
Flexible framework for the development of versatile
MAV systems for multi-disciplinary applications

M. Cordero∗, M. A. Trujillo, J. Ruı́z, A. Jiménez, L. Dı́az, and A. Viguria
Center for Advanced Aerospace Technologies, Wilbur y Orville Wright 19, La Rinconada (Seville, Spain)

ABSTRACT

MAV (Micro Aerial Vehicle) systems have
proven useful in multiple applications (e.g. aerial
photogrammetry, aerial inspections,...). For each
application different sensors and even different
airframes are often needed. Having a flexi-
ble UAS (Unmanned Aircraft System) devices
(specifically an autopilot, a payload manager and
a ground control station) that can be seamlessly
used with different platforms is of great inter-
est as it reduces the development time and ef-
fort (and hence cost). This flexibility must apply
to the hardware, software and design method-
ologies so the system can be rapidly adapted to
meet the requirements of other applications. This
paper introduces a flexible system developed by
CATEC consisting of an autopilot, Ground Con-
trol Station (GCS) and a payload manager for
MAVs. This system has already been tested in
real experiments for different applications that
are also presented in this paper.

1 INTRODUCTION.
Unmanned aircrafts are finding an increasing number of

applications such as precision agriculture, firefighting, min-
ing, search and rescue, surveillance,. . . to cite a few. De-
pending on the mission requirements, different aircraft sys-
tems may be needed (e.g. more autonomy may be needed for
the inspection and mapping of wider areas). Furthermore, dif-
ferent sensors need to be used in different applications (e.g.
multispectral cameras are very useful in precision agricul-
ture applications but may not be needed in search and rescue
missions). Traditionally, UAS (Unmanned Aircraft systems)
have used their own ad-hoc systems (i.e. autopilot, payload
manager, Ground Control Station (GCS), etc). These sys-
tems are specific for their aerial platform and cannot be eas-
ily adapted to be used in another one. Dealing with multiple
different UAS systems increase operating and maintenance
costs. It is of great interest to have flexible and versatile au-
topilot, payload manager and ground control station that can
be used with different aerial platforms and for different mis-
sions. In the last decade different autopilots and GCS sys-
tems that can be easily integrated in different aerial platforms

∗Email address: mcordero@catec.aero

have been developed. Most of these autopilots are COTS
(Commercial Off-The-Shelf) products with a very limited ac-
cess to their internal operation (e.g. Piccolo from Cloud Cap
Technologies [1], MP2x28 from MicroPilot [2],. . . ). There
are also open source autopilots that provide full access to
the autopilot’s internals. The most popular ones are prob-
ably Ardupilot [3] and Paparazzi [4]. These autopilots im-
plement the GNC (Guidance, Navigation and Control) algo-
rithms directly in C++ code. This can be tricky for some
control engineers not used to work with programming lan-
guages. In this paper, a flexible and versatile UAS system
developed by CATEC is presented. This system includes an
autopilot, a GCS and a payload manager. Regarding the au-
topilot, the control engineers follows a model-based devel-
opment (MBD) approach in which the GNC algorithms are
developed in Simulink and ANSI C code is obtained using an
automated code generation tool from TheMathWorks. The
GCS and payload manager also use flexible architectures as
will be shown. This paper is organized as follows: in section
2 a description of the system and the individual components
(i.e. autopilot, GCS and payload manager) is provided; in
section 3 the flexibility and versatility of this system is illus-
trated by showing three applications in which the system has
already been used; finally in section 4 the conclusions are
presented.

2 SYSTEM ARCHITECTURE.

The proposed system architecture is depicted in Figure 1.
The elements of the ground and the airborne segments are
shown in red and blue respectively. Additionally, these ele-
ments can be divided in those that are used for GNC tasks and
those that are used for mission specific tasks. The autopilot,
GCS and navigation sensors belong to the first group while
the payload sensors, payload manager and payload ground
software belong to the second group. The elements of the
ground and the airborne segments communicate using two
radiolinks operating at different frequencies (e.g. 900 MHz
for the command and telemetry link and 2.4 or 5.8 GHz for
the payload datalink). It is important to note that the ele-
ments of the navigation and mission payload groups are not
isolated. Instead, some of them are interconnected (e.g., the
autopilot is connected to the payload manager to provide it
with telemetry such as the position, velocity and attitude of
the aircraft that can be exploited for georeferencing sensor
data).

1



Figure 1: System architecture developed for the precision
agriculture application.

2.1 Autopilot.

The autopilot controls the throttle and control surfaces to
safely fly the aircraft according to the mission configured by
the operator by means of the Ground Control Station (e.g. fol-
lowing a given path of waypoints). For this purpose, a navi-
gation module is used to process the information provided by
the navigation sensors (i.e. inertial sensors, magnetometers,
GNSS (Global Navigation Satellite System) receiver and dif-
ferential pressure sensors) to estimate the aircraft state (i.e.
position, velocity and attitude). From this estimation of the
aircraft state and the established mission, the control signals
are calculated and sent to the aircraft servos and engine throt-
tle. CATEC’s autopilot is divided in two boards: a high-
level board (or control board) and a low level board (or safety
board). The control board is based in an ARM Cortex A8
core running at 720 MHz with 256 MB of RAM and runs
the GNC (Guidance, Navigation and Control) algorithms over
QNX operating system. The safety board is in charge of col-
lecting the data from the navigation sensors and sending the
control signals to the actuators. This board is based on an
ARM Cortex M4 microcontroller running at 80 MHz using
FreeRTOS as the operating system. This board also imple-
ments safety features including a light navigation and control
module that allows the aircraft to safely fly according to a
return to home mission. The autopilot also includes the in-
terfaces for communicating with other systems (e.g. a radi-
olink for telemetry, a RS232 interface for connecting with the
payload manager,. . . ) and PWM (Pulse Width Modulation)
outputs that to control the aircraft control surfaces. The func-
tional and hardware architecture of the autopilot are shown in
Figure 2 and Figure ?? respectively.

The autopilot software components that implement the
GNC algorithms have been developed following a model-
based development approach using Simulink [5]. This ap-
proach is based on automatically generating standard ANSI C
code from the Simulink models. This code can be compiled
for QNX or FreeRTOS and run in an embedded PC. With this
framework the development workflow can be accelerated as
you can develop a model with the GNC algorithm, generate
code and run it in the embedded PC and check its behaviour
and performance. When an error is detected or any change
needs to be applied the Simulink model can be modified and
the code can be generated again to repeat the iterative process

Figure 2: Autopilot functional architecture.

of develop-and-test until everything works as expected. For
monitoring the behaviour of the system, Simulink External
Mode is a extremely helpful tool. This tool provides commu-
nication between the Simulink model and the running gener-
ated code so any signal from the model can be monitored e.g.
using a scope or logging the data for postprocessing.

2.2 Ground Control Station (GCS).
The GCS software runs in a laptop PC and is used by

the aircraft operator for commanding waypoint paths, mon-
itoring telemetry, logging flight data and managing alarms.
CATEC’s GCS has been developed using Qt open source
frame work in C++ programming language. A Model-View-
Controller (MVC) software architecture is used to decouple
the code components related to the data model from the code
components of the graphic part and from the internal soft-
ware logistic. The functionality of the set of basic libraries
that conforms the core of the GCS can be easily expanded
thanks to a plug-in system. A number of plug-ins is also pro-
vided together with a simple API so third-party developers
can use their own plug-ins. A plug-in manager is in charge
of loading/unloading all of them. The following plug-ins are
available:

• States plotter. This plug-in plots the received telemetry
data for debugging and monitoring purposes.

• Logger. This plug-in logs the received telemetry data
in a file in CSV format so it can be processed later.

• Primary Flight Display. This is a graphic plug-in devel-
oped in GLStudio (with a Qt/C++ wrapper) that shows
the aircraft attitude, speed and flight altitude.

• Payload Remote Manager. This plug-in allows the con-
figuration of the payload sensors from the ground. This
will be analyzed in more detail in the following section.

• Waypoint Editor. This plug-in is used for the edition
of paths of waypoints that are uploaded to the aircraft
autopilot.



Finally, the View component is the one that shows the graph-
ical interface for the aircraft operator. It is completely inde-
pendent from the core GCS software so different view com-
ponents can be easily interchanged. The layout can be easily
modified, docking and undocking the different components
of the view. Figure 3 shows the graphical user interface of
CATEC’s GCS.

Figure 3: GCS graphical user interface.

2.3 Payload manager.

The payload manager is in charge of managing the differ-
ent elements that are part of the aircraft payload. It performs
multiple tasks including sensor data collection, sensor con-
figuration, status monitoring and it also manages the commu-
nications with the GCS. As mentioned in the previous sec-
tion, the GCS is used for controlling the sensors operation
during the flight by sending commands to them via a radi-
olink. These commands are received by the payload manager
which processes them and performs the associated actions.
These commands can for example start or stop the capture
of video data, change the frame rate and/or image resolution,
activate or deactivate the transmission of the collected data to
the GCS, etc. The flexibility of the system makes it easy to
implement new configuration commands. The payload man-
ager also monitors the status of the different elements of the
payload and reports them to the GCS. The collected data can
be locally logged in flash memory and/or can be sent to the
GCS during the flight by means of a radiolink. Additionally,
some data processing can also be performed onboard before
logging or sending them to the GCS. For example, is a com-
mon practice to add a tag to the collected data with the state of
the aircraft (i.e. position, velocity, attitude, etc) in the instant
when that that was collected and a time stamp. With this in-
formation, collected data can be exploited e.g. for mosaicing,
DEM (Digital Elevation Model) generation, etc. Depending
on the mission and the application, different sensors can be
needed on board the aircraft e.g. visual and infrared cameras,
multispectral cameras, LIDAR (Light Detection and Rang-
ing), sonar sensor, etc. The system has to be flexible both in
hardware and software for being able to manage the different

sensors and performing the different tasks of each mission.
Regarding the hardware the payload manager developed

by CATEC is based on a Falcon VL-EPU-2610 embedded
PC board from VersaLogic [6]. This board includes an In-
tel Atom E6x0T processor running at 1.6 GHz, 2 GB RAM
module and multiple interfaces including four USB ports, one
serial RS-232 port and one Gigabit Ethernet interface. It also
includes a miniPCI slot so new interfaces can be added eas-
ily. Figure 4 shows the payload manager installed onboard an
autonomous helicopter next to an infrared camera.

Figure 4: Payload manager system and IR camera on-board
an unmanned helicopter.

Regarding the software architecture, the payload man-
ager is entirely based in ROS (Robotic Operating System)
and Qt and runs over a Linux distribution. ROS is an open
source framework widely used in the robotics community
and increasingly in the industry. This framework facilitates
the development of modular applications so different mod-
ules (which are referred to as nodes in ROS terminology) can
be developed independently and added for new functionali-
ties. The Qt framework has been selected for its large set
of multi-platform tools for handling files, threads, processes
management, UDP/TCP communications, etc. Communica-
tion between ROS nodes is based in the publish-subscribe
paradigm. This paradigm is based on the definition on dif-
ferent data topics (e.g. images, telemetry data, node status,
etc). The different existing ROS nodes can publish on these
topics and/or subscribe to them for sharing information. Fig-
ure 5 shows the payload manager software architecture. Red
nodes are part of the payload manager and hence run onboard
the aircraft while the blue node is the payload manager plug-
in of the GCS. The system includes the following nodes:

• IR camera node is a mission specific node for infrared
cameras. It handles the connection with the IR cam-
era via an Ethernet connection satisfying the GenICam
standard. This node publishes an IR-image topic each
time the camera captures a thermo-graphic image. It
also provides some services for changing some of the
IR camera parameters so other nodes can change them.

• Visual camera node manages webcam devices compat-



ibles with the video4linux driver. This node publishes
an RGB-image topic each time the camera captures an
image. It also provides services for changing some
parameters of the camera such as brightness, contrast,
FPS (Frames per Second), etc.

• Streamer node subscribes to the image topics of any
sensor node (e.g. the IR and/or visual cameras) in or-
der to transmit them to the GCS software via an UDP
connection and a wireless link. This node can use dif-
ferent video codecs for compressing the images in a
video stream in order to reduce the bandwidth usage.
The stream sent to the GCS can consist in one or more
video streams and it can also include a metadata stream
with additional information of each frame.

• Telemetry node accesses the telemetry data provided
by the autopilot via a serial connection. For each data
acquisition a telemetry topic is published with informa-
tion related to the platform position and attitude. This
node doesn’t provide any service.

• Logger node doesn’t publish any data topic but it sub-
scribes to all the data topics provided by other sensor
nodes in order to log them in a database file (shown
in green in Figure 5). It provides basic services for
starting or stopping the logging of topics. After each
logging procedure, a BAG file is stored in the storage
unit of the embedded system. BAG is a ROS-specific
format for compressed data that can be easily read and
processed with the tools provided by ROS.

• Comms node manages the communications with the
GCS payload manager software. On one hand, it im-
plements a TCP server that handles incoming connec-
tions from the GCS for listening to operational com-
mands. These commands are then translated to the spe-
cific service requests to the target ROS nodes. In the
other hand, the node is sending periodically the status
of the nodes to the GCS payload management software.

• Monitor node collect the status topic published by all
the other nodes. This topic indicates if they are working
properly or not. The purpose of the monitor node is to
launch the others, monitor their status and if something
goes wrong restart them.

ROS nodes implementing the interfaces of topic publica-
tions, subscriptions and services defined in Figure 5 could
be immediately replaced by other nodes with the implemen-
tations for different hardware devices providing the system
with high flexibility.

3 APPLICATIONS.
CATEC’s system has been tested in several applications

proving its versatily. In this paper three of these applications

Figure 5: Application software modules. Red nodes run
onboard the UAV and blue ones run in the GCS payload

management software.

(aerial robotics manipulation, precision agriculture and wind
blade inspections) are presented to illustrate the flexibility of
the system.

3.1 Aerial robotic manipulation.

This work was developed as part of the European Com-
mission’s 7th Framework Programme (FP7) project ARCAS
[7]. The objective of this project is to integrate robotic manip-
ulators onboard of aerial robots for structure assembly tasks.
In the indoor tests, a robotic arm developed by CATEC was
integrated with an octocopter. CATEC’s autopilot and pay-
load manager were both integrated onboard the octocopter.
During the indoor flights, GNSS signals are not available so
positioning information was obtained through a motion cap-
tion system by Vicon which is depicted in Figure 6. This sys-
tem is based on the real-time processing of the information
provided by 20 Vicon cameras that can provide the position
of an object with sub-millimetric accuracy. The system only
needs that passive markers are attached to the objects to be
tracked. The positions are calculated by a Vicon central com-
puter and sent to the autopilot in real time by means of a WiFi
connection. The ability to substitute the GNSS positioning
by Vicon positioning for indoor flights shows the flexibility
of the CATEC’s autopilot. The payload manager performed
the already mentioned tasks of sensor data acquisition, log-
ging and streaming and sensor configuration. In addition, the
payload manager included a ROS node that implemented a
high-level controller that provided the autopilot and robotic
arm controller with position references for the octocopter and
the robotic arm respectively. This way, difficult tasks such as
coordinated control of both the aerial vehicle and the onboard
robotic arm can be achieved.

Two different experiments were carried out. In the first



Figure 6: Vicon camera (left) and CATEC indoor testbed
(right).

one, the octocopter had to pick up a bar estimating its po-
sition from four visual markers that where attached to it as
shown in Figure 7. A visual camera was integrated onboard
together with a light source to guarantee good illumination
conditions for the vision algorithm to work properly. In the
payload manager, a ROS node was in charge of the acquisi-
tion of the visual data and another ROS node processed this
data conveniently to provide the autopilot and the robotic arm
controller with position references. With this architecture the
final task of autonomously picking up the bar with informa-
tion from the visual camera was achieved successfully.

Figure 7: Grabbing a bar with visual markers.

In the second experiment the octocopter had to au-
tonomously grab three bars with special connectors and se-
quentially assemble them to form a structure. In this case,
Vicon markers where attached to the bars so Vicon system
calculated their attitudes and positions and sent them to the
ROS node implementing the high-level controller. As in the

previous case this node provided the autopilot and robotic arm
controller with position references. This experiment was also
conducted successfully. Figure 8 shows two frames of the
video that was recorded during the flight trials.

Figure 8: Octocopter grabbing a bar (left) and assemblying
the structure (right).

3.2 Precision agriculture.
This work was developed as part of the European Com-

mission’s 7th Framework Programme (FP7) project Field-
copter [8]. The objective of this project was to investigate
the added value of Unmanned Aerial Systems (UAS) over
satellite-based remote sensing. The principal benefits of UAS
are their flexible deployment at any time in the day and their
ability to acquire imagery under cloudy conditions. An in-
frared and visual cameras were integrated onboard an un-
manned helicopter (specifically a SARAH UAV manufac-
tured by Flying-Cam). It is a completely electrical helicopter
with 7 kg payload capacity. It has around 20 minutes of au-
tonomy and its operation is completely autonomous, includ-
ing taking-off and landing. This UAV uses a commercial au-
topilot so only CATEC’s payload manager was integrated to-
gether with visual and infrared cameras as was shown in Fig-
ure 4. Additionally, CATEC’s GCS was used for payload
management purposes. The experiments were conducted in
vineyards in Lleida (north of Spain). In this case, the pay-
load manager stored the collected visual and IR images in the
onboard storage device. After the flights, the data were post-
processed to obtain mosaic images and segmentation of the
individual vines as shown in Figure 9.

3.3 Wind blade termographic inspection.
Wind turbines are gaining importance in the last years be-

cause of their high efficiency during energy production with-
out greenhouse gas emission. However, wind blades main-
tenance operations have become expensive due to operat-
ing costs (accessibility, scaffolding,...) and the cost of hav-
ing them unemployed. A non-destructive technique capable
of detecting most significant in-service defects in composite
wind blade is Infrared Thermography (IRT). In this work, a
feasibility study for defect detection during maintenance op-
erations in wind blades using unmanned aircrafts was per-
formed. This approach allows inspecting the blades without



Figure 9: Canopy temperature obtained from flight
experiments showing the obtained object-segmentation of

the individual vines.

any scaffolding system and reduceing the time they remain
unemployed.

Figure 10: UAV flights close to the wind turbine to be
inspected (left); Trajectory followed for the inspection

(right).

In this case, a similar configuration to that used in the
precision agriculture experiments was adopted. An infrared
camera was integrated onboard the SARAH unmanned rotor-
craft. To obtain an adequate image resolution and to keep a
safe operation area for the UAS, a distance of about 5 meters
from the wind turbine blade and displacement speed of 1 m/s
were defined. The inspection strategy (shown in Figure 10)
was designed to achieve the entire blade inspection using a
single battery (whose autonomy is around 20 minutes).

The acquisition and logging of the infrared images was
controlled by CATEC’s payload manager and monitored with
the payload manager plug-in of the ground control station.
The feasibility of the proposed inspection methodology was
demonstrated for detecting the most common wind blade ser-
vice defects such as cracks, delaminations and impacts, by
using passive infrared thermography. Figure 11 shows some
of the thermographic images obtained during the flight trials
performed in Tarifa (south of Spain) in which 10-meter blades
were inspected.

Figure 11: Thermal images showing (A) pitch brake system,
(B) bonds between upper and lower shell, (C) access gate

and (D) surface roughness.

4 CONCLUSION.
In this paper, the UAS systems developed by CATEC for

unmanned aircrafts have been presented. These system have
been developed following a flexible architecture both in hard-
ware and software. This allows them to be easily adapted
for their use in different missions and applications with dif-
ferent requirements, as well as being integrated in different
aerial platforms. The systems include an autopilot, a payload
manager and a ground control station with remote payload
management functions. These have been used in real flight
demonstrations for different applications. Three different ap-
plications have been shown, namely aerial robotic manipu-
lation for structure assembly, precision agriculture and wind
blade termographic inspection.

REFERENCES

[1] CloudCapTechnologies. Piccolo II Datasheet.

[2] MicroPilot. MP2x28 Series Autopilot
http://www.micropilot.com/products-mp2028-
autopilots.ht.

[3] Ardupilot. http://ardupilot.com/.

[4] Paparazzi UAV Autopilot.
http://wiki.paparazziuav.org/wiki/Main Page.

[5] Daniel Santamarı́a, Francisco Alarcón, Antonio Jiménez,
Antidio Viguria, Manuel Béjar, and Anı́bal Ollero.
Model-Based Design, Development and Validation for
UAS Critical Software. Journal of Intelligent & Robotic
Systems, 65(1-4):103–114, August 2011.

[6] VersaLogic. Falcon (VL-EPU-2610)
http://www.versalogic.com/products/ds.asp?productid=230.

[7] ARCAS. http://www.arcas-project.eu/.

[8] Fieldcopter. http://fieldcopter.eu/.


