
Design of a Quadrotor System for an Autonomous
Indoor Exploration

M. Gäbel∗, T. Krüger and U. Bestmann
University of Braunschweig – Institute of Technology

ABSTRACT

This paper describes the hardware components
and the embedded software of a self-designed
unmanned aerial system (UAS) to fulfill the
task of an autonomous indoor exploration. The
project, the paper is based on, was conducted
at the University of Braunschweig - Institute
of Technology by students and scientific re-
searchers studying and working at the Institute of
Flight Guidance. The paper is structured as fol-
lows. The first part deals with the development,
selection, collocation and assembling of the ap-
propriate hardware to obtain a reliable and robust
system which suits the task of controlling the
UAS, collecting information about the environ-
ment and providing the computational resources
to execute the implemented algorithms. The sec-
ond part deals with the software architecture that
generates the control commands for the quadro-
tor UAS and ensures the execution of the mission
by the stepwise fulfillment of single tasks.

1 INTRODUCTION

Investigating the interior of a building with UASs has
gained interest during the past years. Especially the use of
multirotor systems such as quadrotor UAS has been taken
under consideration by many researchers and is still topic
of current studies as they are highly maneuverable and thus
especially suited to fulfill challenging indoor tasks. More-
over, compared to helicopters and flapping wings, the design
of multirotor sytems allows to carry a wide range of scien-
tific payload. Several studies, experiments and competitions
[1],[2],[3],[4],[5], [6] have been undertaken and carried out
to analyze and present the suitability of multirotor systems
for indoor and outdoor tasks. As a result of the promising
findings there is ongoing research to develop and implement
new hardware and software to extend the degree of auton-
omy, the sensing abilities and the flight duration of multirotor
systems. Especially in the case of a natural disaster UASs
could be used to obtain an overview of the situation inside
and around buildings to assist rescue units. This paper intro-
duces an approach to deploy a quadrotor UAV for the task

∗Email address(es): m.gaebel@tu-braunschweig.de, th.krueger@tu-
braunschweig.de, u.bestmann@tu-braunschweig.de

of an autonomous indoor exploration. The proposed quadro-
tor system is equipped with the Pixhawk autopilot, a Hokuyo
laser scanner, an Optical Flow Sensor and an onboard com-
puter with a low power consumption.

2 HARDWARE

In most cases for the purpose of doing scientific research
including the operation of multirotor UAS the Astec Peli-
can is considered first as it satisfies the most users demands
regarding scientific payload, endurance and computational
capacity provided i.e. by the Astec Mastermind. Never-
theless for our demands the Astec Pelican has proven to
get close to its limits regarding the payload and flight en-
durance. Therefore we designed and built a quadrotor UAS
from scratch, which is able to carry the required payload, pro-
vides sufficient computational resources for the onboard cal-
culations and guarantees a minimum flight time of 25 min-
utes. The quadrotor UAS with all its components and an de-
tailed overview about how the single components are linked
with each other is represented in Figure 1. In its final con-
figuration the quadrotor UAS weights about 3 kilograms and
has a maximum diameter of 76 centimeters.

Figure 1: Quadrotor UAS

1



2.1 GNSS Unit

The GPS unit is mounted on top of the laser range finder
and shown in Figure 1 marked with number 1. It con-
sists of an ublox LEA-6H satellite receiver and the Honey-
well HMC5883L 3-axis digital compass. The ublox satel-
lite receiver is capable of handling signals from the Russian
GLONASS or the American GPS and is able to achieve a hor-
izontal dilution of precision of 2.5 meters assuming optimal
conditions. Furthermore the ublox LEA-6H satellite receiver
is able to process the signal of a satellite based augmentation
system to enhance the accuracy of the calculated position so-
lution up to a horizontal dilution of precision of 2 meters. The
update rate of the position can be modified and set to a fre-
quency of 1 or 5 Hz. Right after starting the satellite receiver
it takes about 26 seconds to obtain a first position solution. In
case the GNSS unit has just been switched off for a few sec-
onds (hot start) or a signal of a satellite based augmentation
system (SBAS) is available a first position can be obtained
within a few seconds. The built in Honeywell magnetometer
guarantees a compass heading accuracy with a maximum de-
viation of 2 degrees. Either devices, the GNSS receiver and
the Honeywell magnetometer, are supplied with 3.3 Volts by
the Pixhawk autopilot.

2.2 Hokuyo UTM-30LX

The Hokuyo UTM-30LX is shown in Figure 2 and
marked with the number 2. The laser range finder device is
mounted on the quadrotor UAS to sense the surrounding envi-
ronment of our quadrotor UAS. With a scanning range from
0.1 up to 30 meters, a field of view of 270 degrees covered
within 25 milliseconds, a weight of 210 grams and a power
consumption of only 8 Watts it is the main sensing device.
Intending to travel at a constant altitude that should not be
occupied or blocked by free standing obstacles, i.e. furni-
ture, the implementation of a device sensing obstacles just in
a two-dimensional plane is suitable to fulfill the task of ex-
ploring the interior of a building while staying at the same
floor. Besides the purpose of sensing obstacles, the informa-
tion gathered by the laser range finder are required to perform
the simultaneously localization and mapping (SLAM) and to
reveal the unknown space inside the building.

Figure 2: Hokuyo UTM-30LX

2.3 Intel NUC i5 Board
The multirotor system has been equipped with the Intel

D54250WYB NUC board shown in Figure 3 a). With its 4th
generation Intel Core i5, 120 GB SSD hardrive and 8 GB of
memory it provides the required computational power to per-
form the high-level task such as localization, mapping, obsta-
cle detection, path- and motion planning and moreover pro-
vides enough disk space to log data and install the required
software. Further advantages of the NUC board are its com-
pact dimensions of 11 x 11 x 3 centimeters (w x b x h) and
the low required power consumption within the range of 9
Watts at idle and a maximum of 24 Watts at full load. In ad-
dition the NUC board is equipped with a wireless local area
network (WLAN) module with integrated Bluetooth to estab-
lish a reliable link between the onboard PC and the ground
control station outside the building. Mainly, the link serves
the purpose to monitor the onboard processes and visualize
the progress of the mission.

a) b)

Figure 3: Image conversions

2.4 Pixhawk autopilot
The Pixhawk autopilot, depicted in Figure 3 b), is a

state-of-the art autopilot equipped with the quite powerful
STM32F427 Cortex M4 168 MHz processor with 256 KB
of RAM and a flash memory of 2 MB. In addition to the main
CPU the autopilot is equipped with a STM32F103 proces-
sor to avoid the loss of the UAV in case the main processor
fails. The firmware of the Pixhawk autopilot, which can be
set up with the open source ground control QGroundcontrol,
can be adjusted for different kinds of UASs. Furthermore
the autopilot’s architecture allows to replace the orignal Pix-
hawk firmware by another compatible autopilot firmware i.e.
Ardupilot. The autopilot itself integrates a 16 Bit gyroscope,
a 14 Bit accelerometer and magnetometer both manufactured
by STMicroelectronics and a MS5611 barometer which can
be used as an altimeter and variometer with a minimum res-
olution of 10 centimeters. To extend the degree of autonomy
the autopilot provides several interfaces to connect additional
sensors like an optical flow sensor, airspeed sensor or a GPS
unit via USB, SPI (Serial Peripheral Interface), CAN (Con-
troller Area Network) and I2C (Inter Integrated Circuit). In
addition there are interfaces for two telemetry modules and a
Spektrum DSM receiver.



3 SOFTWARE

The developed and implemented software shall meet the
major task to guarantee the safe operation of the quadrotor
UAS at every point of the mission. Since this task must be
achieved in a limited amount of time, at first a look around for
applicable open source projects in the field of robotics was
conducted. As a result the Robot Operating System (ROS)
has been considered as a candidate to push the project for-
ward. The Robot Operating System has been developed at
Stanford Artificial Intelligence Laboratory for the Stanford-
AI-Robot (STAIR) project in 2007 and evolved since then to a
platform suitable for a wide range of robotic applications. To-
day ROS’s further development is driven by Willow Garage1

and the nonprofit organization Open Source Robotics Foun-
dation (OSRF)2. The success of ROS is based on the large
number of industrial, scientific and common co-contributors
and the quite active community. Furthermore the modular de-
sign of the available software packages and the correspond-
ing tutorials facilitates the first steps into ROS and the im-
plementation of the algorithms required for the own project.
At the moment there are more than 3000 packages available
ranging from SLAM- and navigation algorithms to camera
and laser drivers. In addition ROS integrates also external li-
braries like OpenCV or the PointCloud Library (PCL). Since
ROS already provides drivers for several devices and more-
over provides additional software with a variety of function-
ality, we decided to use ROS and to integrate the developed
software in the typical ROS manner as standalone packages.
The Robot Operating System and the software packages run
on the NUC board described in the hardware section. The
implemented software consists of the algorithms perform-
ing laser data processing, SLAM, exploration, path planning,
path tracking, mission control and the communication inter-
face between ROS and the Pixhawk autopilot. A flow chart
for the exploration task integrating the hardware and the al-
gorithms is illustrated in Figure 4. The essential algorithms
and their interactions will be explained in the following sub-
sections.

3.1 SLAM
For the task of a precise indoor navigation a robust lo-

calization of the robot is quite essential. Overall the UAS is
equipped with three different kind of sensors that could be
used for this task. The mounted optical flow unit is directly
connected to the autopilot to provided complimentary infor-
mation about the current velocity and altitude of the quadro-
tor UAS in its body axis system. Thus the sensor data of
the optical flow unit might be already out of time due to the
transfer latency when processed by an algorithm running on

1Willow Garage was founded 2006 by Scott Hassan ”to accelerate the
development of non-military robotics and advance open source robotics soft-
ware.” http://www.willowgarage.com/

2”The mission of OSRF is to support the development, distribution, and
adoption of open source software for use in robotics research, education and
product development.” http://osrfoundation.org/

Figure 4: Exploration software configuration

the NUC board. The IMU is not appropriate for the task as
well since suffering the same problem besides its biased mea-
surement results. Therefore another approach has been taken
into consideration. As the quadrotor UAS is equipped with
the Hokuyo laser range finder directly connected to the NUC
board, a SLAM [7] algorithm has been implemented to lo-
calize the robot and recognize its movement while mapping
the environment. To fulfill this task the Hector SLAM al-
gorithm [8] has been implemented and extended to provide
additional information about the linear velocities and angular
rate in the x-y plane of the 3 dimensional, global coordinate
frame. Among the available LiDAR-based (Light Detection
and Ranging) SLAM algorithms the Hector SLAM algorithm
is preferred since the algorithm is open source and already
implemented in ROS as a standalone package. The Hec-
tor SLAM estimates the position and orientation of a UAS
by trying to match the incoming laser scans. Therefore the
Scanmatcher algorithm aligns the latest laser scan with the
map generated by all the previous laser scans. An example
of a map generated by the Scanmatcher is shown in Figure
5. In order to work, compared to other SLAM algorithms
like GMAPPING, the Hector SLAM algorithm does not re-
quire any odometry information. In addition the algorithm



can be even used on 6 DoF platforms whereas others like
the GMAPPING algorithm, which do not take into consid-
eration pitch and roll angles, might fail without modifications
of the underlying code. Moreover the Hector Slam algorithm
is able to cope with the high publish rates of the Hokuyo laser
range finder. The Hector SLAM algorithm is a typical fron-
tend SLAM, which focuses on estimating the robot move-
ment in real-time and does not make use of any kind of pose
graph optimization, i.e. loop closing. Nevertheless the algo-
rithm has proven to work reliable and accurate in many small
scale scenarios and therefore it has been chosen to perform
the 3D localization of the UAS in the unknown environment
inside the building. For the task of indoor exploration the
3D pose estimate is passed to the exploration algoritm and
both gridmaps. Furthermore the odometry algorithm keeps
track of the global pose changes to compute the current ve-
locities of the UAS. The map generated by the Hector SLAM
algorithm is only used to verify the overall performance of
the SLAM algorithm. The mapping result itself is not fed
into the costmaps, which are only updated by the incoming
laser scanner data. The algorithms generating the maps, the
scanmatcher map and the gridmaps, can be adjusted to filter
the laser scanner data in terms of range measurements. Thus
the information stored in the scanmatcher map and global
gridmap can differ from each other depending on the range
limits for the corresponding filter.

Figure 5: Scanmatcher map

3.2 Exploration
The implemented 2D Exploration algorithm has been pro-

posed for the first time by Brian Yamauchi in 1997 [9]. To suit
the defined objectives the grid-based exploration algorithm is
initialized with an apriori map of the building. To obtain a

suitable map for the indoor exploration task an image of the
building’s contour is required. The image is manipulated in
such a way that only the interior of the building will be con-
sidered unknown which will force the robot to explore only
the inside of the building. The SDL (Simple DirectMedia
Layer) library is used to convert the manipulated image into
a binary file containing the gray scale information. Incorpo-
rating the binary file, the information about the image resolu-
tion, the size of a grid cell and the gray scale thresholds, each
cell of the grid is categorized into free, occupied or unknown.
The result of combining all these information is a scaled grid-
map also called occupancy grid. An example of the steps for
generating such a map is depicted in Figure 6. Figure 6 a)
presents the top view of our Institute which is used to de-
rive a simple image of the Institute’s shape shown in Figure
6 b). In a next step the interior of the contour with its bound-
ing walls is shaded in gray to be recognized by the algorithm
as the unknown space. Figure 6 d) presents the grid-based
costmap as the final output of the algorithm. The unknown
space is still represented by the gray shaded cells. The walls
are now classified as obstacles and shown in red. Moreover
a predefined area around the obstacles is marked in pink to
indicate the space occupied by the inflated obstacles.

a) Top view of Instituteb) Institute’s contour

c) grid-based costmapc)grey scale modification

Figure 6: Image conversions

The exploration algorithm aims at cleaning out all the un-
known space using the laser scanner data to update the in-
formation about the unknown cells and set them either to
free or occupied. To do so the algorithm sets accessible goal
poses by determining the frontiers of the free to the unknown
space. For the purpose of frontier-based exploration a fron-
tier is defined as a set of adjacent cells which share at least
one edge with an unknown cell. In addition such a frontier
must be wide enough to accommodate the exploring UAS. If
both conditions are met the examined frontier is considered



accessible. In a next step a frontier goal is placed a prede-
fined distance apart from the accessible frontier within the
free space to preclude the collision with an unrevealed obsta-
cle that might be hidden in the unknown space. All frontier
goals are saved and updated every time new information have
been added to the map. Among the current frontier goals the
closest one to the robots position is submitted to the naviga-
tion algorithm which finally plans an obstacle-free path to the
goal pose starting from the UAS pose. In case for a spec-
ified time no progress towards a goal pose is achieved, the
currently pursued goal pose (frontier goal) will be put on a
blacklist. Then, among the remaining frontier goals a new
selection is performed by determining the frontier goal with
the minimum euclidean distance to the UAS’s position. Af-
terwards the determined closest frontier goal is passed to the
navigation algorithm. As soon as all frontier goals are pro-
cessed the quadrotor UAS will return to its initial point at the
starting time of the exploration. Figure 7 presents the fron-
tier goals identified by the exploration algorithm, the planned
path towards the pursued frontier goal, the path traveled so
far, the underlying costmap and the current position of the
quadrotor UAS.

frontier goal

obstacle

inflated obstacle

unknown space

travelled path

pursued goal

quadrotor

path to pursued goal

Figure 7: Exploration algrithm

3.3 Navigation

The navigation task is fulfilled by the combination of a
global and a local planner. The global planner plans the
global path from the UAS’s current position towards the goal
to pursue, avoiding the recognized obstacles, the area within
a predefined distance around the obstacles and all cells of the
grid map marked as unknown. The underlying path plan-
ning algorithm is part of the ROS navigation stack and com-
putes the path using a grid-based map of the environment,
which is identical to the one used by the exploration algo-
rithm, and the well known Dijkstra algorithm. Furthermore
to move the quadrotor UAS from its current position towards
the goal along the global path linear and angular velocities
have to be generated. This task is performed by the local
planner which relies on the sensor measurements and a local
grid-based map of the environment. The local map is cen-
tered around the quadrotor UAS and moves as the quarotor
UAS moves towards the goal. The map is centered around
the UAS as the local planner just cares about obstacles within
the area close to the quadrotor UAS. To determine the veloc-
ities two algorithms have been examined, whereas the Dy-
namic Window Approach has been favored over the Trajec-
tory Rollout Planner as it samples from the set of achievable
velocities for just one simulation step compared to sampling
over the entire forward simulation period. Thus it is compu-
tational more efficient in generating the velocity commands
[10]. Nevertheless both algorithms work in almost the same
manner. The implemented Dynamic Window Approach [11]
samples the UAS’s three- dimensional control space (ẋ, ẏ, ψ̇)
and for each sampled angular or linear velocity the algorithm
performs a forward simulation from the UAS’s current state
to predict what might happen if the sampled velocity is ap-
plied for a short period of time. The obtained trajectory is
scored evaluating parameters such as proximity to an obsta-
cle, proximity to the goal, proximity to the global path and
the velocity. All trajectories that would result in a collision
with an obstacles are excluded from the set of feasible trajec-
tories. In the end, among the remaining trajectories, which
correspond to a set of sampled velocities, the one with the
highest score is chosen. Finally the velocities are used to de-
rive the corresponding radio control commands, which are
then submitted to the autopilot. Another feature of the Dy-
namic Window Approach is its ability to adapt the velocities
to the environment. In the absence of obstacles and assum-
ing the UAS can fly straight towards the goal, the algorithm
will generate velocity commands that correspond to the UAS
achievable maximum velocities. Whereas in an environment
cluttered with obstacles appropriate linear and angular veloc-
ities are generated to avoid collisions by trying to maximize
an objective function. This objective function includes a mea-
sure of progress towards the goal, the forward velocity of the
UAS and the distance to the next obstacle on the path. Taking
all three parameters into account, the UAS balances the ob-
jective to move fast towards the goal against the objective to



maneuver around the obstacles. The result of this behavior is
a quite robust collision avoidance algorithm.

3.4 Mission control
Since the entire mission consists of several task an algo-

rithm is deployed to initiate the single actions and switch be-
tween the several task regarding the feedback received from
the autopilot or other algorithms, i.e. the exploration algo-
rithm. The mission control program keeps track of the current
state of the UAS, i.e. airborne or at ground, and switches be-
tween the available tasks for the current state in a predefined
order. To initiate the switching between two consecutive tasks
a feedback received from an algorithm or the autopilot is re-
quired, that the current task, i.e. the sensor initialization, the
exploration or the landing procedure is accomplished. The
exchange of information about the current progress of a task
is handled using the ROS communication architecture. Since
ROS is just running on the NUC board and thus it can be just
used for the communication between the algorithms running
on the NUC board as well another approach has been im-
plemented to enable the communication between NUC board
and the Pixhawk autopilot. This approach is described in the
following section.

3.5 MAVLINK
To control the quadrotor UAS’s motion by sending com-

mands to the flight controller and to get the current state of the
quadrotor i.e. for switching between different task, a commu-
nication link between the Pixhawk autopilot and the Robot
Operating System must be established. As either of them
the Pixhawk autopilot with its different firmwares and the
Robot Operating System support the Micro Air Vehicle Com-
munication Protocol (MAVLINK) it is implemented to estab-
lish the communication link between both. The MAVLINK
protocol is an open source, header-only marshalling library
which is already implemented in many modern autopilots to
communicate between an UAS and its control station [12].
But likewise it can be used to enable the communication by
wire between an onboard computer and an autopilot to ex-
change information or submit control commands. Currently
the MAVLINK protocol can support 255 aircraft at once.
The maximum message length is constrained to 263 bytes,
whereas 8 bytes are reserved MAVLINK frame consisting of
an message ID, component ID, system ID, the packet start
sign, the payload length, the packet sequence and the check-
sum.

4 CONCLUSION

In this work an UAS system has been introduced which
will be able to perform an autonomous indoor exploration.
Therefore this system makes use of packages for navigation
and path planning, which are already implemented and avail-
able for the Robot Operating System. This first version of the
UAS system uses mainly a two-dimensional laser scanner for
the environment perception and the exploration task.

5 FUTURE WORK

Though the designed system might be capable to sense
and build a 3D map of the environment, it lacks the ability to
plan a three-dimensional path. Furthermore it is not able to
generate the appropriate commands to follow or track such a
path. In addition to the abilities of planning and tracking an
obstacle-free, three-dimensional path the sensor-based local-
ization in a 3D environment might be considered in future to
improve and enhance the autonomy of the UAS. Thus mod-
ifications and extensions of the current sensor configuration
have to be made to sense the full 3D environment or per-
forming a 3D-SLAM, i.e. by adding stereo vision camera.
Furthermore an appropriate path planning algorithm and path
tracking algorithm have to be implemented as well to enable
the system to navigate in a cluttered 3D environment. The
implementation and evaluation of the software and hardware
is part of the ongoing studies and will be presented in future
publications.

REFERENCES

[1] G. Andrews S. Ahrens, D. Levine and J. P. How. Vision-
based guidance and control of a hovering vehicle in
unknown, gps-denied environments. In IEEE Interna-
tional Conference on Robotics and Automation, 2009.

[2] R. He A. Bachrach, S. Prentice and N. Roy. Robust au-
tonomous navigation in gps-denied environments. Jour-
nal of Field Robotics (JFR 2011), 2011.

[3] R. He A. Bachrach and N. Roy. Autonomous flight in
unknown indoor environments. International Journal of
Micro Air Vehicles, 2009.

[4] R. He A. Bachrach and N. Roy. Autonomous flight in
unstructured and unknown indoor environments. In In-
ternational Journal of Micro Air Vehicles, 2009.

[5] J. H. Kurz C. Eschmann and C. Boller. Cure modern -
franco-german infrastructure inspection with unmanned
air systems. In International Micro Air Vehicle Confer-
ence and Flight Competition (IMAV2013), 2013.

[6] A. Leber C.-H. Kuo, C.-M. Kuo and C. Boller. Vector
thrust multi-rotor copter and its application for building
inspection. In International Micro Air Vehicle Confer-
ence and Flight Competition (IMAV2013), 2013.

[7] H. Durrant-Whyte and T. Bailey. Simultaneous local-
ization and mapping. IEEE Robotics and Automation
Magazine, 2006.

[8] O. von Stryk S. Kohlbrecher, J. Meyer and U. Klingauf.
A flexible and scalable slam system with full 3d motion
estimation. In Proc. IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR), 2011.



[9] B. Yamauchi. A frontier-based approach for au-
tonomous exploration. In International Symposium on
Computational Intelligence, Robotics and Automation
(CIRA), 1997.

[10] E. Marder-Eppstein and E. Perko. Navigation stack - the
base loacal planner. www.wiki.ros.org/base_
local_planner. Accessed: 2014-05-09.

[11] W. Burgard D. Fox and S. Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics and Au-
tomation Magazine, 1997.

[12] Lorenz Meier. The micro air vehicle communi-
cation protocol. www.qgroundcontrol.org/
mavlink/start. Accessed: 2014-04-30.

www.wiki.ros.org/base_local_planner
www.wiki.ros.org/base_local_planner
www.qgroundcontrol.org/mavlink/start
www.qgroundcontrol.org/mavlink/start

	Introduction
	Hardware
	GNSS Unit
	Hokuyo UTM-30LX
	Intel NUC i5 Board
	Pixhawk autopilot

	Software
	SLAM
	Exploration
	Navigation
	Mission control
	MAVLINK

	Conclusion
	Future Work

