therefore,
some modifications needed to be done on the model based on

Figure 1: Capture frame of the V-REP environment.

the assumption that the symmetric inertia matrix is a diago-
nal matrix such as diag(Ixx, Iyy, Izz), as is presented in [15].
Basically a very low value of Ixx introduces poor damping
in the roll attitude so purely a velocity control loop does not
suppress the faster modes. So the quadrotor is drifting side-
ways. This is very common in real experimental quadrotors.
In such cases it is always needed an outer position loop to
hold the position of the quadrotor.

Once, the model was modified the inner control loop has
to be adapted to the new model. Four classical PD controllers
are defined for the hovering controller of the heading, roll,
pitch and height. In this case it is taken into account the cur-
rent measures of aircraft’s angles (roll, pitch and heading), the
altitude estimation, and the aircraft’s velocities (longitudinal,
lateral, heading and altitude). The inner controllers developed
in this phase for the virtual quadrotor were tested in a non ex-
haustive way. It is checked the correct behavior of the quadro-
tor hovering and against soft disturbances. The authors really
recommend this tool and this process for teaching purpose,
because of the high sensibility of the simulator environment
and the new quadrotor model against minors changes in the
controllers parameters.

The next step is to have the onboard camera feedback
available to be processed in a ROS environment. The virtual
quadrotor comes with two cameras onboard, but their image
feedback can not be sent or published to be used by ROS.
For this purpose it is necessary to add one (or more, depends
on your needs) new vision sensor and attach it to the quad-
rotor. In the added vision sensor is possible to modify the
child script to share the current image capture by the vision
sensor to be processed by the corresponding ROS package.
Following the ROS policy to exchange information, the im-
age is published in a ROS’ topic.

The specific visual algorithm developed as a ROS pack-
age has to get the current frame published, process it and
send the extracted information to the control system. All this
process is done by different developed ROS packages that
will be explained into details in the next sections. There is
also another process to be accomplish in the V-REP. The vir-
tual quadrotor must receive the control commands and apply



them. It is also done in a child script, but in this case, in the
one that is associated with the virtual quadrotor. As well as
in the image sharing process, in this case we have to define
a ROS’ type subscriber to get the control feedback as a new
velocity reference for the inner control system.

All the implemented code explained in this section and
the model adaptation of the quadrotor to receive velocity
commands, as well as a scene example to use them are avail-
able on [16]. Most of them are based on the information ex-
tracted from the forum web site of Coppelia software [5].

3 VISION ALGORITHM

The vision algorithm had to obtain the position of the
landing platform. With this information, the control system
approach has to be able to command the UAV to center land-
ing platform in the image, orientate it, and approximate it to
the landing platform. The vision algorithm is not the prin-
cipal purpose of this work, for this reason we use a visual
algorithm based on the detection, recognition, and process-
ing of augmented reality (AR) markers or codes. The idea is
to have a moving landing platform with a code printed on it.
Based on a markers database, the camera calibration parame-
ters, and the size of the code, the algorithm is able to estimate
the pose of the camera (quadrotor) respect to the marker, that
is the orientation of the camera (the quadrotor) in the three
axis, the distance between the camera (the quadrotor) and the
code, as well as the lateral and vertical displacement versus
the center of the marker. The developed ROS package for
the visual algorithm is the adaptation to ROS of the ArUco
software [17], a developed C++ library of augmented reality
that uses OpenCV. It is an improved Hamming Code based
algorithm with an error detection.

The ArUco-ROS package, called aruco eye is subscribed
(that is the ROS method to get information shared by other
packages) to the specific image streaming publisher from the
camera (real or virtual). The current frame is processed and
the extracted information is sent by a publisher defined for
this purpose.

To use this package with the virtual camera and a real one
it is needed to include the camera calibration and the specific
topic’s name in the location where the camera published the
images. This could be done by the command line or configur-
ing a roslaunch file. To do the tests in the virtual environment
a panel with one of the ArUco codes added as a texture is in-
cluded, as it is shown in the Figure 2. In the real world the
codes where printed and paste into a wall.

The image processing algorithm consists on the estima-
tion of the distance between the ArUco target code and the
UAV in the three axis (longitudinal, lateral and vertical dis-
tances), as it is shown in the Figure 3.

The developed ROS package presented in this section and
some examples of how to use it, are available on [16].

Figure 2: Virtual image captured by the virtual camera on the
UAV and processed using the ArUco ROS package.

Figure 3: Explanation of the image processing algorithm.

4 FUZZY CONTROL SYSTEM

The autonomous landing task defined in this work is
based on the capability of the quadrotor to change its position
to land over the moving landing platform. The UAV must
center the landing platform, and once it is centered start to
descend. To solve this task a control system approach was de-
signed using four fuzzy controllers working in parallel. The
longitudinal and lateral speed controllers keep the UAV po-
sitioning to have the moving landing platform in the center
of the image. The vertical speed controller approximates the
UAV to the landing platform. The heading controller mod-
ify the heading of the UAV to have the lading platform well
oriented. The longitudinal, lateral, and heading velocity con-
trollers have been designed as a fuzzy PID-like controller,
with three inputs and one output. The vertical speed con-
troller is just a simple fuzzy PD-like controller. The longitu-
dinal, lateral, and vertical speed controllers have as outputs
velocity commands in meters per seconds, and for the head-
ing velocity controller is degrees per seconds. Figure 4 shows
the control loop of the control system approach implemented
for this work.

All the controllers were defined in a simply way, with
just three sets per each input, and five sets for the output,
defined using triangular functions, that means that the rules’
base is composed just with 27 rules for the longitudinal, lat-
eral and heading velocity controllers and 9 rules for the ver-
tical speed controller. The defuzzification method used is the
height weight and the inference motor is the product. The



Figure 4: Control loop of the presented approach.

rule base was defined based on the heuristic information of
the relation of the three inputs. The Figure 5 shows the basic
design of the controllers before any modifications. In the lon-
gitudinal and lateral speed controllers were taken into account
the current pitch and roll angles of the UAV in the informa-
tion obtained by the vision algorithm for the estimation of the
translation in x and y axis respected to the moving landing
platform.

Figure 5: Initial design of the inputs and output variables for
the fuzzy logic controller.

The Tables 1, 2, 3 show the initial definition of the rule
base.

To implement the fuzzy controllers in the ROS environ-
ment a new ROS package was developed called MOFS-ROS.

Dot/error Left Zero Right
Negative Left Zero Right
Zero Zero Right Right
Positive Right Right Big Right

Table 1: Base of rules with value for the third input (integral
of the error) equal to negative, before the manual tunning
process

Dot/error Left Zero Right
Negative Left Zero Zero
Zero Left Zero Right
Positive Zero Zero Right

Table 2: Base of rules with value for the third input (integral
of the error) equal to zero, before the manual tunning process

Dot/error Left Zero Right
Negative Big Left Left Left
Zero Left Left Zero
Positive Left Zero Right

Table 3: Base of rules with value for the third input (inte-
gral of the error) equal to positive, before the manual tunning
process

This ROS package is the adaptation to ROS of the own devel-
oped C++ library MOFS (Miguel Olivares’ Fuzzy Software)
[18]. As well as the C++ library, this new ROS package
(MOFS-ROS) allows to implement fuzzy controllers in an
easy way, loading the specific characteristics of the controller
and the rule base from two different txt files. This package
interacts with the roscore and other packages by a service,
that provides a new output each time that new inputs were
received by the common subscriber/publisher ROS’ commu-
nication policy. The specification of the subscriber and the
publisher is done by a parameter in the rosrun command line
or by a roslaunch file.

This ROS package allows to create new fuzzy controllers
using triangular or trapezoidal membership functions, the
product or the maximum inference motor and the height
weight defuzzification method. Extended possibilities will be
included in the next versions of this ROS package. More de-
tailed information of this software is found in [19] in where
is explained the C++ library version.

An extra ROS package was developed to put across the
information from the visual algorithm, to the fuzzy control
system. This package is also in charge of sending the con-
trollers’ output to the virtual or real quadrotor. This pack-
age receives two different names, when it is used with the
virtual quadrotor is called VREP VC (VREP visual control),
and (visual control system). This package is the only one that
has to be modified depending the UAV to be used, the num-
ber of controllers to use, and the error’s signals to control. In
this way the ArUco-ROS package and the MOFS-ROS pack-
age is kept without significant changes to be used with the
virtual or the real environment, or either for future control
approaches. This package also contains some extra process



Figure 6: Interaction between all the actives processes from
V-REP and ROS during the simulator tests.

when a real AR.Drone quadrotor is in use. This process is
called emergency ardrone control, and it allows to send ba-
sic commands to take off, land, and to do an emergency stop
to the AR.Drone. Through this process the user can also se-
lect the specific ArUco code to set as a target.

All the developed ROS packages presented in this section
and some examples of how to use it are available on [16].

5 EXPERIMENTS

The experimental part is divided in two phases. In the first
one, the controllers have been tested and tuned using a step
signal to keep one code in the center of the image in the V-
REP environment and its connection with ROS. After that the
tuned controllers were tested all together for the autonomous
landing task.

5.1 Tuning Process
The simulation environment was set by a quadrotor with

a looking forward camera, and a panel with one ArUCo code,
as it is shown in Figure 7. The location of the quadrotor is set
to have a two meters step signal when it starts to work.

Figure 7: V-REP environment design with a quadrotor and
the ArUco code.

A complete schema of all the processes involved in the
simulation environment is shown in Figure 7. Where vrep
is the V-REP simulator environment, explained in section 2,
aruco eye is the process of the vision algorithm explained
in section 3, the flcLatSp, flcLongSp, and flcVerticalSp are

the fuzzy controllers for the lateral, longitudinal and vertical
speed respectively, and flcOrientSp (explained in section 4).
The vrep VC is the process that shares the visual information
to the control system and send the control commands to the
virtual quadrotor in the V-REP (explained at the end of the
section 4). The rosbag is an internal ROS package to store
some data of each test. Finally, the rosout is the core of the
ROS system.

During the manual tuning process, the range of the vari-
ables are first adapted and then the output of some specific
rules. The V-REP simulation environment and in conjunction
with ROS and the developed ROS’ packages allow to test the
controllers and to modify the different characteristics of the
controllers easily. Because of the big similarities between
the lateral, longitudinal, and heading controllers, the tuning
process is applied to one of the three controllers, and then
the results are used in the others. The tunning process is de-
fined by the response of the lateral speed controller respond-
ing against a 2 meters step signal. First, the inputs’ range have
to be adjusted. The Figure 8 shows the response of some of
the different configuration tested for the range of the inputs.
It is started with the initial controller explained in section 4,
represented as MF1 with the blue line in Figure 8. Then se-
veral modifications are tested on the range of the inputs and
the output, some of them are shown in the mentioned Figure
as MF2, MF3, MF4, being the last one (represented by the
green line) the one that gets a better response. The variables
definition of the three controllers is shown in Figure 9.

Figure 8: Response of the different lateral speed controllers
during the tunning phase of the inputs’ range adjustment.

Based on this controller, tuning process it is continued
with the adaptation of the rules’ base. In this phase the output
of few rules were modified to reduce the overshoot presented
in the response of the best controller obtained in the previ-
ous phase (the MF4). Also for this phase the test is the same
than in the previous phase, a step signal of 2 meters. The Fi-
gure 10 shows the behavior of some of the controllers tested.
The behavior of the different controllers tested are quite simi-
lar unless one of them, that reduces completely the overshoot
presented in the others (Rules4). The Tables 4, 5, 6 show the
final state of the rule base after the manual tuning process.
Fromm the initial base of rules presented in section 4, 10 out-
put’s rules were changed.

Once the lateral speed controller is tuned, this information



Figure 9: Final design of the variables of the fuzzy controller
after the manual tuning process.

Figure 10: Response of the different lateral speed controllers
during the tunning phase of the rules’ base adaptation.

Dot/error Left Zero Right
Negative Big Left Left Right
Zero Left Zero Right
Positive Right Right Big Right

Table 4: Base of rules with value for the third input (inte-
gral of the error) equal to negative, after the manual tunning
process

Dot/error Left Zero Right
Negative Left Left Zero
Zero Left Zero Right
Positive Zero Right Right

Table 5: Base of rules with value for the third input (integral
of the error) equal to zero, after the manual tunning process

Dot/error Left Zero Right
Negative Big Left Left Left
Zero Left Zero Right
Positive Left Right Big Right

Table 6: Base of rules with value for the third input (inte-
gral of the error) equal to positive, after the manual tunning
process

is used to set the other controllers, the longitudinal, vertical,
and heading velocities. An adaptation to degrees (inputs),
and degrees per seconds (output) was done for the heading
controller.

5.2 Autonomous Landing Tests

Once the four controllers are obtained, they can be used
all together to control the virtual quadrotor in the specific task
of autonomous landing. Two different test are defined. In the
first one, the landing platform is static, and in the second one
it change its position in the plane x,y and turn over the z axis.
In both cases the code is located over a ground robot, to be
easy to configure the movements of the landing platform. The
initial position of the quadrotor is the same in both cases, 8.0
meters of altitude, and a displacement of 1.6 and 0.9 meters
respect to the landing platform for the x,y axis of the quadro-
tor respectively. The vertical velocity controller has the con-
straint of not to act until the error in the x and y axis of the QR
are reduced under 0.5 meters. This is an strategy to reduce the
potential disturbances created by the action of the descend of
the Quadrotor.

The next Figures shows the behavior of the control sys-
tem and the quadrotor for the autonomous landing on a static
platform. The Figure 11 shows the evolution of the error for
the lateral and longitudinal velocities controllers. This Figure
shows how the error was reduced to zero in less than 8 sec-
onds. The Figure 12 shows the evolution of the error for the
heading controller.

Figure 11: Evolution of the error for the longitudinal and lat-
eral velocities controllers for the autonomous landing test on
a static platform.

The Figure 13 shows the evolution of the position of the
quadrotor in the three axis x,y,z during this test. This Figure
also shows how the vertical velocity controller keep without
any action until the error in x and y axis are reduced. Finally,
the Figure 14 shows the evolution of the absolute heading of



Figure 12: Evolution of the error for the heading velocity con-
troller for the autonomous landing test on a static platform.

the quadrotor, and how the heading is affected by the action
of the other controllers.

Figure 13: Evolution of the quadrotor position in x,y,z axis
in the autonomous landing test on a static platform.

Figure 14: Evolution of the absolute heading of the quadrotor
in the autonomous landing test on a static platform.

After the test of the autonomous landing on a static plat-
form, a test on a moving platform was defined. Because the
code was set on an omni-directional ground robot (available
in the V-REP environment), it is possible to configure differ-
ent movements and rotations for the landing platform. A set
of movements in all direction was set for this test, and also a
rotation in z. The evolution of the error for the lateral and lon-
gitudinal velocities controllers are shown in Figure 15. The
Figure 16 shows the evolution of the error for the heading
controller.

The evolution of the quadrotor position is shown in Fi-
gure 17. The Figure 18 shows the evolution of the absolute
heading of the quadrotor.

The behavior of the control system approach was evalu-
ated using the root mean square error (RMSE) during both
tests. The Table 7 shows the RMSE values for the longitudi-
nal, lateral and heading velocities controllers.

Figure 15: Evolution of the error for the longitudinal and lat-
eral velocities controllers for the autonomous landing test on
a moving platform.

Figure 16: Evolution of the error for the heading velocity con-
troller for the autonomous landing test on a moving platform.

Figure 17: Evolution of the quadrotor position in x,y,z axis
in the autonomous landing test on a moving platform.

Figure 18: Evolution of the absolute heading of the quadrotor
in the autonomous landing test on a moving platform.

Controller Static Platform Moving Platform
type (RMSE value) (RMSE value) units
Longitudinal 0.5346 0.4615 meters
Lateral 0.3661 0.3777 meters
Heading 3.9029 4.3728 degrees

Table 7: Root mean square error for the Longitudinal, Lateral
and Heading velocities controllers in the two tests presented.



The videos related to the tests presented in this section are
available in [20].

6 CONCLUSIONS AND FUTURE WORK

In this paper is presented the process a testbed developed
using the V-REP & ROS frameworks to design, test and tune
a vision based control system to command an aircraft. A ROS
package was developed to design, and use fuzzy controllers in
ROs and specifically with a quadcopter. A C++ library for the
detection of augmented reality codes was adapted to be used
in ROS, and to estimate the relative position of the quadrotor
respect to the code. Another ROS package to communicate
the visual algorithm and the fuzzy control approach was also
developed. The principal idea of this package is to make easy
the uses of other visual algorithms and control approaches. It
is also presented in this work a novel fuzzy control approach
to command a quadrotor for autonomous landing tasks using
the testbed, and all the developed ROS packages. The con-
trol system approach was tune in the simulator using a step
signal, to be tested later in a more complex tasks as the au-
tonomous landing on a static and on a moving platform. The
good results obtained were evaluated by the RMSE with val-
ues below 40 cm for the lateral velocity controller, below 55
cm for the longitudinal velocity controller, and below 4.5 de-
grees for the heading controller. The author are focus now in
test the control system approach with a real quadrotor for the
autonomous landing task.

REFERENCES

[1] Webots official site. http://www.cyberbotics.com, 2014.

[2] Peter corke’s robotics toolbox for matlab.
http://petercorke.com/Robotics Toolbox.html, 2014.

[3] Robot operating system (ros). http://ros.org, 2014.

[4] Gazebo 3d simulator. http://ros.org/wiki/gazebo, 2014.

[5] Coppelia robotics. virtual robotics experimentation plat-
form (v-rep). http://www.vrep.org, 2014.

[6] Wiki site of the ros bridge with v-rep.
http://wiki.ros.org/vrep ros bridge, 2014.

[7] P. Campoy, J. F. Correa, I. Mondragón, C. Martı́nez,
M. A. Olivares, L. Mejı́as, and J. Artieda. Computer
vision onboard uavs for civilian tasks. Journal of Intel-
ligent and Robotic Systems, pages 105–135, 2009.

[8] W. Ding, Z. Gong, S. Xie, and H. Zou. Real-time vision-
based object tracking from a moving platform in the air.
In Intelligent Robots and Systems, 2006 IEEE/RSJ In-
ternational Conference on, pages 681–685, 2006.

[9] Celine Teuliere, Laurent Eck, and Eric Marchand. Chas-
ing a moving target from a flying uav. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, IROS2011, pages 4929–4934, 2011.

[10] F. Ruffier and N. Franceschini. Visually guided micro-
aerial vehicle: automatic take off, terrain following,
landing and wind reaction. In Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on, pages 2339–2346, 2004.

[11] D. Lee, T. Ryan, and H.J. Kim. Autonomous landing
of a vtol uav on a moving platform using image-based
visual servoing. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 971–
976, 2012.

[12] U. Zengin and A. Dogan. Cooperative target pursuit by
multiple uavs in an adversarial environment. Robotics
and Autonomous Systems, pages 1049–1059, 2011.

[13] Joseph Egbert and Randal W. Beard. Low-altitude road
following using strap-down cameras on miniature air
vehicles. Mechatronics, pages 831–843, 2011.

[14] G. Rodrı́guez-Canosa, S. Thomas, J. del Cerro, A. Bar-
rientos, and B. MacDonald. A real-time method to de-
tect and track moving objects (datmo) from unmanned
aerial vehicles (uavs) using a single camera. Remote
Sensing, pages 1090–1111, 2012.

[15] G. Antonelli, F. Arrichiello, S. Chiaverini, and P.R.
Giordano. Adaptive trajectory tracking for quadrotor
mavs in presence of parameter uncertainties and exter-
nal disturbances. In Advanced Intelligent Mechatronics
(AIM), 2013 IEEE/ASME International Conference on,
pages 1337–1342, July 2013.

[16] Miguel angel olivares-mendez snt homepage, 2014.

[17] Aruco: a minimal library for aug-
mented reality applications: [online].
http://www.uco.es/investiga/grupos/ava/node/26,
2013.

[18] M.A. Olivares-Mendez, P. Campoy, C. Martinez, and
I. Mondragon. A pan-tilt camera fuzzy vision controller
on an unmanned aerial vehicle. In Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, pages 2879–2884, Oct.

[19] I. Mondragón, M. A. Olivares-Méndez, P. Campoy,
C. Martı́nez, and L. Mejias. Unmanned aerial vehi-
cles uavs attitude, height, motion estimation and control
using visual systems. Autonomous Robots, 29:17–34,
2010. 10.1007/s10514-010-9183-2.

[20] Youtube channel of the automation re-
search group at snt-university of luxem-
bourg: Automation research group snt.uni.lu.
https://www.youtube.com/channel/UCBkpapz06ViwK cztjwqCAQ
, 2014.


