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ABSTRACT

A three-dimensional simulation of hovering flap-
ping wings was performed using an immersed
boundary method. This was done to investi-
gate the effects of chordwise wing deformation
on three important unsteady aerodynamic mech-
anisms found in flapping flight, namely Lead-
ing Edge Vortex (LEV) shedding, wake capture
and clap and fling. A wing was modeled as a
flat plate, flapping close to a symmetry plane.
Three different deforming chords were defined,
a rigid case, a case with maximum deformation
at the trailing edge and increased angle of attack
(AoA) near the leading edge, and a case with the
maximum deformation in the center of the chord
and decreased AoA near the leading edge. All
cases had zero deformation at the wing root and
maximal deformation at the wing tip. A higher
AoA near the leading edge resulted in faster LEV
buildup and faster buildup of lift. No shedding of
the LEV was observed in any of the cases even
when deformation caused a high AoA near the
leading edge. A distinct dip in lift buildup was
observed and shown to be caused by the inter-
action between the previously shed vortex and
the newly developing LEV. This interaction oc-
curred faster when the AoA at the leading edge
was increased, and slower when the angle of at-
tack was decreased. Moving the wing closer to
the symmetry plane had a positive effect on the
cycle average value of CL. This positive effect
was reduced however by the earlier interaction
between the LEV and the previously shed vor-
tex.

1 INTRODUCTION

In view of the Reynolds number range at which MAVs op-
erate and the desired flight performance flapping flight con-
cepts are considered beneficial, since fixed-wing aircraft do
not have the desired maneuverability and helicopters are too
inefficient and noisy [1]. This has motivated designers to look
to nature for inspiration, since insects are extremely maneu-
verable, silent and can be more efficient at low flight speeds
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[2]. The aerodynamics of insect flight are very different from
those of fixed wing aircraft or rotorcraft however, since it ex-
ploits unsteady aerodynamic mechanisms to generate suffi-
cient lift force, including a stable leading-edge vortex (LEV),
clap and fling use of rotational mechanisms and wake capture
[3]. Biologist have been interested in the flying capabilities
of insects for a long time and have conducted many exper-
iments using free flying insects [3], tethered insects [4] and
dynamically scaled mechanical flappers [4, 5, 6]. To further
understand the effect of all relevant parameters it is essential
to quantify and visualize the three-dimensional flow around
the wings. Although recent developments in non-intrusive
measurement techniques allow researchers to capture three
dimensional flow fields [7, 8], it remains very difficult to cap-
ture all relevant details of the flow using only experimental
techniques. Therefore numerical simulations can provide ad-
ditional information for understanding the flow phenomena
[9]. Several three-dimensional simulations have been per-
formed on specific insect geometries, however, the computa-
tional requirements of such simulations are too demanding to
do a systematic parametric study of all the important param-
eters involved. More general studies on the wing flexibility
have used two-dimensional simulations and have particularly
noted the positive effect of a more flexible wing on leading
edge vortex (LEV) stability [10, 11, 12], which in turn has
a large positive effect on the lift force. The LEV stability is
also affected by three dimensional flow however [13, 14], so
the benefit of a flexible wing in a three dimensional case can-
not be determined from a two-dimensional simulation alone.
Studies investigating the three-dimensional effects in flapping
flight using simulations with rigid wings have shown that the
tip vortex created at the free end of the wing stabilizes the
LEV, from which can be concluded that this stability is also
affected by the aspect ratio of the wing [15] and the kinemat-
ics of the wing [16]. To get a complete picture of how dif-
ferent parameters affect the LEV stability, and with that the
force coefficients of the wing, a three-dimensional simulation
is required.

The objective of the present study is to perform a three-
dimensional simulation of hovering flapping wings, in order
to investigate the effects of chordwise wing deformation on
three important unsteady aerodynamic mechanisms found in
flapping flight, namely LEV shedding, wake capture and clap
and fling. This will result in a better understanding of the
physics involved in flapping flight, which in turn could lead to
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improved MAV designs. Since the actual three-dimensional
deformation of both insect and MAV wings is very specific
to the wings’ structural and material properties, this study
does not attempt to include fluid-structure interaction, instead
prescribing the time dependent deformation of the wings di-
rectly. The direct prescription of the wing deformation al-
lows a more controlled way to investigate its effect on the
unsteady aerodynamic mechanisms. The configuration of the
wings that will be simulated is based on a wing pair as found
on a four-winged MAV in biplane configuration such as the
DelFly [17]. This means the wings will rotate in opposing
phase around a point at the leading edge root. Under this
condition the flow around one wing will be affected by the
presence of the other wing. The wing interaction effects will
be modeled by creating a symmetry plane, and investigated
by varying the distances to the symmetry plane. Only de-
formation in chordwise direction will be investigated in this
study, with the wing considered fully rigid in spanwise di-
rection. However, the chordwise deformation will be varied
along the span, resulting in a twist in spanwise direction.

2 NUMERICAL METHOD

A serious issue in simulating flapping wings is the large
translational and rotational motions of the wings. In conven-
tional body conforming grid simulation methods these large
movements result in large grid deformations, which causes
problems in convergence and stability of the algorithms as
well as having a negative impact on the accuracy [18]. The
Immersed Boundary Method (IBM) used in this study is a
combination of the methods described by [19], [20] and [21].
In both the method by [21] and the one by [20] the forc-
ing term fc is calculated explicitly using an Adam-Bashforth
second-order (AB2) scheme. In this study, fc is calculated ex-
plicitly using the first-order forward Euler and second-order
AB2 schemes for the viscous and convective terms, respec-
tively. This will reduce the computational cost while having
no observable difference on the results compared to an AB2
scheme [22]. The forcing term fc will be calculated according
to Equation 1.

fcn+1 =
uf − un

∆t
+

[
un · ∇un − 1

Re
∇2un

]
+∇pn (1)

In this equation the superscript indicates the time step
number and uf is the velocity contribution of the boundary
which has to be imposed. Since the boundary does not match
the grid this velocity is not known and is obtained through a
simple triangle linear interpolation of the interface and three
points in the surrounding velocity field [22]. Finally the to-
tal force exerted on the surface of the solid will be calculated
using fcn+1, according to Equation 2.

Fi = −
∫
solid

fcn+1
i dV +

∫
solid

(
∂ui
∂t

+
∂uiuj
∂xj

)
dV (2)

Figure 1: Three-dimensional view of the flapping motion.

This method displays spurious pressure fluctuations due to
its method of dealing with the immersed boundary [23]. To
reduce the effect of these fluctuations on the results, the force
response of several flapping cycles will be averaged.

3 SIMULATION SETUP

To investigate how deformation of the chord affects the
aerodynamic mechanisms around a flapping wing under hov-
ering conditions, a simplified wing model has been created
for the flow simulations. A wing will be modeled as a rect-
angular flat plate with a chord of c = 0.1[m], a thickness of
0.006[m] and an aspect ratio AR = 2. This aspect ratio value
is at the lower side of the range of that of flying insects which
is between 2 and 10 [24]. Instead of modeling two separate
plates, a symmetry plane is used to reduce the required com-
putational resources. Perspective and top views of the wing
and the parameters defining the motion are shown in Figure
1. In this figure D represents the distance to the symmetry
plane, and θ the flapping angle. Insects have a wide range of
flapping angles [24] and in this case a total flapping angle θ
of 45◦ is chosen. This flapping angle would be small for two-
winged insects but is more typical to that of a four-winged
MAV in biplane configuration [17]. The configuration would
then correspond to one wing pair, with the assumption that
the opposite wing pairs do not influence one another. The
motion will start with an outstroke, which results in θ given
by Equation 3.

θ = 22.5− 22.5 cos(ft) (3)

Where f is the flapping frequency and t is the elapsed time.
The Reynolds number based on the average tip velocity and
standard conditions at sea level is equal to Re = 2002, and
a reduced frequency of k = fc/U = 0.319. All vari-
ables are summarized in Table 1. This table also includes
the non-dimensionalized variables, which are calculated us-
ing the chord length and the average tip velocity. The differ-
ent deformation scenarios considered in the simulations are
detailed in the following subsections.



Parameter Value Dimensionless value
Chord 0.1[m] 1
Thickness 0.006[m] 0.06
Aspect ratio 2 2
Average tip velocity 0.314 [m/s] 1
Frequency 1 [s−1] 0.319
Reynolds number 2002 2002
Max flapping angle 45◦

Table 1: Parameters of the simulations

(a) (b) (c)

Figure 2: Chordwise plate deformation profiles. a) Rigid
case; b) Deforming end case; c) Deforming center case

3.1 Rigid case with rotation
For the rigid plate case the flapping motion described in

the previous section is combined with a pitching motion to
create an angle of attack. This is done by rotating the plate
around the leading edge as shown in Figure 2a. This rotation
angle is given by Equation 4.

α = −αmax sin(kT ) (4)

In which αmax represents the maximum angle. Note that this
angle α is not the angle of attack as conventionally defined,
but instead 90 degree minus the angle of attack.

3.2 Deforming end
The first deforming case does not contain any pitching, in-

stead an angle of attack is created by the deformation alone.
This is achieved by modeling that the leading edge remains
straight and the maximum deformation occurs at the trailing
edge. The shape of the chord is described using a quadratic
function of the distance from the leading edge. The deforma-
tion is given by Equation 5.

δend = −Dmax
end

(z
c

)2
sin(kT ) (5)

Where Dmax
end is the maximum deformation and z

c is the dis-
tance from the leading edge normalized by the length of the
chord. The resulting shape is shown in Figure 2b. It can

(a) (b) (c)

Figure 3: Three dimensional overview of the instrokes of the
three cases. a) Rigid case; b) Deforming end case; c) De-
forming center case

be seen that this shape increases the angle of attack near the
leading edge compared to the rigid case.

3.3 Deforming center
The second deforming case allows the leading edge to ro-

tate. It again uses a quadratic function to describe the defor-
mation, with this case having the maximum deformation at
the center of the chord. The deformation is given by Equa-
tion 6.

δcenter = −Dmax
center

[
1− 4

(z
c
− 0.5

)2]
sin(kT ) (6)

The deformation given by Equation 6 is combined with the
angle of attack given by Equation 4 to give the complete de-
formed shape in time. The resulting cross-sectional shape of
the wing is shown in Figure 2c. From the figure it is clear that
for this case the deformation decreases the angle of attack at
the leading edge compared to the rigid case.

In insect wings the deformation is usually higher near the
wing tip due to torsional flexibility of the wing [25]. This
is included in the present simulation model by varying the
maximum deformation linearly along the span, resulting in
a undeformed unrotated chord at the root of the plate and
the maximum rotation and deformation at the tip. All defor-
mation parameters are shown in Table 2. Three dimensional
views of the instroke of the three cases are shown in Figure 3.
Note in view of this spanwise deformation, that the r̈igidc̈ase
indicates that there is no chordwise deformation, but it does
not imply that the wing is rigid as a whole.

Parameter Root value Tip value
Angle αmax 0◦ 30◦

Dmax
end 0 0.5

Dmax
center 0 0.175

Table 2: Deformation parameters.

4 RESULTS

For the three cases the lift coefficients were calculated,
and averaged over the last 3 cycles. Figure 4 shows the lift
coefficient CL, as well as the cycle average value. Here CL is



Case Average CL
Rigid 0.5558
Deforming center 0.6171
Deforming end 0.5948

Table 3: Cycle averaged values of CL for the cases.

defined as CL = L
1/2ρU2S with lift L positive in negative z-

direction. Although averaging the plots over 3 cycles reduces
the fluctuations which are caused by the moving boundary,
they are still present to some extent. Figure 4 represent one
entire cycle, starting with an outstroke. The value of the cy-
cle average CL for the three cases is given in Table 3. It is
observed that both deforming cases produce a higher average
and peak lift than the rigid case.
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Figure 4: CL for the three cases. The motion starts with an
outstroke.

A noticeable difference between the three cases is the CL
buildup at the beginning of both the instroke and the out-
stroke. The deforming end case shows the fastestCL buildup,
followed by the rigid case, and the deforming center case
shows the slowest buildup. The difference in CL buildup
speed is caused by different LEV buildup speeds, and is re-
lated to the difference in leading edge orientation, as can be
seen from Figure 5. This figure shows the Q criterion contour
plots at half of the span, at the beginning of the outstroke. The
deforming end case shown in Figures 5e and 5f clearly shows
that the higher angle of attack in the deforming end case cre-
ates a stronger LEV compared to the rigid case (Figures 5a
and 5b). The deforming center case shown in Figures 5c and
5d has a lower angle of attack and can be seen to create a
weaker LEV.

The second clear difference between the cases is the dis-
tinct dip inCL that can be seen in Figure 4 during the acceler-
ation phase of the plates. This dip occurs both during the out-

(a) T=0.040 (b) T=0.080

(c) T=0.040 (d) T=0.080

(e) T=0.040 (f) T=0.080

Figure 5: Q criterion contour plots of the three cases at the
start of the outstroke with the plate moving to the left. Top:
rigid case; middle: deforming center; bottom: deforming end



stroke and the instroke. The contour plots of the Q criterion
are investigated at the moments around this dip during the in-
stroke, at T=0.559, 0.599 and 0.639 at 50% of the span to see
if this is associated to shedding of the LEV, to which such a
decrease in lift buildup is commonly associated. The plots are
shown for the deforming center and deforming end cases in
Figure 6. Although it can be seen that the LEV moves further
away from the plate for the deforming end case, the difference
does not explain the large dip shown in CL. Contour plots of
the Q criterion at different locations along the span do not
show distict shedding of the LEV either. Since the shedding
of the LEV cannot be identified as the source for the dip, the
pressure isosurfaces are investigated as further means to vi-
sualize the vortex behaviour around the wings. The pressure
isosurfaces with p = −1 at the beginning of the instroke are
shown in Figure 7. In Figures 7a and 7b the vortices from
the previous outstroke stroke can be clearly identified, with
the shed tip vortex, trailing edge vortex and LEV in front of
the plate. Figure 6c show that at T=0.64, the new LEV in the
deforming end case interacts with the previously shed LEV,
this instant corresponds to the dip in CL in Figure 4. The de-
forming center case shows no interaction, and no change in
the CL slope as seen in Figure 4. At the next instance, shown
in Figure 7e the shed LEV from the previous stroke has been
completly absorbed into the new LEV for the deforming end
case, and CL is again increasing. For the deforming center
case the dip occurs much later, as does the interaction be-
tween the previously shed vortex and the new LEV.

From the previous results it can be concluded that not the
shedding of the LEV is responsible for the dip in CL seen in
Figure 4, but the interaction of the LEV with the shed LEV
from the previous stroke. For this to be true there should be
no dips in the buildup of CL during the initial stroke, since
there will be no previously shed vortices in this case, and in-
vestigation shows that these dips are indeed absent [23]. The
faster buildup of the LEV in the deforming end case causes
the interaction with the shed vortex to occur earlier. The low-
ering of the angle of attack by the deforming center case de-
lays the interaction and reduces the negative effect. The cur-
vature of the chord of the plate in the deforming center case
also causes the previously shed vortex to get trapped below
the plate, delaying the interaction further. This can be clearly
seen in Figure 8.

To investigate the effect of the deformation on the clap
and fling mechanism the distance to the symmetry plane was
varied. Three cases are defined with D=0.25c, 0.50c and a
case without symmetry plane. Table 4 shows the increase
in the average CL compared to the case without symme-
try plane, for both the rigid case and the deforming center
case. Although the average CL increases for both cases when
the symmetry plane is closer an important difference can be
noted. The increase in averageCL is higher for the deforming
center case with the symmetry plane at D=0.50c, but higher
for the rigid case with the symmetry plane at D=0.25c. The

(a) T=0.559 (b) T=0.559

(c) T=0.599 (d) T=0.599

(e) T=0.639 (f) T=0.639

Figure 6: Q criterion contour plots of the deforming end and
deforming center cases during the instroke, with the wings
moving to the right. The deforming center case on the left
and the deforming end case on the right.



(a) T=0.559 (b) T=0.559

(c) T=0.599 (d) T=0.599

(e) T=0.639 (f) T=0.639

Figure 7: Pressure isosurfaces of p = −1 at the starting of
the instroke with the plate moving to the front. Left for the
deforming end case and right for the deforming center case.

(a) Deforming center (b) Deforming end

Figure 8: Previously shed vortices at the beginning of the in-
stroke for the the deforming center and deforming end cases.
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Figure 9: Lift coefficient plot for the rigid cases, at different
distances from the symmetry plane. The motion starts with
an outstroke.

difference between the cases can be explained by looking at
the development in CL as shown in Figures 9 and 10. Fig-
ure 10 clearly shows a very large dip in CL buildup during
the outstroke for the case with D=0.25c. This dip is much
larger than for the case with the symmetry plane at D=0.50c,
and greatly reduces the average CL. The faster LEV buildup
caused by the presence of the symmetry plane causes the in-
teraction between the LEV and the previously shed vortex to
occur sooner. Since the previously shed vortex is trapped be-
low the wing as was shown in Figure 8b, the interaction takes
significantly longer than for the rigid case. This longer inter-
action limits the benefit of fast LEV buildup.

0.5c 0.25c
Rigid case +3.4% +11.3%
Deforming center case +5.1% +9.2%

Table 4: Increase in cycle average CL by changing distance
to symmetry plane.

5 CONCLUSION

Three different deforming wings were simulated to inves-
tigate the effect of the deformation on lift generation by un-
steady aerodynamic mechanisms. It was shown that deform-
ing the wing in such a way that the angle of attack near the
leading edge increased, leads to faster LEV buildup and with
this a faster buildup of lift. No shedding of the LEV was ob-
served in any of the cases even when deformation caused a
high angle of attack near the leading edge. The distinct dip
in lift buildup that was observed was shown to be caused by
the interaction between the previously shed vortex and the
newly developing LEV. This interaction occurred faster when
the angle of attack near the leading edge was increased, and
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Figure 10: Lift coefficient plot for the deforming center cases,
at different distances from the symmetry plane. The motion
starts with an outstroke.

slower when the angle of attack was decreased. The lower an-
gle of attack caused the previously shed vortex to get trapped
below the wing preventing the interaction. Moving the wing
closer to the symmetry plane had a positive effect on the cy-
cle average value of CL. This positive effect was reduced
however by the earlier interaction between the LEV and the
previously shed vortex. This was especially clear for the case
were the angle of attack was reduced, since the position of the
previously shed vortex caused the interaction to take longer.
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