
Twirre: Architecture for autonomous mini-UAVs using
interchangeable commodity components

J. van de Loosdrecht∗, K. Dijkstra, J.H. Postma, W. Keuning and D. Bruin
NHL University of Applied Sciences, Center of Expertise Computer Vision,

P.O. Box 1080, 8900 CB, Leeuwarden, The Netherlands

ABSTRACT

Twirre is a new architecture for mini-UAV plat-
forms designed for autonomous flight in both
GPS-enabled and GPS-deprived applications.
The architecture consists of low-cost hardware
and software components. High-level control
software enables autonomous operation. Ex-
changing or upgrading hardware components is
straightforward and the architecture is an ex-
cellent starting point for building low-cost au-
tonomous mini-UAVs for a variety of applica-
tions. Experiments with an implementation of
the architecture are in development, and prelimi-
nary results demonstrate accurate indoor naviga-
tion.

1 INTRODUCTION

Nowadays, there is increasing interest in using mini un-
manned aerial vehicles (UAVs) in a multitude of applications.
For example, in the Netherlands, UAVs can be used for the in-
spection of agricultural lands, reviewing annual ditch clean-
ings, or the inspection of wind turbine blades. The market
of UAVs is fast-growing and new hardware, software and ap-
plications quickly emerge. UAVs with cameras mounted on
them can already be purchased as commodities.

Currently, however, in most applications the UAVs are
controlled manually and the images are inspected by humans.
Performing these tasks autonomously would make them less
labor-intensive and thus more cost-effective. This involves
autonomous flying of UAVs and automated (real-time) pro-
cessing of recorded images to generate process or business
support information.

This article focuses on such autonomous flight. Autopi-
lots using GPS navigation are already a commodity [1, 2, 3],
though autonomous systems for GPS-deprived environments
are not. This is because complex sensor fusion and image
analysis are needed to be able to cancel all dynamic effects
during flight and to estimate the UAV’s position in 3D. There
are many UAV platforms available, often expensive and
based on dedicated custom-built hardware and software.

In this paper the Twirre architecture will be introduced,
which is a low-cost UAV platform designed for autonomous

∗Email address: j.van.de.loosdrecht@nhl.nl

flight. The platform should be able to perform missions au-
tonomously from takeoff to landing, without assistance of
manual control. The intention is to submit the system soft-
ware to the public domain. To make the platform attractive
for both experimental and commercial use, the following four
design requirements have been kept in mind.

1. The platform consists of low-cost components. Many
applications require costs to be minimized. A UAV will likely
have a broader application range if the cost of the components
are low. Furthermore, using autonomous UAVs always comes
with a risk of material damage. For these reasons the UAV
platform is composed of low-cost commodity mass-produced
components, which can easily be exchanged, repaired or up-
graded. Components like flight controllers and GPS modules
can be purchased off-the-shelf.

2. The platform is upgradable and extendable. New
versions of radio controlled (RC) hardware components and
standard processor boards quickly become available. To al-
low for easy incorporation of new technology in the UAV,
components should be upgraded or extended with ease. All
software is developed in C(++) and therefore easily portable.

3. The platform is useful in multiple applications. For a
UAV platform to be useful in multiple applications it should
be flexible. This means that it should be possible to perform
both GPS-enabled and GPS-deprived applications. For ex-
ample, automated imaging of agricultural fields can be done
with GPS-enabled flight. However, for inspecting wind tur-
bine blades GPS is not accurate enough and information from
additional sensors should be used to estimate the UAV’s po-
sition. In order to process and interpret this information (in-
cluding images) in real-time, without the aid of external re-
sources, processing power is required on-board the UAV.

4. The platform should be able to switch instantly
and reliably between manual and autonomous control.
Regardless the application, safety is of great importance
for autonomous flight. Therefore, in autonomous flight,
a reliable method for reinstating manual control must be
devised.

This paper starts by presenting a short overview of related
work in Section 2, after which the Twirre architecture is in-
troduced in Section 3. While the architecture can potentially

1

be used for any type of UAV, Section 4 focuses on an example
implementation on a hexacopter which can be used in GPS-
deprived environments. Section 5 then shows the layout of
several experiments that have been performed with this im-
plementation. They are used to test the architecture. The re-
sults and their interpretation are given in Section 6. Section 7
contains a list of conclusions based on the implementation
and the experimental results. The paper is wrapped up with a
short elaboration on work still to be done in Section 8.

2 RELATED WORK

Shen et al. [4] describe an architecture similar to Twirre.
However, Twirre focuses on using low-cost interchangeable
commodity components, which is not a design requirement
in their paper.

Most other research is focused on small aspects of au-
tonomous flight, like landing [5], planning [6], or integration
with specific hardware [7]. More complex tasks are often
demonstrated in simulated environments only [8].

The Twirre architecture connects available hardware and
software in a modular design, thereby filling the gap be-
tween technology and real-world autonomous applications.
Research has been performed on popular components which
can serve as an implementation for low-level and high-level
control of the Twirre architecture. Low-level control encom-
passes basic flight control, whereas high-level control con-
sists of intelligent navigation.

Low-level control (leveling, maintaining altitude) For
low-level control a flight controller is used. Such hardware
and software components can be purchased off-the-shelf.
Currently, for multicopters, the DJI Naza 1 is a popular choice
among RC model pilots. The Paparazzi autopilot is an open
source alternative which is mainly used in academic research
[9].

The Paparazzi platform contains a safety pilot feature
built into the software of the autonomous controller which
can be used to switch to manual flight. However, the au-
tonomous controller cannot be bypassed and thus there is no
‘galvanic’ (in hardware) separation between the RC control
and the actuators. Although thoroughly tested, this architec-
ture could potentially lead to unsafe situations.

High-level control (POI interaction) High-level control is
used to locate and interact with a point of interest (POI, some-
times referred to as landmark). Using GPS is one solution for
this type of control. A possible POI could then be a GPS lo-
cation. However, low-cost GPS in itself is only accurate up to
a few meters which limits the possible applications. The pro-
posed solution for augmenting position information uses dif-
ferential GPS [10] or the placement of artificial landmarks in
the surroundings [11, 12]. Even though for research purposes

1http://www.dji.com

artificial landmarks can be useful, most actual applications
revolve around markerless navigation.

When relying solely on image analysis in GPS-deprived
applications, several control solutions are available. One of
them is to use feature detection [4] or the scale invariant fea-
ture transform (SIFT), possibly combined with an omnidirec-
tional camera [13], as used with unmanned ground vehicles
(UGVs). While UGVs are stable and usually only navigate
on a planar surface, UAVs are unstable and navigate in a 3D
environment. For a UAV to keep a constant position, a POI
on the ground could be used. The drift can then be calculated
by analyzing two consecutive frames by an optical flow al-
gorithm [14], which uses a pixel descriptor to detect where
points have drifted to. Other solutions are to use laser odom-
etry [4] or simultaneous localization and mapping (SLAM)
[15, 16]. However, high-level controllers are generally com-
putationally expensive, which is why UAVs often rely on
wireless connections to an external computing station [17].
Since a platform which is independent of external resources
is more flexible, the Twirre architecture uses on-board pro-
cessing.

3 MATERIALS

In this section the components comprising the Twirre archi-
tecture are described. The first subsection introduces the gen-
eral components in an abstract manner, after which the com-
ponents making up an actual implementation of the platform
based on a hexacopter are introduced.

3.1 The Twirre architecture

Figure 1: Twirre architecture.

Figure 1 shows the Twirre architecture consisting of six main
components and several peripherals. There are two control
pipelines. The left hand side shows manual control, while
on the right hand side autonomous control is shown. The
autonomy switch can be used to instantly switch from the au-
tonomous pipeline to the manual pipeline. At the bottom of
Figure 1 a stock flight controller is utilized for low-level con-

trol in both manual and autonomous control, to provide the
convenient flight control typically used by hobby RC UAVs.
The flight controller translates stick inputs from the human
pilot to motor inputs and can also be used for off-the-shelf
GPS flight.

Manual pipeline The manual pipeline is almost identical
to the ones used in manually controlled UAVs, with the only
difference being the autonomy switch. The pipeline consists
of a standard wirelessly connected transmitter/receiver pair.
The servo signals are passed from the receiver through the
autonomy switch to the flight controller. The manual to au-
tonomous switching signal is controlled by a switch on the
transmitter.

There is minimal software interference, and the software
that is used in this process is the same software used in man-
ual flight of a regular RC controlled UAV.

Autonomous pipeline The autonomous pipeline is dedi-
cated to autonomous flight, based on on-board real-time pro-
cessing of sensor data. Sensor fusion is used for interpreting
surroundings and controlling the UAV. All sensor information
is processed on the on-board processor board. The board can
have several cameras connected to it, each possibly pointing
in a different direction. The sensors connected to the micro-
controller can provide additional information, which is sent
over the USB bus to the processor board.

The software on the processor board processes the sen-
sor information and translates it to commands which are sent
over the USB bus to the microcontroller. The microcontroller
translates these commands into standard servo pulse-width
modulated (PWM) signals. These servo signals are sent to
the flight controller through the autonomy switch.

Autonomy switch The autonomy switch provides a ‘gal-
vanic’ separation between autonomous and manual flight. It
gives a safe and instant method of taking control and is not
controlled by the autonomous process. This gives the Twirre
architecture a significant safety advantage compared to other
architectures [9]. An additional virtue of this interface is that
the UAV can be partially autonomous. For example, only the
pitch of the UAV could run on the autonomous pipeline, while
the remaining axes are manually controlled.

Cascade control system As follows from the distinction
between low- and high-level control, Twirre utilizes a cascade
control system. As mentioned before, for the low level a com-
modity flight controller is used. At the high level a control
system is implemented in the software running on the proces-
sor board, which simulates the stick input from the human
pilot. In autonomous mode, the mission specific software
will determine the set-points for the high-level controller. By

Figure 2: The hexacopter. The diameter of the frame is 62
cm, or 85 cm including the protection ring.

splitting up the control system in two layers it is convenient
to change or update to a new or better flight controller.

3.2 Components
The specific implementation of the Twirre architecture de-
scribed in this paper is built around a standard DJI Flame
Wheel 550 (F550) hexacopter which consists of a frame and
six motors, electronic speed controllers (ESC) and propellers.
For the flight controller a NAZA-M V2 flight controller is
used. This platform is chosen because of its modular design
and the ability to use GPS-enabled flights. The hexacopter is
shown in Figure 2.

The processor board consists of a Commell LS-37B main-
board with an Intel Core i7 3820QM processor with a clock
speed of 2.7 GHz and a maximum turbo frequency of 3.8 GHz
and 4 GB of DDR3 RAM. The processor board is running a
standard Ubuntu 13.10 distribution. This high-end processing
board makes it possible to perform on-board image analysis
for autonomous flight.

Two industrial machine vision cameras are connected to
the processor board. For the front camera an IDS UI-1241LE-
C-HQ is used in combination with a 12 mm lens, whereas for
the bottom camera an IDS UI-1221LE-M-GL is used in com-
bination with an 8 mm lens. Industrial cameras are used be-
cause they have a global shutter. In a survey only consumer
webcams using a rolling shutter where found, which are not
suitable for image analysis applications with motion. To fur-
ther stabilize the images the front camera is mounted on a
servo controlled gimbal. This is shown in Figure 3.

The microcontroller board used is a MicroWii Flight Con-
troller based on an ATmega32U4 microcontroller. This board
is chosen mainly because it has all the necessary digital
and analog in- and outputs. In this specific implementa-
tion it is not used as a flight controller, but it has a gyro /
accelerometer (MPU-6050), a magnetometer (HMC-5883L)
and a barometer (MS5611-01BA03) which can be useful dur-
ing autonomous flight. An ultrasonic sensor (SRF08) is con-
nected to the microcontroller for accurate altitude measure-

Figure 3: The IDS camera mounted on a servo controlled
gimbal.

Figure 4: The MicroWii and the dual receiver controller.

ments.
The autonomy switch is implemented with a commodity

$15 RC dual receiver controller that is designed for training
RC pilots. In its intended use, two receivers are connected
to the input side, and the outputs are connected to the servos
or flight controller. Both the student-pilot and the instructor
have their own transmitter and receiver. The instructor can,
with the use of a switch on his transmitter, switch between
the receiver that is active. The used MicroWii and the dual
receiver controller are shown in Figure 4.

For the transmitter and receiver a Graupner MX-12 and
a Graupner GR-12, both operating in the 2.4 GHz band, are
used. The dual receiver controller is manufactured by Assan.

VisionLab2 is used as image processing library.

4 METHODS

Now that the components of the Twirre architecture have been
introduced, it is time to look at the system software parts.
The first subsection describes the protocol software on the
microcontroller. After that, the second subsection introduces
a test application that runs on the processor board, followed
by subsections describing the test application in more detail.

4.1 Protocol Software
The protocol software has two functions:

1. Interpret commands received from the USB bus, con-
vert these commands to standard servo PWM signals

2http://www.vdlmv.nl

and send them through the autonomy switch to the
flight controller.

2. Read auxiliary sensor information, like gyro, barome-
ter, etc. and send it over the USB to the processor board.

Figure 5: The POI being used in the test application.

4.2 Test application
In order to test the Twirre hardware architecture and the pro-
tocol software a basic UAV application is defined. In this
application, the mission of the UAV is to search for an artifi-
cial POI, fly towards it and to face it. The POI being used is
shown in Figure 5. It consists of a piece of A3 paper with a
printed image of a solid black rectangular target with a white
number inside.

There are many similarities between an autonomous UAV
and UGV (Unmanned Ground Vehicle) performing this task.
The main difference is when an UGV stands still, it actually
stands still, whereas an UAV has the tendency to drift. The
autonomous UAV flight discussed in this paper behaves like
an UGV when searching for a POI. The test application soft-
ware is a combination of the mission logic, input sensor data
processing and the high-level control system.

4.3 Cascade PID controllers
The Twirre architecture uses cascade PID controllers to con-
trol the UAV. The low control level is embedded in the flight
controller. The accelerometer, gyro and pressure sensor are
used to keep the UAV leveled and at a constant height. When
GPS can be used, the flight controller also controls the posi-
tion of the UAV. These low-level controllers are commodity
products. The high-level controllers are responsible for con-
trolling the intelligent decision making of the UAV. In man-
ually controlled UAVs high-level control is done by a human
pilot.

The set-points for the high-level controller are determined
by analyzing the surroundings and selecting a POI using the
front camera and the processor board, and fly towards it. If
there is no POI seen with the front camera, the bottom cam-
era is used to keep a fixed position by estimating the drift
using image analysis. In this case the yaw is used to rotate
the UAV and scan the environment for new points of interest.
The choice of bottom POI is made autonomously. The key is
to always have a point of interest, whether seen from the front
camera or from the bottom camera.

The Twirre architecture allows the UAV to be tested by
mapping the pitch, yaw, roll and throttle to any combina-
tion of autonomous and manual control. This way individual,
high-level controllers can be tested or several controllers can
be tested simultaneously. This allows for detailed analysis of
the autonomous behavior of the UAV. The autonomy switch

POI

Facing

Hovering
&

Searching

Approaching

Figure 6: Top view of state transitions.

Figure 7: States of the high-level controller.

of the Twirre architecture can always be used to allow instant
mapping to full manual control.

4.4 Controlling real-world parameters
Instead of focusing solely on image data, the Twirre archi-
tecture controls camera-independent, real-world parameters.
So instead of using set-point deviations in pixels only, the
platform relates these to real-world distances and angles, in
millimeters and radians respectively. The advantage of this
approach is that it allows for easy replacement and upgrad-
ing of cameras and lenses. Controllers are independent of
the cameras and lenses being used. The PID controllers do
not need to be re-tuned when a different camera or lens is
mounted.

4.5 UAV states
For autonomous control in the test application three states are
identified: Hovering & Searching, Approaching and Facing.
The state determines how the controllers are connected to the
UAV axes and which calculations are executed to investigate
points of interest. A top view of the states is shown in Fig-
ure 6, and the corresponding state diagram is shown in Fig-
ure 7.

After taking off autonomously, the UAV enters the Hov-
ering & Searching state. In this state the position of the UAV
needs to stay fixed relative to the ground, while it rotates
about its z-axis using yaw to scan the surroundings for POIs
with the front camera. The drift from the hovering point is
calculated by analyzing the relative translation using the bot-
tom camera. The relative translation error is corrected by the
pitch and roll axis of the UAV. The throttle is used to keep the

height constant.
Whenever a POI is located with the front camera, the UAV

is set to the Approaching state. In this state the UAV estimates
the 3D position of the POI and navigates towards it using the
pitch. The yaw and throttle are used to keep the POI centered
in the image. The combination of pitch and yaw tends to
make the UAV drift laterally, in the direction opposite to that
of the yaw. A small roll correction proportional to the amount
of yaw is used to compensate this.

If the UAV is close enough to measure the orientation of
the POI, the Facing state is entered which centers and aligns
the UAV perpendicular to it. The roll is used to align the
UAV, the pitch is used to keep the distance constant, and the
yaw and throttle are used to keep it centered. When the POI
is lost, the state is restored to Hovering & Searching.

The remainder of this section describes the theory and ideas
behind the control of each of the states.

4.6 Hovering & Searching
During the Hovering & Searching state, dense optical flow
using the Farnebäck algorithm [14] is used. This algorithm
estimates the drift of the UAV by analyzing two consecu-
tive frames and estimating the translation and rotation using a
pixel descriptor based on polynomial expansion. A constant
altitude is maintained using the ultrasonic sensor.

4.7 Approaching
When the POI is found in the Hovering & Searching state, the
Approaching state is entered. During this state the following
tasks need to be completed:

1. Locate the POI with sub-pixel precision using the front
camera and image analysis

2. Calculate the horizontal, vertical and distance devia-
tions of the UAV with respect to the POI

3. Control these deviations to zero using yaw, throttle and
pitch respectively

For the rectangular POI, the horizontal and vertical deviations
are calculated as follows. The height of the target in the real
world is known. In an image taken by the UAV the rectangle
has a certain pixel height. With this it can be calculated how
many real-world millimeters correspond to one pixel in the
image:

Scale factor =
Real rectangle height (mm)
Pixel rectangle height (px)

. (1)

The horizontal and vertical deviations in pixels can be found
by comparing the center of the image to that of the POI in the
image. Using the scale factor, these pixel deviations can be
converted to deviations in millimeters.

The distance can be calculated using the equation for the
magnification M in optics, using the thin lens model:

M =
hobject
himage

=
dobject
dimage

, (2)

in which h∗ and d∗ are heights and distances in millimeters.
The distance that should be calculated is dobject. Rewriting
then gives:

d = dobject = dimage
hobject
himage

= f
Rectangle height (mm)

Rectangle height (px) × Pixel size (mm/px)
. (3)

The effective focal length f and pixel size can be deduced
from the specifications of the lens and camera. This distance
is controlled to the set-point of the Approaching state’s dis-
tance controller, which is equal to the set-point of the dis-
tance controller in the Facing state. As soon as the set-point
is reached, the UAV transitions into the Facing state.

4.8 Facing
The Facing state does the same as the Approaching state, plus
the correction of the perspective angle between the UAV and
the POI. This angle can only be calculated reliably when the
UAV is close to the POI and the POI is centered in the image.
A schematic top view of the situation which uses the pinhole
camera model is shown in Figure 8.

Image of rectangle

Rectangle

φ

w

2

w

2

x

y

O(0,0)

(x1, f)

(x2, f)

d

f

Figure 8: Top view of the camera at pointO with focal length
f facing the rectangle at an angle φ.

The camera with focal length f is located at point O. De-
pending on the perspective angle φ between the UAV and the
POI, the ratio between the part of the image of the POI to
the left of the center of the image (x1) and the right (x2) will
change. The width of the real-world rectangle is given by w.
From geometry it follows that φ is given by:

tanφ =
1

2

(
f

x1
+

f

x2

)
. (4)

The angle is controlled to zero in order to directly face the
POI, whereas the distance is controlled to a chosen set-point
in front of it according to Equation 3, as explained before.

The theory described above assumes that the POI is not
rotated about its horizontal axis. However, it can be extended
to take this rotation into account.

5 EXPERIMENTS

A test application to test the Twirre architecture with au-
tonomous flight has been developed. The test setting is shown
in Figure 9. This section describes the tests that have been
performed.

Figure 9: Experimental setting used during experiments.

5.1 Autonomy switch
The autonomy switch plays a central role in safety during
the experiments. If a controller results in unstable behavior,
the pilot can instantaneously take over the control to correct
the movement of the UAV. The reliability of the switch is re-
searched in a qualitative way, as well as its switching speed.

5.2 Hovering & Searching
The hovering is tested by taking off autonomously, setting the
hovering set-point and letting the UAV hover autonomously
at that point. The set-point of the height is at 1 meter above
the ground. The hovering performance is measured by cal-
culating the average longitudinal, lateral and height deviation
during flight, along with their standard deviation and maxi-
mum value.

5.3 Approaching and Facing
During the Approaching and Facing experiments, au-
tonomous control of every axis is tuned separately. So for
the Approaching state, the yaw, throttle and pitch are tuned
separately first. The PID gains are improved by looking at
graphs of the UAV’s response, showing deviations and steer-
ing inputs over time. After that, the controllers are combined,
followed by fine-tuning in order to improve the combined
control. The states are tested with a distance set-point of 3
meters from the POI.

6 RESULTS

The results obtained from the experiments explained above
are shown in this section.

6.1 Autonomy switch
The autonomy switch was used extensively during the exper-
iments. It was found perfectly reliable, as it worked correctly
and instantly every time it was used.

Table 1: Hovering accuracy measurements.
Deviation Average (mm) Std dev (mm) Max (mm)
Longitudinal -7.7 19 40
Lateral 9.2 21 44
Height -7.4 8.6 30

6.2 Hovering & Searching
The hovering controllers result in the accuracy shown in Ta-
ble 1. The numbers have been taken over nearly 600 frames
at 40 FPS. It can be concluded that the hovering is accurate,
with little deviations from the set-point.

6.3 Approaching and Facing
The resulting distance response during the Approaching state
is shown in Figure 10. It shows the distance accurately con-
verging to the set-point of 3 meters from the POI.

-15%

-10%

-5%

0%

5%

10%

15%

20%

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400 450 500 550

S
te

e
ri

n
g

 i
n

p
u

t

D
is

ta
n

ce
 (

m
m

)

Frame number (12 FPS)

Distance

Pitch input

Figure 10: Distance control during the Approaching state.

The perspective angle deviation over time along with the roll
steering inputs during the Facing state is shown in Figure 11.
It shows the angle converging to zero.

Combining the Approaching and Facing state gives the
performance shown in Figure 12. The Approaching state is
active until frame 80 as can be seen in the perspective angle,
which is in that case assumed to be zero because it cannot be
measured reliably. For the state transition a distance margin
of 0.4 meters around the set-point is used. As soon as the
UAV enters this margin and the POI is centered, it transitions
to the Facing state. This happens at frame 80, after which the
perspective angle is no longer assumed zero. It can be seen
that this angle is also controlled to zero. The graph shows
accurate performance of controlling all four movements (roll,
pitch, yaw and throttle) autonomously at the same time.

7 CONCLUSION

The Twirre architecture for UAVs consists of low-cost, eas-
ily interchangeable commodity hardware components. This

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

-8°

-6°

-4°

-2°

0°

2°

4°

6°

8°

0 50 100 150 200 250 300 350 400 450

S
te

e
ri

n
g

 i
n

p
u

t

A
n

g
le

 (
d

e
g

re
e

s)

Frame number (12 FPS)

Perspective angle

Roll input

Figure 11: Perspective angle control during the Facing state.

-15°

-10°

-5°

0°

5°

10°

15°

-3000

-2000

-1000

0

1000

2000

3000

0 50 100 150 200 250 300 350 400 450 500 550

D
e

v
ia

ti
o

n
s

(d
e

g
re

e
s)

D
e

v
ia

ti
o

n
s

(m
m

)

Frame number (12 FPS)

Height

Distance

Perspective angle

Horizontal

Appr. Facing

Figure 12: Deviations over time while performing the Ap-
proaching and Facing states after each other.

architecture has been used to implement a hexacopter using
standard RC hobby components.

In the process of building and testing the hexacopter mul-
tiple components have been exchanged and were upgraded,
while other components remained fixed. This was made easy
because of the modular design of the Twirre architecture.

The autonomy switch is used to instantly switch back to
manual mode without interference from the autonomous con-
troller. Tests confirm that this is a reliable method for switch-
ing between manual and autonomous control.

A test application to demonstrate autonomous flight in
a GPS-deprived environment is developed. Several experi-
ments for autonomous flight towards a point of interest have
been performed. The Twirre architecture allows for separate
tuning of the high-level controllers. Experiments show that
the tuned controllers show good performance in approaching
and facing an object.

8 FUTURE WORK

In the test application the software for the mission logic, the
sensor data processing and the high-level control system are
intertwined. Future work is to design and build reusable,
non application specific software components, from which
autonomous applications can be built. The goal is to sepa-
rate the application specific software parts from the architec-
ture, which makes the Twirre architecture more versatile for
multiple applications. Future work will focus on the software
design for the high-level control. This includes extending the
state machine.

The current platform will also be combined with other
sensors, like GPS, 3D sensors/cameras and multiple ultra-
sonic sensors. This will extend the platform to a multi-sensor
fusion for robust autonomous flight in indoor and outdoor
environments. The bottom camera will be put on a new
downward-facing gimbal in order to have accurate optical
flow measurements when moving over large distances. This
will make it possible to implement new autonomous states
like homing and landing.

9 REFERENCES

[1] Micropilot. MP2x28 Family of UAV Autopilots.

[2] Cloud Cap Technology. Cloud Cap Technology Piccolo
SL.

[3] DJI. A2 Flight Control System User Manual, 1.14 edi-
tion, 02 2014.

[4] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and
Vijay Kumar. Multi-sensor fusion for robust au-
tonomous flight in indoor and outdoor environments
with a rotorcraft mav. In 2014 IEEE International Con-
ference on Robotics & Automation (ICRA), 05 2014.

[5] G CHE de Croon, HW Ho, C De Wagter, E Van Kam-
pen, B Remes, and QP Chu. Optic-flow based slope es-
timation for autonomous landing. International Journal
of Micro Air Vehicles, 5(4):287–298, 2013.

[6] Laurie N Bose and Arthur G Richards. Mav belief space
planning in 3d environments with visual bearing obser-
vations. In International Micro Air Vehicle Conference
and Flight Competition (IMAV2013), 2013.

[7] Bart Remes, Dino Hensen, Freek van Tienen,
Christophe de Wagter, Erik van der Horst, and Guido
de Croon. Paparazzi: how to make a swarm of parrot ar
drones fly autonomously based on gps. In International
Micro Air Vehicle Conference and Flight Competition
(IMAV2013), Toulouse, France, 2013.

[8] Andrew Nolan, Daniel Serrano, Aura Hernandez
Sabaté, Daniel Ponsa Mussarra, and Antonio M López
Pena. Obstacle mapping module for quadrotors on out-
door search and rescue operations. In International

Micro Air Vehicle Conference and Flight Competition
(IMAV2013), Toulouse, France, 2013.

[9] Balazs Gati. Open source autopilot for academic re-
search the paparazzi system. In roceeding of the Amer-
ican Control Conference 2013, 2013.

[10] Jan Bolting, Francois Defaÿ, and Jean-Marc Moschetta.
Differential gps for small uas using consumer-grade
single-frequency receivers. In International Mi-
cro Air Vehicle Conference and Flight Competition
(IMAV2013), 2013.

[11] Jose Luis Sanchez-Lopez, Jesus Pestana, Paloma
de la Puente, and Pascual Campoy. Visual quadro-
tor swarm for imav 2013 indoor competition. In
ROBOT2013: First Iberian Robotics Conference, pages
55–63. Springer International Publishing, 2014.

[12] Kirill E. Shilov, Vladimir V. Afanasyev, and Pavel A.
Samsonov. Vision-based navigation solution for au-
tonomous indoor obstacle avoidance flight. In Interna-
tional Micro Air Vehicle Conference and Flight Compe-
tition (IMAV2013), Toulouse, France, 2013.

[13] Ming Liu, Cédric Pradalier, François Pomerleau, and
Roland Siegwart. Scale-only visual homing from an
omnidirectional camera. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages
3944–3949. IEEE, 2012.

[14] Gunnar Farnebäck. Two-frame motion estimation based
on polynomial expansion. In Image Analysis, pages
363–370. Springer, 2003.

[15] G. Klein; D. Murray. Parallel tracking and mapping for
small ar workspaces. In Proc. Sixth IEEE and ACM In-
ternational Symposium on Mixed and Augmented Real-
ity (ISMAR’07), 2007.

[16] Blosch M., Weiss S., D. Scaramuzza, and Siegwart R.
Vision based mav navigation in unknown and unstruc-
tured environments. In International Conference on
Robotics and Automation (ICRA). IEEE, 2010.

[17] Benjamin Ranft, Jean-Luc Dugelay, and Ludovic
Apvrille. 3d perception for autonomous navigation of
a low-cost mav using minimal landmarks. In Interna-
tional Micro Air Vehicle Conference and Flight Compe-
tition (IMAV2013), Toulouse, France, 2013.

