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ABSTRACT

We construct a stereo vision system mounted on

a micro air vehicle applying two high resolution

consumer grade cameras. The system hardware

and mechanical configuration are presented. A

novel image processing algorithm specifically

suited for high resolution stereo images is de-

scribed, and its properties are discussed. Empiri-

cal data from outdoors flight experiments is pre-

sented, showing both successful and unsuccess-

ful attempts at extracting depth information from

the stereo images. The results highlight several

important design aspects to consider when build-

ing a stereo vision system for use in micro air

vehicles.

1 INTRODUCTION

Depth information is essential for representing real world

structures in three dimensions. Depth information repre-

sented as a set of 3D points in a known frame of reference is

called a point cloud. Point clouds or other 3D representations

are essential for autonomous robot operations, since avoid-

ing obstacles, planning routes or manipulating objects in the

environment is impossible without 3D information about the

surroundings.

Depth data can be obtained, for example, with laser range

finders or time of flight (TOF) cameras. However, these meth-

ods may not be suitable for micro air vehicles (MAVs) due to

weight and cost limitations.

Stereo vision provides point clouds by first finding the

matching features from two images taken from two known

but different locations. The difference between the matching

features is called disparity. Disparity can be converted to a

metric distance when the geometric transformation between

the images is known. The features are usually block shaped

areas in the images. The most difficult part in stereo vision is

finding the matching features in the image pairs. Many of the

current methods struggle with featureless surfaces, see e.g.

[1]

Low resolution stereo imaging as used in [2] and [3] has

the advantage of fast processing and low latency, critical for

real time applications. For instance, low-resolution imaging
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can be used for attitude estimation and navigation when dis-

tance to the features is generally under 5m and surfaces have

unique texture. On the other hand, these systems are not ideal

for mapping areas with small featured surfaces from more

than 5m away since the low resolution cameras cannot dis-

tinguish texture at distance. This performance is highly de-

pendent on the construction of the stereo camera and the sur-

face in question: plainly painted wall might not have enough

features no matter how close the camera is, and the wall

of the building with large features might have enough tex-

ture for low resolution stereo matching even from more than

20m away. High-resolution stereo imaging can be applied to

obtain reliable depth information from feature poor environ-

ments such as sand, grass or asphalt surfaces. Another advan-

tage of high resolution images is that they can also be used

for tasks such as texture analysis or marker detection. The

downside is increased computation time, which makes high

resolution data challenging to use in real time applications.

In this work, we apply a lightweight, low-cost, stereo camera

system built from high-resolution consumer grade cameras to

collect depth data. The stereo vision system is mounted on

a MAV. Our goal is to apply the system to support the ac-

tivities of an unmanned ground vehicle (UGV) by providing

information on terrain features and formation in areas that

the UGVs own sensors cannot reach. The remainder of the

paper is organized as follows: in Section 2, we present the

MAV hardware construction including the stereo camera sys-

tem and give a brief overview of the theory of stereo imaging.

In Section 3, the image processing techniques developed in

this work specific to the use of high-resolution cameras are

presented. Their differences to other state-of-the-art meth-

ods are discussed. In Section 4, empirical data collected from

MAV test flights with the stereo camera system are presented.

The data highlight several important design aspects that have

an effect on stereo imaging performance. Finally, Section 5

concludes the paper.

2 METHODS

The MAV applied in this work is shown in Figure 1. It

is built from carbon fiber honeycomb plate and carbon fiber

tubing. The arms and their connections are from a commer-

cial kit but the rest of the hardware has been cut from carbon

fiber plates.

The system consists of subsystems which each handle

their specific tasks. The main PC coordinates all the subpro-

cesses. The layout and communication hierarchy is presented
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Figure 1: The MAV used in this work.

Figure 2: The physical layout of the components of the MAV

system.

in Figure 3. The physical placement of the systems can be

seen in Figure 2.

We are using the open source Arducopter [4] as our flight

controller. An additional inertial measurement unit (IMU)

is used for the camera attitude estimation. The IMU unit is

built from Arm M4 microcontroller and Invesense MPU-6050

accelerometer and gyroscope. MAV location is sensed with

a global positioning system (GPS) sensor. The GPS sensor

consists of a Yuan10 receiver with RTKlib open source RTK-

GPS software[5] in the main PC. The positional error of the

GPS is usually smaller than 0.5m in motion, but can be as

high as 10m when close to ground or buildings. The closer

analysis of the positioning system can be found in [6].

The stereo camera is built by mounting two standard con-

sumer cameras on a sandwiched honeycomb composite plate.

This mounting ensures that the cameras share a common

plane. A similar setup is used e.g. in [7]. Our stereo rig has

a baseline of 219 mm, compared with 700 mm in [7].We use

a small baseline because our MAV could not accommodate a

larger camera rig. The cameras are running custom firmware

that provides software triggering, raw image capturing and

basic scripting capabilities. The cameras are triggered by a

simple script running in the camera firmware. The camera rig

is shown in Figure 4. Cameras are mounted in such a way

that we get a maximal baseline with minimal space usage;

however this results in a different shutter sweep direction be-

tween the cameras. Because we were using the raw images

Figure 3: A schematic of the onboard hardware and their con-

nections.

Figure 4: The onboard camera rig.

provided by the custom firmware, we were able to get 10bit

images without cropping and other corrections done by the

original firmware. However, this also meant that we had to do

the factory calibration ourselves, which involved the geomet-

ric rectification of the images and removing the dead or stuck

pixels from the images. The cameras also had varying trig-

gering delay to the trigger signal. Constant delay was roughly

700ms which was compensated in the camera triggering code,

but the variance of this delay proved to be a critical aspect on

the experimental data. The triggering difference between the

cameras for a sample of ten image pairs is presented in Figure

5.

To perform any kind of mapping, we need to define our

coordinate systems and be able to transform data from the

sensor plane into the map coordinates. Image processing

must be done in a frame relative to the sensor plane and

map information is most conveniently represented in a global

frame of reference. In the case of the stereo camera, we

need at least three coordinate systems: the image, camera and

global coordinate systems. The origin of the image coordi-

nate system is at the principal point, which is in the middle

of the sensor. Image coordinates have units in pixels. The
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camera coordinate system has its origin at the focal point of

the camera. The global coordinate system is a fixed earth-

centered frame. The coordinate systems are presented in Fig-

ure 6, where the coordinate axes with subscript sens, cam and

glob represent the image, camera and the global coordinate

frames, respectively.

Stereo camera is calibrated to rectify the images so that

both of the images appear as if they only have translation in

horizontal (X) direction. This means that if a feature is found

at coordinate [x1, y1] on the left image, it will found on the

right image at a coordinate [x1 + d, y1] where the term d is

called the disparity. Stereo camera calibration also includes

the traditional single camera calibration where the lens dis-

tortions are compensated.

There are several methods for finding disparities between

images. One of these methods is called block matching.

Block matching works by selecting a small rectangular block

from the left image and slides it horizontally over the right

image, calculating correlation over each position. An alterna-

tive version of this typically used in low-resolution systems

is the sum of absolute differences, where instead of correla-

tion, difference between the blocks in the images is used. The

point of maximal correlation or the minimal point of summed

absolute differences is chosen as the disparity between the

images at the origin of the block.

Once the disparity between the images has been calcu-

lated at several points, the pixel units in disparities d are con-

verted to metric depth z according to[8, p. 175]

z =
dtf

d
. (1)

This equation is valid in the special case when the cameras are

on the same plane. The baseline dt is the distance between the

camera centers. When this information is combined with the

focal length f and disparity d we can calculate depth in me-

ters. The focal length f is determined by camera calibration

in pixel units.

By this process, we have obtained the metric depth data

on the camera coordinate frame. The data is then converted

to the global coordinate frame. This requires knowing the

rotation and translation of the cameras when the images were

taken. Sensor data from GPS, IMU, etc. are used to estimate

the rotation and translation parameters.

3 IMAGE PROCESSING

Image processing was first tested with readily available

tools like the machine vision toolbox [9]. However, these

tools were not always able to handle high resolution data

or resulted in low quality image matching. Due to this, we

implemented our own stereo matching algorithm specifically

suitable for high-resolution images.

We apply a block matching algorithm to find the dispari-

ties between the images. Our approach works iteratively, al-

ternating the block size and using the information gained on

previous steps to constrain the search areas. The idea behind

this method was to utilize all available data with little concern

at computation times and concentrate on computational effi-

ciency at a later stage. The algorithm is described in Figure 7.

The process begins by loading the images from the disk, fol-

lowed by the camera calibration procedures which involve the

geometric rectification and correcting for faulty pixels. Af-

ter the calibration steps, we use principal component analysis

(PCA) to reduce the RGB color channels to an monochrome

image. The disparity between the images is searched with the

block matching algorithm. When the disparity is found, the

disparity image is converted to point cloud format in global

coordinates.

3.1 RGB to monochrome conversion

Stereo vision algorithms are generally implemented on

monochrome images as this reduces calculation time. There-

fore, our RGB data needs to be converted to monochrome.

Traditionally, the RGB image is converted to monochrome

by summing the color channels with different gains, roughly

equivalent to discarding hue and saturation information from

the image. We applied windowed PCA [10] over the whole

image in this work. This method finds optimal multipliers
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Figure 7: The algorithm for calculating point clouds from stereo images.

for each color channel by computing the PCA transformation

to each window so that local contrast is maximized. Com-

parison of the traditional monochrome conversion and PCA

transformation can be seen in Figure 8. The figure shows the

worst case scenario for the traditional RGB conversion and

has been designed to illustrate a special case when the tra-

ditional conversion is not viable. The figure also includes a

comparison with a real photograph. Differences are visible in

places where colors such as red and green are close to each

other. Traditional conversion results in low contrast between

the two colors whereas PCA transformation enhances the dif-

ferences.

Original image

Conventional conversion

PCA transformation

Original image

Conventional conversion

PCA transformation

Figure 8: RGB to monochrome conversion for a synthetic

(left column) and real image (right column). The source im-

age is shown on the top row. The middle row shows the tra-

ditional RGB conversion of the source image and the bottom

row the converesion with the windowed PCA transform.

The processing takes 5 seconds for an 8Mpix image with

and I7-3990 processor using a window size of 40 pixels. The

algorithm was implemented usingMatlab’s builtin PCA trans-

formation.

3.2 Block matching

We use a block matching algorithm for solving the dis-

parity between the images. A diagram of our block matching

algorithm is shown in Figure 9. This algorithm corresponds

to the Searching the disparity part of the whole image pro-

cessing procedure shown in Figure 7. The block matching

algorithm works iteratively by first calculating an initial esti-

mate for the image using low resolution and large block sizes.

The following iterations will use decreasing block sizes and

higher resolution. The decision to replace the results from

the previous rounds is done based on cost functions that de-

termine the quality of the match. The algorithm is essen-

tially correlation based block matching with heuristic deci-

sion making between different block sizes. The algorithm be-

gins by setting initial values for disparity and the uncertainty

of each pixel. In the next phase, the algorithm chooses the

block size and resolution to be used in calculation. The search

window in the other image will scale according to the uncer-

tainty for that particular disparity. Then, normalized cross

correlation is used to calculate the correlation of the block

over the search window. This is followed by calculating the

different cost functions or descriptors for the disparity. The

rest of the algorithm computes heuristic values based on the

cost functions for deciding if the disparity calculated in this

iteration is better than the one calculated last time. The de-

cision logic is illustrated in the lower part of the Figure 7.

For example, in the case where two out of four of the cost

functions indicate that the new disparity value would be bet-

ter than the previously calculated disparity, the old value will

be updated with a new disparity value if the window size used

was smaller for the new window. The old estimate will also

be updated if three or more of the four cost functions indi-

cate that the new estimate is better. The whole algorithm will

iterate as long as the percentage of points updated is over a

stopping threshold.

The cost functions used in this work fall into two cate-

gories. The first category contains pixel based functions, and

the other category contains functions that need to be con-

verted to pixels from an unitless quantity, such as correlation.



Uncertainty in pixel units can be converted to a metric uncer-

tainty through the same equations that are used for converting

the disparity.

Pixel based cost functions penalize the match if it has too

many peaks that are caused e.g. by repetitive texture. Results

from larger block size will be preferred if they do not have the

multi peak correlation. Standard deviation with the neighbor-

ing disparity values is used to penalize noisy pixel values. In

other words, smooth estimates are preferred. One cost func-

tion is the pixel size. Because we drop the image resolution

for the larger block sizes, the pixels will be larger. This results

in different pixel sizes between block sizes and the cost func-

tion encodes a preference of smaller block sizes over larger

blocks. The non pixel based cost functions were the corre-

lation of the found peak, and the signal to noise ratio of the

peak. They were converted to the pixel scale by constant mul-

tipliers, which were experimentaly determined. This ratio is

calculated by dividing the correlation peak height with the

standard deviation. This ensures that high correlations that

clearly stand out from the surroundings are preferred over a

high correlation only, which might result from simply flat col-

ored surfaces.

The algorithm we developed resembles the semi-global

block matching (SGM) technique used by Hirschmuller et al.

[11]. The key difference between our algorithms is in the cost

functions used to quantify the match quality. Hirschmuller et

al. use only local standard deviation to penalize bad matches

whereas our algorithm employs multiple cost functions to de-

scribe the match quality. The iterative structure where re-

sults from different block sizes are used also differs. We are

using results from multiple levels to ensure that even large

surfaces without many distinctive features will get matched

correctly. With a small window size, these large surfaces

will not be properly matched as the small window does not

contain enough texture for finding the match. Using large

windows mitigates this problem although it creates new prob-

lems with small details being lost on the edges. This is why

decision heuristics are implemented to favor good matches

from smaller block sizes if it is found on the area of the larger

block.

3.3 Performance

The algorithm was implemented so that it could be dis-

tributed to multiple computers acting as a calculation clus-

ter. The software was running on Matlab and the calculation

was distributed through serialized structures sent through Ze-

roMQ [12], an open source library providing a transport layer

for distributed applications.

Average calculation times in a cluster with two Intel i7

3770 processors and Nvidia GTX680 graphics cards was 15-

20 minutes for complete processing of one image pair. The

current code has not been performance optimized, but it will

scale well with the addition of more hardware to calculation.

As the algorithm runs iteratively, initial results are available
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Figure 10: Original image and disparity extracted from the

stereo pair in good conditions.

in under one minute with the current setup. For the rest of the

time, the estimate is refined to produce a more accurate end

result.

4 EXPERIMENTAL RESULTS

In this section, we present some of the best and worst re-

sults obtained with our algorithm. Comparing the end results

highlights important design aspects that must be taken into

account when designing a stereo vision system for use in a

MAV. We also present a comparison of our algorithm to the

SGM technique of [13]. Figure 10 presents the performance

of the disparity calculation in ideal conditions when there is

sufficient texture and the triggering of the cameras does not

have large time difference. This results in a smooth disparity

estimate with only a small amount of missing data due to bad

matching.

Figure 11 presents the point cloud extracted from the dis-

parity image seen in Figure 10. Points on the lower left edge

are missing due to estimate being too inaccurate. Small errors

are also present on the upper right corner where the spike in

height is not present in the real terrain. Axes are scaled to 10
m. There is no visible warping on the point cloud caused by

the inaccurate triggering of the cameras.

Figure 12 present the system’s performance in poor con-

ditions. The matching itself is good but there is a clear trend

visible towards the lower left corner. This is a good exam-

ple of a case where the assumed camera calibration is invalid

because cameras were triggered at different times and the po-

sition and attitude of the cameras does not correspond to the

calibrated positions. This often results in a valid looking dis-

parity image, but the point cloud reveals heavy distortions.

Compensating was attempted by forcing the mean disparity to

correspond to the height of the MAV but this correction only

applies to the incorrect baseline and does not fix the possible
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Figure 9: An activity diagram for the disparity search algorithm. Each of the operations is performed for the whole image.

Figure 11: Point cloud extracted from disparity image.

camera rotation between the images. Knowledge of the exact

camera triggering times would be required to correct for these

errors.

Figure 13 shows the point cloud extracted from the dis-

parity image in Figure 12. The effect of assuming an invalid

calibration is clearly visible in this figure, as can be seen from

the distorted surface. In reality, the ground plane seen in the

figure should be flat.
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Figure 12: Original image and the disparity extracted from a

stereo image pair in poor conditions.

We tested our algorithms performance against an imple-

mentation of SGM [14]. According to the software documen-

tation, the implementation is based on [13]. The comparison

is presented in Figure 14 We used the image pair that was

earlier presented in Figure 10. We used a block size of 17px,

with search window size of 64x304px with other values left

at their default values. It can be seen that our method man-



Figure 13: A point cloud extracted from a disparity image

when an invalid camera calibration is applied.
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Figure 14: Comparing Matlab implementation of semi global

block matching to our algorithm.

ages to find a more complete disparity estimate. However,

it is worth noting that SGM took 12seconds to calculate the

results on a single PC as our method took roughly 15 min-

utes running on two processors and one GPU. The result in-

dicates that there may be cases where our algorithm outper-

forms SGM. However, a fair comparison requires testing with

more input images and is a topic for future work.

5 CONCLUSION

We applied high-resolution, low-cost consumer grade

cameras to build a lightweight stereo camera system mounted

on a MAV. Specialized algorithms were developed to extract

depth information from the high-resolution images. We were

able to extract high quality depth data from low textured sur-

faces like dirt roads, sand piles and grass. High resolution

stereo vision was useful in identifying features and making

the system compact without making the field of view too nar-

row.

In flight altitudes exceeding 10m, the quality of the point

clouds decreased. This was due to the features being too

small. This can be seen as increasingly noisy depth estimates

for low featured surfaces. Another drawback was caused by

the use of the consumer grade cameras which did not trig-

ger accurately at the same time. This resulted in the stereo

calibration assumed in the image processing phase being in-

accurate. Inaccuracy in camera calibration was often not crit-

ical when the altitude was low as the disparities were small,

but when altitude was more than 10m, the results degraded

heavily. We identified several important factors that should

be taken into account when designing a stereo camera sys-

tem for use in a MAV. The single most important factor is

to trigger the cameras at precisely the same time. Even dif-

ferences as small as 100ms can cause significant errors when

the cameras are moving at typical MAV speeds. Using mul-

tiple block sizes proved to be useful while matching images

with low texture. High computation times were expected as

the goal of this work was not to make a real time stereo vi-

sion system, but to explore the possibilities of the high res-

olution stereo vision. This work is a summary of one of the

authors Masters thesis [15]. The algorithm development and

data gathering was done during year 2013. In future work, we

will concentrate on using machine vision cameras with accu-

rate hardware-level triggering. We are also planning to test

how low textured surfaces can be matched using low resolu-

tion cameras with a narrow field of view. In addition, compu-

tation is faster for lower resolution images. Smaller cameras

also enable us to use a longer baseline to compensate for the

smaller resolution.
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