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ABSTRACT

This paper proposes a method to detect dynamic
objects in the images obtained by a small UAV.
Two geometric constraints in multi-view images
are used to classify each of the extracted feature-
points as static or dynamic. The first constraint
is the epipolar constraint which requires static
points to lie on the corresponding epipolar lines
in the subsequent image. The second constraint,
named as flow-vector bound constraint here, re-
stricts the motion of static points along the epipo-
lar lines. In addition, the pose of the UAV-borne
camera, which is required when applying these
constraints, is estimated by using a vision-based
SLAM method, PTAM. The proposed method
fully exploits the characteristics of UAV-borne
images and achieves satisfactory results. The al-
gorithms were tested with a small quadrotor plat-
form in a real-world scene and successfully de-
tected features extracted from multiple pedestri-
ans.

1 INTRODUCTION

Detection of dynamic objects from images has been
widely studied in computer vision research for many applica-
tions, such as traffic supervision, robot navigation, and crowd
surveillance. This paper primarily focuses on moving object
detection from the images obtained by small unmanned aerial
vehicles (UAVs). It is not easy to detect dynamic objects from
moving cameras since there are two motions involved: the
motion of moving objects and the motion of the camera it-
self. Dynamic object detection from small UAVs is especially
challenging because of the characteristics of these vehicles,
such as continuous unrestricted pose variation and bad vibra-
tions. To address these characteristics, new approaches are
needed.

Jung et al. applied a probabilistic approach to detect mov-
ing objects from a mobile robot using a single camera in out-
door environments[1]. The changes in the images caused by
camera motion is compensated using corresponding feature
sets and outlier detection, and the positions of moving ob-
jects are estimated using an adaptive particle filter and EM
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algorithm. Their algorithms were also tested with unmanned
helicopter. Rodriguez et al. developed a real-time method
to detect and track moving objects from UAVs using a sin-
gle camera[2]. The main concept proposed in their work is to
create an artificial optical flow field using the camera motion
between two subsequent images. They compare this artifi-
cial flow with the real optical flow directly calculated from
the images to detect features that belong to dynamic objects.
Siam et al. proposed a automatic multiple moving target de-
tection and tracking framework that executes in real-time and
is suitable for UAV imagery[3]. Their framework is based on
image feature processing and projective geometry, homogra-
phy. The outlier image features, which violate homography,
are computed with least meadian square estimation and clus-
tered spatially as dynamic objects. These dynamic objects
are tracked using Kalman filtering while persistency check is
carried out to remove false detections.

These earlier studies[1, 2, 3] for moving object detection
from moving platforms including UAVs focused on how to
discriminate the changes in image sequences caused by dy-
namic objects from the ones caused by the camera motion.
In other words, the motion of the platform is considered as a
disadvantage for moving object detection in these approaches
and their performances are thought to be best when the plat-
form is not moving. In contrast, we propose an approach for
moving object detection utilizing the motion of UAVs. As
mentioned below, our approach uses multi-view geometric so
that it can detect moving objects from UAV-borne images in
real-time. There are some preceding studies using multi-view
geometric constraints for moving object detection from mov-
ing platforms. Some of these studies are introduced below
and we clarify the contribution and novelty of our approach.

Takeda et al. proposed a method to detect moving obsta-
cles using the residual error calculated in the process of FOE
(Focus Of Expansion) estimation[4]. At first in their method,
the dense optical-flow field is extracted from sequence of dy-
namic images captured by a camera fixed on a moving plat-
form. Next, the FOE is estimated in local image regions. An
image region corresponding to the block is added with the
residual error. This process is repeated by sliding and adding
for the local region while changing the size of the local re-
gion. Finally, regions which have high residual error values
are detected as candidate regions of moving obstacles. Ex-
periments using ground-vehicles show that the method works
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well in a real outdoor scene. However, this method assumes
the pure translation as the platform motion and the rotational
motion is not assumed. Since small UAVs has unrestricted
pose variation, thier method is not appropriate for UAV-borne
images. Kang et al. developed an approach to detect and
track independently moving regions in a 3D scene captured
by a moving camera in the presence of the strong parallax[5].
Each of detected moving pixels are classified into indepen-
dently moving regions or parallax regions by analyzing two
geometric constraints, the commonly used epipolar constraint
and the structure consistency constraint. Experiment results
using airborne images show that their approach can success-
fully detect and track independently moving objects in a 3D
scene despite of the strong parallax in the images. However,
their approach is complex and unsuitable for the real-time
process. Kundu et al. proposed a similar method to ours
to detect moving object from image-sequences obtained by a
robot on the ground[6]. Their approach uses two geometric
constraints but it does not assume the rotational motion in one
of the constraints. Besides, it requires other types of sensors,
such as wheel encoders, to estimate the camera motion.

In this paper, we present an automatic method using
multi-view geometric constraints to detect moving objects
in UAV-borne images. This method fully exploits the unre-
stricted and continuous pose variation of UAVs and is appro-
priate for the small UAVs whose motion is unstable. The
method can detect moving objects in real-time using an or-
dinal laptop computer and does not need sensors other than a
monocular camera.

2 METHODOLOGY OVERVIEW
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Figure 1: The overview of the proposed method

An approach proposed in this paper consists of two major
parts shown in Figure 1. The first part is the one to estimate
the camera motion equipped with the UAV. Using two im-
ages and a vision-based SLAM method, this part estimates
the relative motion of the camera in a 3D scene between the
two frames. This relative motion is the one so called cam-
era extrinsic parameter, which includes the translation vector
t and the rotational matrix R. These parameters are used in
the second part, which is the one for moving object detection.

It uses geometric constraints in image sequences calculated
from these parameters to detect feature-points which belong
to independently moving objects in a 3D scene. The camera
motion estimation part is detailed in section 3 and the moving
object detection part is in section 4.

3 CAMERA MOTION ESTIMATION

In our approach, the camera extrinsic parameter between
a pair of frames is estimated by a vision-based SLAM, PTAM
(Parallel Tracking And Mapping)[7]. PTAM is a robust and
real-time key-frame based SLAM mehod and have been ap-
plied to some vision based navigations for small UAVs[8, 9].

Using the image In captured at time-index n, PTAM cal-
culates the camera pose zn in a reference frame at n:

zn =

[
rn
qn

]
, (1)

where rn is the position and qn is the the quaternion which
describes the attitude of the camera. The camera extrinsic pa-
rameters or the relative motion between two captured images
In and In+1 can be calculated as being

tn:n+1 = −R (qn+1)× (rn+1 − rn) , (2)
Rn:n+1 = R (q∗n ⊗ qn+1) , (3)

where R (q) is a directional cosine matrix (DCM) defined by
the quaternion q and q∗ is the conjugation of the quaternion
q. The symbol ⊗ represents quaternion products.

In the motion detection part, the calculated extrinsic pa-
rameters tn:n+1 and Rn:n+1 are used to detect the moving
objects in the images In and In+1.

4 MOVING OBJECT DETECTION

Figure 2 represents the process of the moving object de-
tection part in our approach. An upper half of Figure 2 is the
process of the moving object detection and lower half are the
images which are the results of each step in the process. The
details of each step in the process are explaied below in this
section.

4.1 Feature extraction and tracking
In the feature extraction step, sparse Kanade-Lucas-

Tomasi (KLT) features[10] are extracted from images In and
In+1 captured at time indexes n and n+1. Next, in the feature
tracking step, each of features extracted from the images are
tracked by KLT feature tracker. Let pin and pin+1 be the posi-
tions of the ith identical 3D-scene point Xi in images In and
In+1, which are obtained by feature extraction and tracking
steps. KLT features extracted from the image In are repre-
sented as red points in the left image in Figure 2 and tracking
result of each feature between the images In and In+1 is rep-
resented as green lines in the second image from the left in
Figure 2.
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Figure 2: The process of moving object detection and result images of each step

Then, two geometric constraints are evaluated at each of
features to classify each of them as static or dynamic. The
first constraint we use is the epipolar constraint and the sec-
ond constraint is the one called flow-vector bound (FVB) con-
straint in this paper. To calculate each constraint and detect
dynamic feature points, the fundamental matrix between the
images In and In+1 is used. The fundamental matrix Fn,n+1

between the pair of images are defined as

Fn,n+1 = K−T [tn:n+1]×Rn:n+1K
−1, (4)

where K is the intrinsic matrix of the camera and Rn:n+1,
tn:n+1 is the rotation and translation of the camera between
two views, which are given by the camera motion estimation
part. The details of the constraints we use and how to eval-
uate them at each of features are explained in the rest of this
section.

4.2 Epilolar constraint

The epipolar constraint is represented by piTn+1ln+1 = 0,
where lin+1 is the epipolar line in the image In+1 correspond-
ing to the feature pin. The epipolar line lin+1 is given by:
lin+1 = Fn,n+1p

i
n. This equation means that features which

extracted from static point in a 3D scene to lie on the corre-
sponding epipolar lines in the subsequent image. However, if
a point is not static in a 3D scene, the feature pin+1 may be
off the corresponding epipolar line lin+1 and the perpendicu-
lar distance from the feature to the epipolar line, hi

epi,n+1 is
not zero as shown in the left figure of Figure 3.

If the coefficients of the line lin+1 are normalized, the per-
pendicular distance in the image In+1 is given by hepi,n+1 =
|lin+1 · pin+1|. Similarly, the perpendicular distance in the im-
age In is given by hepi,n = |lin · pin|. If the value of hepi,n or
hepi,n+1 is far from zero, it is more likely to be an image of
the moving point.

The evaluation step of the epipolar constraint is shown in
the second image from the right in Figure 2. The white lines

represent the epipolar lines and the blue lines represent the
distance from features to the corresponding epipolar lines.

4.3 Flow-vector bound (FVB) constraint
When the camera does not move, the epipolar line

cannnot be defined. Besides, when the degenerate motion
arises, moving points cannot be detected with the epipolar
constraint since the features move along the epipolar lines
even though they belong to dynamic points in a 3D scene as
shown in the right figure of Figure 3.

We use the flow-vector bound constraint as the second
constraint to detect moving points correctly during degener-
ate motions. Assuming the pin-hole camera model, we get
the equation which describes the feature movement in the im-
ages:

pin+1 −KRn:n+1K
−1pin =

1

z
Ktn:n+1, (5)

where z is the depth of a static 3D point corresponding to the
features pin and pin+1. If we set zmax and zmin as the up-
per and lower bound on z, we then find image displacement
bounds along the epipolar line, dmin and dmax, correspond-
ing to zmax and zmin using Equation 5. If the image displace-
ment di = |pin+1 − KRn:n+1K

−1pin| does not lie between
dmin and dmax, it is more likely to be a dynamic point.

X'

Figure 3: LEFT: a point X in a 3D scene moves non-
degenerately hence its image point p does not lie on the corre-
sponding epipolar line. RIGHT: The point X moves degener-
ately in the epipolar plane. Hence, despite moving, its image
point p lies on the corresponding epipolar line.



4.4 Probabilistic model for the classification
As mentioned, we denote by pin the ith feature pi in the

image In. The corresponding feature in In+1 is denoted by
pin+1. The probability of pi being stationary is defined as

P (pi = static) = fEP × fFV , (6)

where fEP and fFV are defined as

fEP = e−α(|pi
n·l

i
n|+|pi

n+1·l
i
n+1|), (7)

fFV =

{
1 +

(
di − dmean

drange

)β
}−1

, (8)

where dmean = dmax+dmin

2 , drange =
dmax−dmin

2 .
α and β are smoothing factors. If the probability is below the
threshold, the feature pi is classified as a dynamic point.

The values of these parameters and threshold need to be
adjusted because the optimal values depend on the situation,
such as the flight height, the velocity of the moving target,
the image resolution, etc. We adjusted these values using par-
ticular image sequences captured from the UAV before the
experiments.

The features classified as dynamic are shown as red points
in the right image in Figure 2. The features which belong to
the moving car are correctly detected.

5 EXPERIMENTAL RESULT

The algorithms we propose were tested in a real-world
scene with a quadroter-type UAV, AR.Drone2.0, shown in
Figure 4.

Figure 4: The UAV used for the experiment (AR.Drone 2.0)

The UAV flew at the height of 10 meters over a crossing
where some pedestrians walked. The results of the experi-
ment were shown in Figure 5.

Exracted KLT features in the first image are shown in the
topmost image in Figure 5. At this stage, features are ex-
tracted from both dynamic objects (pedestrians) and static
objects. In the second image from the top in Figure 5, red
points represent the features in the second image and green
lines show the result of KLT tracking between the first im-
age and the second image. The features extracted from both
dynamic and static objects move in the image. In the third

image from the top in Figure 5, each white line is the epipo-
lar line of the corresponding feature and each blue line repre-
sents the perpendicular line from feature to the corresponding
epipolar line. Note that features extracted from pedestrians at
right part of the image move vertically to the epipolar line,
but features extracted from pedestrians at left part of the im-
age move along the epipolar line. In the bottommost image
in Figure 5, red points represent the points which classified
as dynamic by our method. Only the features which belong
to pedestrians are detected. Although some features extracted
from pedestrians move along the epipolar line as can be seen
in the third image from the top in Figure 5, those features are
also detected by flow-vector bound constraint.

The proposed method was implemented using OpenCV
library and could be run at maximally 15 fps on ordinal laptop
computer (Intel Core i5-2540M, 2.6GHz, 4GB RAM). Com-
putational resources are mainly consumed for the camera lo-
calization (PTAM).

6 CONCLUSION

We proposed a real-time method to detect the moving
points from UAV-borne images using multi-view geometric
constraints. The propose method makes the best use of the
characteristics of small UAVs, such as their great mobility
and pose variation. The algorithm was tested in a real-world
scene, a crossing where some pedestrians walk, and the points
which belong to dynamic objects were succesfully detected.

As future works, we will develop a clustering method for
grouping a set of moving points to a moving object and a
robust tracking method to know the behavior of each mov-
ing object. We will also challenge the sensor fusion to esti-
mate the camera motion. It improves the speed of our algo-
rithm since vision-based localization is computationally ex-
epensive, and it enables us to estimate the motion of the cam-
era robustly even in dynamic environments and texture-poor
environments where the performance of PTAM is poor.



Figure 5: Topmost: Extracted features in the first image (red),
The second from the top: Extracted features in the second
image (red) and the result of feature tracking (green), The
third from the top: Epipolar lines (white) and perpendicular
lines from features to the corresponding epipolar lines (blue),
Bottommost: Detected moving points (red)
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