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ABSTRACT

The design of a relatively new genre of aerial
robots — a full-scale, bird-like flapping wing fly-
ing robot — is analyzed, modelled and validated
through real experiments in this paper. Quater-
nions are used instead of Euler angles in the dy-
namical model to represent the flying robot ori-
entation in 3D space in order to realize smoother
rotational manoeuvres using spherical linear in-
terpolation. Effect of the control surfaces on the
rotational behaviour of the flying robot is used
to deduce the moments induced. The moments
are then used to determine the angular accelera-
tions, rates and orientation of the robot body in
3D space. Aerodynamic forces acting are then
used to model the translational motion of the
robot. For this, we propose practical methods of
estimating the lift and propulsion generated by
the flapping wings of the flying robot. The robot
model is first simulated in a virtual environment
to realize basic yawing and pitching manoeu-
vres and real experiments are conducted subse-
quently. Simulated motion corroborates with the
real sensor data and gives an insight into the type
of future controllers that ought to be designed.

1 INTRODUCTION

The last decade has seen concerted research and effort in
the field of micro aerial vehicles (MAVs) [1]. In Japan, the
need for robust and autonomous MAVs came to light in the
aftermath of the Fukushima nuclear disaster. In North Amer-
ica, MAVs are now being touted for use in commercial deliv-
ery. The penetration of MAVs in civil applications in Europe
in the coming years is expected to be so tremendous that the
even the European Commission (EC) has taken a proactive
stance and formulated a strategy to deal with it [2].

In the beginning, much of the related research used
mainly small-sized fixed and rotary winged aerial robots [3],
[4] i.e airplanes and quadropters. Focus then shifted to the
realization of flapping-wing MAVs with fundamental design-
oriented research done in [5], [6], [7]. Current work on flap-
ping wing MAVs has largely focused on small and micro-
sized aerial robots intended for indoor environments e.g the
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Figure 1: The SlowHawk2 flapping wing flying robot with articulated wings.

Delfly [8]. Thus, there is much scope to investigate in the re-
alization of large bird-like, flapping wing MAVs capable of
strong performance in outdoor flight.

The DelFly series of ornithopters [9], [10] are small-sized
flapping-wing robots that could autonomously fly using only
onboard power. Some models developed are perhaps the only
flapping-wing flying robots to have been endowed with au-
tonomous navigation using on-board vision control [11]. The
Harvard Microrobotic Fly [12] was a biologically inspired
micro aerial vehicle with flapping wings. Driven by a piezo-
electric actuator, it could take off vertically while being oper-
ated through a tethered wire. Its successor, the RoboBee [13],
could perform basic rolling and pitching movements while
tethered. Both robots were experimental prototypes and the
RoboBee is still under development. The micromechanical
flying insect of [14] was a similar project as the Harvard Mi-
crorobotic Fly. The design and mathematical model of the
robot was based on insect flight aerodynamics while also us-
ing non-articulated wings.

This work is discernible from related works in a number
of ways. Compared to [9]-[14], this work uses a full-scale,
bird-like flapping wing flying robot capable of strong out-
door flight whose flying mechanics and control surfaces are
different. While other works have claimed some relevance to
flapping wing flying robots, there are major differences in ap-
proach: [15] was concerned with reinforcement learning of a
fluid system that was a model of flapping flight whereas for
the flapping wing robot of [16], motion control equations are
not given. Rather, the focus was on investigation of optical
flow on flapping wing flying robots. The Smartbird of[17]
quite resembles our robot but only design-oriented research
was undertaken. Autonomy was not achieved. By full au-
tonomy, we imply a flying robot that can control its move-
ments by itself and without any human control (a manual,
remote-controlled operation is not considered autonomous as
is often erroneously reported by researchers). Thus, instead
of design and development, we are more concerned with au-
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Specification Value
Power source 11.1V 900mAh Lithium Polymer
Gross weight 430g
Length 78 cm
Wingspan 60cm (1 wing)
Motor Pulso X2208/22 brushless dc motor
Servos Hitec HS-56HB Karbonite Micro Servo (Elevator)

Hitec HS-45 High Speed/Torque Servo (Rudder)
Radio DMSS 2.4GHz TX module
Payload 160g
ESC GWS ESC 15A
Sensor APM 2.6 (3-axis gyro/acc., magnometer, barometer), PIX4FMU

Table 1: Specifications of SlowHawk2 with articulated wings.

tonomous control. Therefore, this work is devoted to mod-
elling and obtaining equations that govern the robot motion
such that fully autonomous control can be implemented in the
future. Our approach is therefore to use an existing and com-
mercial flapping-wing platform and develop motion control
algorithms for it. This subsequently entails a consideration of
topics ranging from dynamical modelling and simulation to
kinematics formulation and control.

This paper presents the first of our results. It presents
the analysis and dynamical modelling of a bird-like flapping
wing flying robot. The significant contribution of this paper
is (i) the formulation of the dynamical model for a full-scale,
outdoor-use flapping wing MAV with articulated wings and
(ii) verification of dynamical model using both theory and
real experiments and real sensor data. We first simulate the
flying robot model in MATLAB to realize basic yawing and
pitching motions which form the basis for future flight trajec-
tories in 3D spatial space, and then repeat experiments with
the real robot. Our intent is not to reverse engineer the flap-
ping wing flying robot but to analyse it and derive a complete
generic and scalable kinematics model for the overall genre of
articulated-wing ornithopters. Compared to other works, our
work focus on using a life-sized flapping wing flying robot
with articulated wings intended for outdoor environments.

2 THE SLOWHAWK2 FLAPPING WING FLYING
ROBOT

2.1 Design Analysis
The flapping-wing MAV under study is the SlowHawk2

flying robot1 with articulated flapping-wings, shown in Fig-
ure 1. The original SlowHawk is available commercially and
has been custom modified so that it has articulated wings,
thereby being more life-like with increased payload. The full
specifications are provided in Table 1.

A single brushless dc motor is the principal actuator re-
sponsible for the flapping mechanism. The motor is first con-
nected to a gear train system of three gears {G1, G2, G3}
for speed reduction. The last train gear G3 drives a crank
arm mechanism. The crank arm is coupled to a connecting
rod which converts the motor circular motion into uniform
flapping action (up and down flaps) of the two wings. This
slider-crank configuration is labelled in the diagram of Fig-

1SlowHawk2 with Articulated wings remodelled by Kazuhiko Kakuta

Figure 2: Slider-crank mechanism used to realize wing-flapping motion

ure 2. The brushless motor is used for actuating both wings
simultaneously. With such concurrent flapping, one wing can
not flap independently of the other. This flapping action con-
tributes to the lift and propulsion of the robot.

The robot frame is made of carbon fiber frames and
rods. The wing surface is made of thin, water-resistant vinyl
tarpaulin. Two servo motors are used for actuation of the tail
as a rudder and elevator. The rudder and elevator deflections
control the steering (yaw) and pitching movements of the fly-
ing robot. Use of servos implies that the rudder and elevator
deflections can be controlled by commanding them to move
precise angles using internal feedback when controlled in po-
sition mode. Likewise, the instantaneous rudder or elevator
position can be determined by reading the current servo posi-
tion. This feature will be exploited later when controlling the
robot autonomously.

A notable feature of the robot is the absence of any control
mechanisms for rolling the flying robot. This implies that the
robot makes a turn by controlling the tail rudder exclusively,
thus without any active banking or rolling. This characteristic
will later influence the number of derived equations for the
dynamical model.

The payload of weight approximately 158g allows us
to put various on-board electronics and sensors. Individual
modules each weigh less than 50g so one or two units can be
installed at a time for different measurements. Options for
on-board sensors are included in the table of specifications.

2.2 System Modeling
Consider the brushless dc motor responsible for the flap-

ping. Input to this motor is angular velocity in radians per
second. Let us denote this as ωb rad/s. Let η be the total gear
ratio of the entire gear train {G1, G2, G3} system (found by
taking the combined ratios of all individual gears, which is
not shown here) The reduced gear speed, of the last gear G3

in the gear train, is therefore

ω3 = η ωb (1)

According to the well-known physics of a crank mecha-
nism, the connecting rod coupled to the last gear moves up
and down uniformly with a velocity given by

v = −r ω3

�
sin θ +

r sin 2θ

2l cosβ

�
= vflap (2)
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Figure 3: Assignment of reference frames

where θ is the crank angle from the vertical and

cosβ =
È

(1− (r/l)2 sin2 θ). (3)

where r is the crank length and l is the connecting rod length.
Since the connecting rod is coupled to the wing root and actu-
ates it directly, this is the velocity with which the wings flap,
i.e the speed of one flap vflap, in terms of the input motor
velocity. The frequency of flapping fflap is therefore

fflap = ω3/2π (4)

3 DYNAMICAL MODEL

3.1 Assignment of Axes and coordinate Frames
Two axes frames are assigned to the system as shown in

Figure 3. The body frame Fb = {xb, yb, zb} is assigned rel-
ative to the instantaneous position of the flapping wing flying
robot by fixing the frame to its body. The frame origin is at
the robot c.o.m with the z axis pointing vertically down. The
inertial reference frame Fi = {xi, yi, zi} acts like a global
coordinate system and is set with z = 0 on the ground plane
and pointing upwards while the directions of the x and y axii
coincide with that of the body frame.

3.2 Position and Orientation Representation
The pose of the flapping-wing flying robot is specified

by a six d.o.f specification. It is given by (x, y, z, φ, θ, ψ)
where the first triplet (x, y, z) specifies the robot position in
the global coordinate system and the second triplet (φ, θ, ψ)
represents the orientation which is normally done using the
x-convention for Euler angles (corresponding to roll, pitch
and yaw). If A,B,C are the matrices that specify rotations
corresponding to Euler angles (φ, θ, ψ), then the orientation
R is expressed as

R(φ, θ, ψ) = CBA (5)

To circumvent the problem of the dreaded gimbal lock,
the orientation is specified using quaternions instead of Euler
angles in this work. Thus, the robot orientation is described
as a rotation about an arbitrarily fixed axis using quaternions
of the form

q = w + xi+ yj + zk (6)

with i2 = j2 = k2 = −1. Here w describes the size of
the rotation in R3 about the arbitrarily fixed and normalized
axis defined by the vector x, y, z. Using this system, if the
robot is oriented at an angle of θ about the axis defined by
x, y, z, then the resulting quaternion is

q = cos
θ

2
+ sin

θ

2
xi+ sin

θ

2
yj + sin

θ

2
zk (7)

Once a quaternion describing a rotation or orientation
in R3 is obtained using equation (7), the resulting gimbal-
lock free, quaternion-derived rotation matrix representing the
robot orientation is given by

qR =

�
1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw

2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

�
(8)

Then
R = qR (9)

Using quaternions to represent orientation makes it possi-
ble to realize smoother rotations of the flapping wing fly-
ing robot. Although regular Euler-derived rotation matrices
give the same end result for a rotation, the movement occurs
in ’jerks’. This occurs because the final rotation matrix is
a sequence of three successive rigid rotations: R = φ◦ →
θ◦ → ψ◦. Quaternion-derived rotation matrices, on the hand
hand, allow determination and execution of smoother rota-
tions achieved using spherical linear interpolation. Euler an-
gles are therefore only used at the output stage.

Spherical linear interpolation (slerp) [18] finds the quater-
nion matrix representing the smoothest rotation from orienta-
tion q1 to qo using the surface of the unit hypersphere for
the interpolation. This technique can be used to find the
smoothest rotational manoeuvre to change to a certain orien-
tation. For example, external disturbances during flight cause
the robot to be disoriented to an orientation q1. We wish to
again smoothly manoeuvre it back into its original orientation
q0. Then we could compute the smoothest manoeuvres using
slerp according to eq. (10) for 0 ≤ t ≤ 1 seconds:

cos Ω = qo • q1

slerp (q0, q1, t) =
q0 sin((1− t)Ω) + q1 sin(tΩ)

sin Ω
(10)

The resulting quaternion is the smoothest, constant-velocity
manoeuvre from q1 to q0 that occurs in 1 second. To control
the manoeuvre speed, the quaternion is simply time-scaled by
multiplying with the desired time duration in seconds.

3.3 Dynamical Model
Treating the robot body as rigid, Newtonian mechanics

provides the basis of developing motion equations that de-
scribe the motion and orientation of the c.o.g of the flapping
wing flying robot as it flies. Net forces and net moments act-
ing about the three axes are used to deduce the linear and
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Figure 4: Moments induced by rudder (a) and elevator deflection (b).

angular accelerations which then enable determination of the
linear and angular velocities and displacements, in their cor-
responding frames respectively.

We first consider the rotational component as that yields
the robot orientation which is required for the linear mod-
elling. Thus, the moments acting on the flapping wing flying
robot are deduced. Short-term moments are induced on the
robot due to the movement of each of the control surfaces like
tail elevator and rudder. We suppose that when the tail eleva-
tor or the rudder moves, the robot pitches or yaws about its
center of gravity, respectively as shown in Figure 4. Ignoring
damping, short-term moments contributed by the movements
of the tail elevator and rudder are

My = 0.5 ρ V 2 Swing c̄ (Cyδe δe)

Mz = 0.5 ρ V 2 Swing b (Czδr δr) (11)

Intuitively, the equations of (11) quantifies the moments My

and Mz induced in the y and z axes of the Fb frame by the
elevator and rudder deflections δe, δr respectively. The di-
mensionless coefficients quantify or represent the individual
net contribution of the deflecting control surface to the corre-
sponding moment. That is, Cyδe is the moment contribution
of the elevator deflection δe (in degrees) to the moment in
the y axis and Czδr is the moment contribution of the rud-
der deflection δr (degrees) to that of in the z axis. c̄ is the
wing mean chord and b is the wing span. The equations in-
dicate what control surface contributes to which moment. As
one would expect, the elevator deflection δe causes the pitch-
ing moment My whereas the rudder deflection contributes to
the yawing moment Mz . Recall that the flying robot is inca-
pable of banking actively in flight due to the absence of any
relevant control surface. This explains the exclusion of any
active rolling moments Mx in the equations.

Gravity contributes zero moments. Further, the influence
of the flapping wings to moments induced depends on the
gyro sensor placement placement. If a gyro sensor is placed
on a wing, its moving crank arm mechanism or any other lo-
cation that moves as a result of the wings flapping, naturally it
will register rotational motion. However, if the gyro sensor is
placed over the c.o.g, no rotational motion is registered since
they only effect of the flapping wings upon the c.o.g is pro-
pelling it forward and lifting it up. Thus, only moments My

and Mz are responsible for overall angular accelerations (and

orientation) of the robot body in the Fb axes. The rotational
acceleration equations are therefore

Iyy θ̈ = My

Izzψ̈ = Mz (12)

where I is the moment of inertia of the robot. The angular
accelerations φ̈, θ̈ and ψ̈ in the body frame are then easily
determined. The angular velocities are

φ̇(t) = 0 θ̇(t) =

t∫
0

θ̈(t) dt ψ̇(t) =

t∫
0

ψ̈(t) dt (13)

Conditions must be imposed in the integration process above
to resolve ambiguities due to the dual connotations of accel-
eration:
1. Zero acceleration implies zero velocity (and not constant

velocity)
2. Decreasing acceleration implies magnitude of velocity de-

creases to zero (and not to a constant value)
3. Negative acceleration implies decreasing velocity in same

direction (and not an acceleration in the opposite direc-
tion)

Finally the quaternion representing the orientation can be
determined from the angular velocities. Given the angular
velocity is related to the derivative of the quaternion as

ω =


0

φ̇

θ̇

ψ̇

 = 2
dq

dt
⊗ q̃ (14)

the quaternion representing the orientation can therefore be
determined

q =

t∫
0

1

2
ω dt⊗ q̃ (15)

Now consider the free body diagram (f.b.d) of the flap-
ping wing flying robot in steady-state flight in Figure 5. By
“steady-state”, flight conditions of forward direction at con-
stant velocity, constant altitude and zero pitch and roll are
implied. The major forces acting on the flapping wing fly-
ing robot are shown: lift L, weight mg, thrust T , drag D and
disturbances Fdisturb. According to [19], a whole aircraft
can be treated as a single entity when modeling its forces.
Therefore, the equal but separate thrusts and lifts generated
on either side of the flapping wing flying robot by its flap-
ping wings are treated as one individual lift and thrust vector
acting along and on the c.o.m without any significant loss of
precision. The combined wing lift is accordingly shown as
L = L1 + L2 acting over the robot c.o.m. Likewise, the total
thrust generated by the two wings T = T1 + T2 is similarly
shown acting forward along the x-axis.



Various research groups in aerodynamics have studied the
physics and dynamics of flapping-wing flight and computed
the thrust and lift generated [20, 21, 22]. However, most
of the computations involve wing-specific parameters with
specific experimental conditions, assumptions and test-beds.
Accordingly, they cannot be unconditionally applied in this
work. For example, we refer to the work of [22]. In the
analysis of lift generation of a hummingbird wing model, the
direction of the lift vector was taken to always point verti-
cally upwards irrespective of the robot orientation. This is
attributed to the active torsioning of the wings when flap-
ping whereby the direction of the lift vector varied with the
torsioning. However, the wings of the SlowHawk2 do not
undergo any torsioning. The lift vector is therefore always
remaining perpendicular to the robot body. Furthermore, in-
stead of deriving design models as done in [6] and [7], our
objective is to formulate those equations that describe the mo-
tion of the robot c.o.g as it flies. Consequently, instead of
design-oriented direct calculation of thrust and lift, the resul-
tant lift and thrust of the flying robot is deduced. Without any
loss of precision, the net thrust T is given by

T =
P

V
(16)

by calculating the net power P of the robot using the spec-
ifications of the brushless motor and measuring the velocity
V of the flying robot in steady flight beforehand. In [22], the
same formulation was used to estimate the lift although we
give a different approach for lift estimation. It is recognized
that the Lift force produced due to the flapping actions will
be function of the speed of the flapping wings. Recall that
the velocity of a wing flap has been computed. Thus for lift
estimation,

L = 0.5 ρ vflap
2 Swing Cl (17)

Equation (17) is derived from fluid dynamics theory used for
calculating forces, in this case lift, acting upon aerial vehi-
cles. Here ρ is the air density, Swing wing surface area and
Cl the lift coefficient. vflap is the wing flap velocity calcu-
lated in (2) and as long as vflap can be calculated for other
types of flapping-wing flying robots, the above expression for
lift may be used. The flying robot is to be controlled at con-
stant altitude and velocity so all parameters in this equation
remain unvarying. Drag is given by

D = 0.5 ρ V 2 S Cd (18)

where V is flying robot velocity, S body surface area and Cd
the drag coefficient.

Given that a flapping wing flying robot is lighter than
other types of MAV’s, its motion is consequently more sus-
ceptible to disturbances such as wind gusts and Coriolis ef-
fect etc. Therefore, all probable disturbance forces are col-
lectively modelled as Fdisturb. Although MATLAB provides
some built-in wind models that can be used to model distur-
bances, these are all designed to military-level specifications.

(a) (b)

Figure 5: Forces acting on flapping wing flying robot when in flight.

Thus, we define a disturbance force ourselves, in the inertial
frame, as a vector-valued, quaternion-based force vector as

Fdisturb =

�
k
q

�
where k is the disturbance force magnitude

and q the quaternion representing direction relative to the in-
ertial frame. If the robot has some orientation q0 relative to
the inertial frame, the effective direction of Fdisturb acting on
the robot is determined through straightforward quaternion
multiplication.

Fdisturb{q}|effective = q0 × qdisturb (19)

Thus, for a flapping wing robot flying oriented with some roll
φ, pitch θ, and say for example, Fdisturb effectively acting
along the y axis as illustrated in Figure 5, the equations for
linear accelerations in each of the axes of the Fi frame are
given by

mẍ = cos θ cosψ
2∑
i=1

Ti −D cos θ cosψ − sin θ
2∑
i=1

Li

mÿ = Fdisturb + sinψ
2∑
i=1

Ti −D sinψ

mz̈ = sin θ
2∑
i=1

Ti −D sin θ + cos θ
2∑
i=1

Li −mg (20)

The kinematic equations are

ẋ = V cos θ cosψ

ẏ = V cos θ sinψ

ż = V sin θ (21)

The motion and orientation of the flapping wing flying robot
is therefore described by equations (20), (12), (15) and (21).
It is important to state that although acceleration data ob-
tained from on-board sensors will be expected to have white
noise and bias, two solutions circumvent this dilemma. First
is the use of a high pass filter to remove low frequency noise
in the acceleration data which is responsible for integration
drift errors. Alternatively, the acceleration data can be ne-
glected altogether since it is the rotational velocity that is used
in determining the relative orientation and this can directly be
acquired from the gyro sensor. Further, rotational velocity
information is primarily intended for executing momentary



manoeuvres in changing flight direction and path only. These
momentary corrective manoeuvres occur in the order of mil-
liseconds or an absolute maximum of 1-2 seconds. Therefore,
accumulative errors of the gyro will be at a minimum. For po-
sition measurement, it is envisaged that absolute positioning
systems such as GPS for outdoor use and motion capture sys-
tems for indoor use will be employed.

4 EXPERIMENTAL RESULTS

Quaternion SLERP Test. A demonstration of using spher-
ical linear interpolation to determine a smooth correctional
manoeuvre is given in the accompanying video2 (result is
given as a video due to the motion involved). The robot
model is initially shown in its original, steady-state config-
uration with orientation q0 and the disturbed orientation, due
to external disturbance forces, as q1. The video contains the
the smooth correctional manoeuvre from q1 to q0 as deter-
mined using quaternion-based spherical linear interpolation
from eq. (10).

Model Validation. Equations for the dynamical model
were validated by supplying separate input signals for the ele-
vator and rudder deflections that would produce pitching and
yawing motions, both in simulation and in real experiments.
Motion data generated during simulation was then compared
to real sensor data. As a proof-of-concept simulation, con-
stant coefficients in the equations were defined as symbolic
expressions since their values are yet unknown. A conse-
quence of this approach is the axes of certain graphs are not
quantified discretely, instead they exhibit the general motion
profile which suffices to represent the robot behaviour em-
anating from the control input. For a robot flying in steady-
state condition at arbitrary altitude and speed, the commanded
input signal applied to the elevator and rudder deflections to
realize pitching and yawing was the trapezoidal curve with
amplitude A and zero length upper-base specified with the
function

f(t;A, a, b, c) =



0 if t ≤ a

A
t− a

b− a
if a ≤ t ≤ b

A if t = b

A
c− t

c− b
if b ≤ t ≤ c

0 if t ≥ c

by the definition of which the control surface deflection com-
mences at t = a steadily, reaches maximum deflection of A◦

at t = b after which it retracts and returns to zero deflection
position by t = c. The rate of deflection is therefore A◦/s. A
visualization of this is given in Figure 6.

Pitching Test. The signal specified for the elevator de-
flection in this test was f(t; 10◦, 1, 2, 3) and for the rudder
f(t; 0◦, 1, 2, 3) i.e zero deflection.

The complete motion data is shown in Figure 7 for the
robot body in the body frame of reference Fb. The angu-
lar acceleration data was obtained by applying eq. (11) and

2http://aneeshchand.webatu.com/imav2014.html

eq. (12) using the commanded elevator deflection function
f(x;A, 1, 2, 3) as input and adding simulated white Gaussian
noise. It is seen that computed motion data subsequently de-
rived from acceleration data correctly characterize the robot
pitching motion at every instant of the robot movement apart
from minor anomalies that are consequences of the simulated
white Gaussian noise. For the first 1 second, the robot is in
steady state flight. At the t = 1, robot starts pitching while
continuing to fly forward. At t = 2, the robot halts pitching
downwards and starts reverting back to zero pitch position
as a consequence of the elevator deflection being gradually
reduced. From t = 3 onwards, the robot has resumed steady-
state condition albeit having lost altitude due to the pitching
motion.

Inspecting the visualizations of the simulated rota-
tional motion data in Figure 7, as the robot pitches for-
wards(downwards) around the y axis, the angular accelera-
tion increases linearly (with minus sign). The corresponding
angular velocity increases parabolically while displacement
increases exponentially. Velocities around the x and z axii re-
main unchanged as there is no active rolling or yawing. The
velocity curves appears to be free of white noise jitter but this
is a superficial effect of integrating acceleration data using the
trapezoidal method that has a smoothing effect on the result-
ing curves.

For the simulated linear motion:
1. z acceleration of the body frame increases linearly in the

time interval the robot is pitching forward due to direction
of the thrust vector gradually turning towards direction of
gravitational pull that exists in the z axis. Same is also
true for the y velocity.

2. The linear x acceleration decreases from zero acceleration
while the robot was in steady state to a negative value in
the time the robot pitches since the acceleration in that
direction is reduced momentarily while the robot pitches
and rescinds pitching. Consequently, there is also a drop
in the x velocity in this interval.

3. y acceleration is unvaried.

The resultant linear velocities and displacements then de-
pict the linear motion of the robot. The change in altitude as
a consequence of the pitching motion is clearly seen in the z
axis displacement curve in the displacement graph. Finally,
the same experiment was repeated by flying the real robot
non-autonomously to log sensor data. Comparing the gyro
sensor data acquired in Figure 9(a), the Gyro Y data exhibits
the same parabolic form as the simulated velocity data in Fig-
ure 7 when the robot underwent pitching.

Yawing Test. The specified rudder input command was
f(x;A, 4, 5, 6). The simulated results are shown in Figure 8
and the real sensor data is given in Figure 9(b). The conse-
quence of this rudder deflection is the robot yawing to the left
and then realigning to be parallel to the original flight direc-
tion (see “Y” curve in linear displacement graph). At the mo-
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Figure 6: Input signal format for control surface deflection

ment the robot yaws, the real gyro sensor data again exactly
replicates the simulated data.

Behaviour of the robot from both theory and experiments
indicated a non-linear relationship between control surfaces’
deflection and corresponding motion. For instance, for small
values of δr or δe, the robot yaw or pitch magnitude is small
but as the deflection is increased, the motion changes non-
linearly. This was evident from the results: as the angu-
lar acceleration increased linearly, the angular rate increased
parabolically while the angular displacement was exponen-
tial. This indicates that any future controllers designed would
strictly be non-linear. Videos in the provided link show one
of the simulations and a short demonstration of the real robot.

5 CONCLUSION

A simplified model describing the motion of a flapping
wing flying robot with articulated wings was formalised with
flapping averaged dynamics. Quaternions were used to repre-
sent the robot orientation and acquire smooth rotations in 3D
space. Force-moment equations were then used to derive the
dynamical equations that governs the robot motion. Simula-
tions revealed the robot to respond to external stimuli in the
form of elevator and pitch input deflections with simulated
data qualitatively corroborating with real sensor data. Some
constraints were assumed: only the salient active forces and
moments were considered in the dynamics. Induced or resid-
ual forces and moments from body vibrations and flapping
were ignored in the first prototype. Since only short-range
navigation in the order of tens or hundreds of meters is con-
sidered, Earth’s rotation and Coriolis acceleration were ne-
glected. Likewise, only low altitude flying is considered so
air-density was assumed to be non-varying. Given that the
dynamical and kinematic model for the flapping-wing flying
robot has been realized, the immediate next step is to design
methods of estimating values of the parameters and coeffi-
cients. For reference position measurement, motion capture
systems and/or GPS will be utilized.

Finally, given that some of the dynamics will be highly
time varying, our future intention is to use adaptive control
techniques for autonomous control where the on-line param-
eter estimation component of the adaptive controller would
counter any deficiencies in the model.
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Figure 7: Simulated rotational and linear motion data for pitching movement. The “Z” curve of the linear displacement plot reveals the altitude change as a
consequence of the downwards pitching motion
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Figure 8: Simulated rotational and linear motion data for yawing movement. The change in flight direction is discernible from the “Y” curve of the linear
displacement plot
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(a) Real gyro sensor data for pitching motion. Aside from spurious data,
it is seen that the Gyro Y data exhibits an exponential curve at approx.
t = 57000 when the real robot pitched. This matches with simulated
data of the angular velocity graph in Figure 7 at t = 2
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(b) Real gyro sensor data for yawing motion. Again ignoring spuri-
ous data that can be easily filtered, note the overall resemblance of the
Gyro Z exponential curve at t = 56000 when the real robot yawed to
simulated data in the angular velocity graph of Figure 8 at t = 5

Figure 9: Real gyro sensor data for pitching (a) and yawing (b) motions


