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ABSTRACT

This paper presents a method for fault detection

and diagnosis of actuator loss of effectiveness for

a quadrotor helicopter. This paper not only con-

siders the detection of the actuator loss of effec-

tiveness faults, but also addresses the diagnosis

of the faults. The detection and estimation of

the faults are performed by the Augmented Ex-

tended Kalman Filter. The faults are modelled

as random walk processes and are treated as ad-

ditional states which makes the fault estimation

unbiased. The estimated faults can be further

used for Fault Tolerant Control. Simulation both

without and with the occurrence of the actuator

faults demonstrates the effectiveness of the pro-

posed approach.

1 INTRODUCTION

Fault Detection and Diagnosis (FDD) is essential for

achieving a successful control system reconfiguration [1].

Many techniques have been proposed especially for sensor

and/or actuator faults [2, 3, 4]. Among these, model-based

techniques have been widely studied and even successfully

applied to several industrial areas [3, 5]. Many fault detection

filters have been proposed to tackle this problem [3, 6].

Kalman Filter (KF) [7] is an optimal filter for linear sys-

tem when the system is working nominally. If there are model

uncertainties or faults, the state estimate of the filter will de-

viate from the real state. Furthermore, in practice, the system

are always nonlinear if no assumptions are made. Therefore,

the KF should be extended to nonlinear filter in order to cope

with nonlinearities in the system. One way is to use the Ex-

tended Kalman Filter (EKF) [8], which requires the calcula-

tion of Jacobian matrix of the system matrix.

In this paper, the loss of effectiveness fault of a quadrotor

helicopter is considered. In [9], the faults were detected by

using the innovation of the KF. However, how to estimate the

faults which are essential for Fault Tolerant Control (FTC)

was not addressed. This paper uses the same fault detection

technique and also addresses the fault diagnosis. The faults

will be estimated by the Augmented Extended Kalman Filter

(AEKF). The AEKF models the faults as additional states.

The estimated faults can provide a more accurate information

for the FTC.
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The structure of the paper is as follows: Section 2 will

present some preliminaries related to this paper. Section 3

will present the mathematical model of the quadrotor heli-

copter which is used in this paper. The modelling of the actu-

ator faults is also introduced. The FDD of the actuator loss of

effectiveness fault is presented in Section 4. The result with-

out and with the fault are shown in Section 5 while Section 6

concludes the paper.

2 PRELIMINARIES

This section will present the problem which will be coped

with in this paper.

2.1 Nonlineas system with input faults

Consider the nonlinear stochastic system with input faults

in the discrete form

{

xk+1 = f(xk, uk, k) + wk + fi,k (1)

yk+1 = h(xk+1, k + 1) + vk+1 (2)

where xk+1 ∈ R
n represents the system states, uk ∈ R

m the

control input, yk+1 ∈ R
p the measurement. wk and vk are

the process noise and measurement noise vector respectively.

The function fi,k represents input faults respectively. It is

assumed that the noise vectors wk and vk+1 are zero-mean

and

E{wk} = 0 , E{wkw
T
τ } = Qk δkτ (3)

E{vk} = 0 , E{vkv
T
τ } = Rk δkτ (4)

E{wkv
T
k } = 0 (5)

where the δkτ denotes the Kronecker delta function, Qk and

Rk are the covariance matrix of the process noise and mea-

surement noise respectively.

2.2 Extended Kalman Filter

This section presents the EKF [8, 10] which is used for

the state estimation of the nonlinear system. The EKF, which

is a form of the KF extended to nonlinear systems, can be

applied to estimate the states. The five standard steps for an

EKF are as follows:

1. One step ahead prediction

x̂(k + 1|k) = x̂(k|k) +

∫ k+1

k

f(x(t), u(t), t)dt (6)
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2. Covariance matrix of the state prediction error

P (k + 1|k) = Φ(k, τ)P (k|k)ΦT (k, τ) +Qd(k) (7)

where Φ(k, τ) is calculated as follows:

Φ(k, τ) = eF (k)∆t =

∞
∑

n

Fnk (∆t)
n

n!
(8)

where F (k) is the linearized matrix computed as fol-

lows:

F (k) =
∂f(x(t), u(t), t)

∂x(t)

∣

∣

∣

∣

x=x̂(k|k)

(9)

The Qd(k) is calculated as follows:

Qd(k + 1|k)

= E{wd(k)w
T
d (k)}

=

∫ tk+1

tk

Φ(tk+1, τ)GkQkG
T
kΦ

T (tk+1, τ)dτ

≈

∞
∑

m

∞
∑

n

Fmk
m!

GkQkG
T
k

Fnk
n!

(∆t)
n+m+1

(n+m+ 1)!
(10)

However, there is a commonly used approximation for

Qd(k) which is calculated as follows:

Qd(k) = Γ(k)Q(k)Γ(k)T (11)

where Γ(k) is calculated as follows:

Γ(k) =

(

∫ k

k−1

Φ(k)∆t

)

G(k) (12)

3. Compute the Kalman gain

The optimal Kalman gain is calculated by the following

equation:

K(k + 1) = P (k + 1|k)HT (k + 1)V −1(k + 1)
(13)

where V (k + 1) is calculated by

V (k + 1) = H(k + 1)P (k + 1|k)HT (k + 1) +R(k + 1)
(14)

where H(k + 1) is the linearized matrix of the mea-

surement matrix

H(k) =
∂h(x(t), u(t), t)

∂x(t)

∣

∣

∣

∣

x=x̂(k|k)

(15)

4. Measurement update step:

x̂(k + 1|k + 1) = x̂(k + 1|k)

+K(k + 1)γ(k + 1) (16)

where γ(k) is the innovation of the EKF, which is com-

puted as

γ(k + 1) =
(

y(k + 1)−H(k + 1)x̂(k + 1|k)
)

(17)

5. Update the covariance matrix of the state estimation er-

ror matrix

P (k + 1|k + 1) = (I −K(k + 1)H(k + 1))P (k + 1|k)

×(I −K(k + 1)H(k + 1))T

+K(k + 1)R(k + 1)KT (k + 1) (18)

Since the EKF is a linearized form of the KF, problems may

occur when the linearisation error is large. Note the EKF is

only convergent when the initial states are close enough to the

real states.

3 MATHEMATICAL MODEL AND FAULT MODEL OF

THE QUADROTOR

This section will present the mathematical model of the

quadrotor and build the fault model for the actuator faults of

this quadrotor. Note the model used here is the same with [9].

The model used is the Qball-X4 model.

3.1 Model of the quadrotor

In this paper, the objective is to detect and estimate the

faults of the quadrotor actuators. The model of a quadrotor

can be described as follows [11]:

ẋ = vx (19)

ẏ = vy (20)

ż = vz (21)

mv̇x = U(cosφ sin θ cosψ + sinφ sinψ) (22)

mv̇y = U(cosφ sin θ sinψ − sinφ cosψ) (23)

mv̇z = U(cosφ cos θ)−mg (24)

J1φ̈ = τφ (25)

J2θ̈ = τθ (26)

J3ψ̈ = τψ (27)

where x, y and z are the positions of the quadrotor, vx, vy
and vz are the velocity components of the quadrotor. m is the

mass of the quadrotor and g is the gravity constant. φ, θ and

ψ are the attitude angles of the quadrotor which are roll, pitch

and yaw angle respectively. J1, J2 and J3 are the moments of

inertia of the quadrotor. U is the total lift and τφ, τφ and τφ
are the torques along the directions of the φ, θ and ψ angles

respectively.

It is assumed that all the states mentioned above are mea-

sured. However, the measurements are corrupted by noise.

The measurement model is as follows:



xm = x+ νx (28)

ym = y + νy (29)

zm = z + νz (30)

vxm = vx + νvx (31)

vym = vy + νvy (32)

vzm = vz + νvz (33)

φm = φ+ νφ (34)

θm = θ + νθ (35)

ψm = ψ + νψ (36)

where ν = [νx νy νz νvx νvy νvz νφ νθ νψ ]T are the noises

in the measurements.

3.2 Model of the actuator

This subsection will introduce the model of the actuator

and the fault modelling of the actuator faults. The actuator

dynamics are as follows:

U =
Kω

s+ ω
u (37)

where K is a gain factor and ω is a parameter of the actuator.

The input of the actuator is the PWM. Therefore, the model

of the actuator with the PWM input is as follows:

U̇ = −ωU +Kω [1 1 1 1]









PWM1t

PWM2t

PWM3t

PWM4t









(38)

where PWMit, i = 1, 2, 3, 4 are the theoretical four PWM

inputs respectively. Also note that the initial PWM out-

puts are the minimum throttle value 0.05 [9]. Therefore, the

PWMit should be changed to

PWMit = PWMir − 0.05, i = 1, 2, 3, 4 (39)

where PWMir ∈ (0.05, 0.1) are the real PWM inputs to the

actuator.

3.3 Actuator fault modelling

This subsection will consider the modelling of the actua-

tor faults of the quadrotor. The fault considered in this paper

is partial loss of control effectiveness. Let li, i = 1, 2, 3, 4 de-

note the loss of effectiveness. Then the model of the actuator

is

U̇ = −ωU +Kω [1− l1 1− l2 1− l3 1− l4]









PWM1t

PWM2t

PWM3t

PWM4t









= −ωU +Kω [1 1 1 1]









PWM1t

PWM2t

PWM3t

PWM4t









−Kω[PWM1r, PWM2r, PWM3r, PWM4r]









l1
l2
l3
l4









(40)

Now the actuator fault model has been established, the objec-

tive of this paper is to detect and diagnose the faults, which

will be introduced in the following section.

4 FAULT DETECTION AND DIAGNOSIS OF THE

ACTUATOR FAULTS

This section will present the method for the detection and

diagnosis of the loss of effectiveness fault for the quadrotor.

In [9], the actuator faults can be detected using the innovation

of the EKF. However, the fault reconstruction is not consid-

ered which is essential for fault tolerant control. The fault

estimation is also beneficial for the diagnosis of the system.

In this section, the fault detection will be first introduced.

The fault detection is based on the innovation of the filter

γ(k + 1) =
(

H(k + 1)x(k + 1)−H(k + 1)x̂(k + 1|k)
)

(41)

In order to detect the faults, a threshold T0 needs to be de-

fined. The fault detection logic is

γ(k + 1) =

{

≥ T0 ⇒ trigger the fault alarm

< T0 ⇒ No faults
(42)

Since there are noises in the measurement, T0 should be a

number bigger than zero. One can also accumulate the inno-

vation in a certain length of time window to detect the faults.

4.1 Augmented Extended Kalman Filter

In this paper, we propose to use the AEKF to estimate

the faults in the actuators of the quadrotor. The AEKF is an

augmented form of the EKF. The faults are augmented as

additional states so the faults are also estimated by the AEKF.

To estimate the faults, we need to have a fault model. One

way to model the dynamics of the time-varying input fault is

to treat it as a random walk process[12, 13, 14]. This strategy

is combined with the filter for the purpose of improving the

state estimation performance in the presence of unknown in-

put faults. In order to achieve this, a random signal w′
k with a



covariance matrix Q′
k is introduced to the dynamic model of

the filter

ẋ′(t) =

[

ẋ(t)

ḟ

]

=

[

f(x(t), u(t), t)
0

]

+

[

w(t)
w′
k(t)

]

(43)

where f is the vector for the loss of effectiveness fault. Since

there are four PWM inputs, the vector of the faults is denoted

as

f = [f1 f2 f3 f4]
T (44)

By augmenting the faults as the state vector, the faults can

be estimated in an unbiased sense. The value of the fi, i =
1, 2, 3, 4 is the estimated value of li. Therefore, the estimation

of the loss of effectiveness fault is achieved.

5 SIMULATION RESULTS

In this section, the approach proposed in the previous sec-

tion will be applied to the quadrotor actuator fault diagnosis.

The baseline controller is a PID controller which controls the

altitude of the quadrotor. The position x and y are not con-

trolled.

In order to show the performance of the approach, the

situation with and without actuator faults will be shown.

5.1 FDD when there are no faults

In this simulation, there are no actuator faults. All the

PWM inputs are normal. This means that l1 = l2 = l3 =
l4 = 0. The results of the actuator fault diagnosis using the

AEKF are shown in Figure 1 - Figure 5.
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Figure 1: State estimation of the KF without faults

Figure 1 shows the controller response. The controller

can track the command of the altitude which is given in green

line. The red lines denote the true states of the quadrotor

while the blue dotted lines represent the estimation of the

AEKF. Since there is only a controller for the altitude, the

position x and y are not controlled.
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Figure 2: State estimation of the KF without faults
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Figure 3: State estimation of the AKF without faults

The state estimation error of the position vector, velocity

vector and attitude angles using the AEKF are shown in Fig-

ure 2, Figure 3 and Figure 4 respectively. As can be seen,

all the estimation error are close to zero-mean. This demon-

strates the state estimation ability of the AEKF.

The fault estimation using the AEKF is shown in Figure

5. As can be seen, the estimation requires almost one seconds

to converge to the true value. After that, the estimation error

is zero-mean.

5.2 FDD when there are actuator faults

In this simulation, all the four PWM suffer from a loss of

effectiveness fault. The magnitude of the fault is 0.1t, and the

limit for the loss of effectiveness factor is 0.5. The faults of

two actuators related to the pitch axis are injected at t = 5
s whereas those of two actuators related to the roll axis are

injected at t = 6 s.
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Figure 4: State estimation of the AKF without faults
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Figure 5: Fault estimation of the AKF without faults

Note the faults injected here shows a loss of effectiveness

fault. The result is shown in Figure 6.

The state estimation errors using the AEKF are similar

to the situation when there are no actuator faults. Therefore,

they are not shown here. The controller response is also simi-

lar to Figure 1. The fault estimation using the AEKF is given

in Figure 6. As can be seen from the figure, the loss of effec-

tiveness faults of the four actuators can be estimated correctly.

However, there is a time delay between the true faults and the

estimated faults. This can be improved by changing the mag-

0 5 10 15 20
−0.5

0

0.5

1

f1

0 5 10 15 20
−0.5

0

0.5

1

f2

0 5 10 15 20
−0.5

0

0.5

1

f3

0 5 10 15 20
−0.5

0

0.5

1

f4

 

 

True
EstimationFault estimation

time (s)

Figure 6: State estimation of the KF with faults

nitude of the random signalw′(k) in Equation 43. Increasing

the magnitude can reduce the time delay. However, the noise

magnitude of the fault estimation will be bigger.

6 CONCLUSIONS

This paper addresses the FDD of the actuator loss of ef-

fectiveness fault for a quadrotor helicopter. The model of the

quadrotor was built and the modeling of the faults was also

introduced. The detection of the faults was addressed by the

innovation of the filter. The diagnosis of the faults was ad-

dressed by modelling the faults as a random walk process.

Therefore, the estimation of the fault achieved an unbiased

estimate by treating the faults as additional states. The esti-

mated faults can be used for FTC. Two situation was simu-

lated to show the performance of the proposed approach. The

controller was able to follow the command successfully both

with and without the faults. The faults were also estimated

in an unbiased sense, which verified the effectiveness of the

approach.

Future work includes designing a controller for the po-

sition including x and y. Furthermore, the implementation

of the proposed approach on a real quadrotor should also be

carried out.
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