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ABSTRACT

A dynamic model of an insect wing is developed
treating the wing as a deformable body subject
to three-dimensional finite rotation about a fixed
point at the base of the wing. Discretization
of a stationary wing is conducted via finite ele-
ment analysis to determine the natural frequen-
cies and mode shapes of the wing. By formu-
lating and discretizing the kinetic and potential
energy, we derive the equation of motion gov-
erning the modal response of a flapping wing us-
ing Lagrange’s equation. The equation of motion
indicates Coriolis, Euler, and centrifugal forces
resulting from the finite rotation are responsible
for the wings elastic deformation. Numerical in-
tegration reveals a beat phenomenon that arises
from the Coriolis excitation in the first vibration
mode. The beat phenomenon is insensitive to
yaw amplitudes and non-zero initial conditions
but diminishes in the presence of damping. The
beat phenomenon can potentially be used to esti-
mate gyroscopic forces.

1 INTRODUCTION

Insect flight has recently been a subject of significant re-
search within biology and engineering communities. For bi-
ologists, such studies provide critical insights into the sensori-
motor coordination of movement in animals. For example,
knowledge of the instantaneous wing shape helps determine
the direction and magnitude of aerodynamic forces acting
upon the wing. This leads to an understanding of lift-to-drag
ratio, thrust production and aerodynamic efficiency of insect
flight [1, 2]. Moreover, wing deformation activates strain re-
ceptors (mechanosensation cells), which provides the insect
brain with feedback used to identify flight status. Insect wings
are richly imbued with strain sensors [3].

For engineers, insect flight research can help realize au-
tonomous flying objects, such as flapping-wing micro-aerial
vehicles (MAVs). Flapping-wing MAVs are capable of per-
forming difficult maneuvers and stationary hovering while
consuming relatively little power [4]. These characteristics
are desirable for indoor flight, and consequently have gen-
erated interest in potential military surveillance and recon-
naissance applications [5]. While several MAVs have been
successfully developed, there remains a necessity for design
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optimization in order to reduce weight, power consumption,
and cost [6]. A functional dynamic wing model may facilitate
this effort.

Several models have previously been developed to de-
scribe the complex dynamics of an insect wing during flight.
Many kinematic and dynamic models treat the insect body
and wings as several connected rigid bodies. For example, a
kinematic model developed by Roccia et al. treats the wing
as a rigid body subject to three-dimensional rotation about
a fixed point on the insect body [7]. An alternative dynamic
model developed by Orlowski and Girard also treats the insect
forewing as a rigid body, and considers aerodynamic loading
as a generalized force acting on the wing [8]. Such kinematic
and dynamic models can be used to effectively estimate wing
velocity and aerodynamic force production while retaining a
lower number of degrees of freedom. However, by treating
the wing as a rigid body, such models are unable to provide
information about localized strains, and therefore have lim-
itations in determining insect neural feedback or designing
strain-based control systems for MAVs.

Alternatively, researchers have developed finite element
analysis (FEA) based models [9]. Finite element models are
capable of estimating localized strains on a deformed wing
for each mode shape. However, FEA models are limited
to infinitesimal rotation and cannot describe the entire time-
dependent strain response of a flapping wing. The large rigid
body motion and rotation of the wing generate a time-varying
stiffness matrix K(t). The implication of this is that the wing
will have to be re-meshed during each time step of the anal-
ysis, resulting in a larger number of degrees of freedom. The
significant number of degrees of freedom makes a direct FEA
model computationally impractical. Physical insights, such
as the contribution of gyroscopic forces, may also be lost.

Each of these models is capable of independently describ-
ing aspects of insect flight, such as aerodynamic force pro-
duction and strain. However, there remains a necessity to
unify these models such that all their positive attributes can
be fully realized. By synthesizing characteristics from each of
these models, we develop in this paper a reduced-order model
of a flapping insect wing with the following important charac-
teristics. First, the model is capable of predicting strain com-
ponents under finite rotation. Second, the model retains a low
order to maintain computational feasibility, thereby facilitat-
ing parametric studies. Third, the model can accommodate
nonspecific geometry and therefore can be used to describe
any flapping insect wing. Lastly, the model discretizes the
wing via finite element analysis, so arbitrary geometry can be
implemented readily. As a first attempt at model formulation,
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effects of aerodynamics and aeroelasticity are neglected. It is
assumed elastic deformation of the wing is solely a result of
inertial-elastic effects [2].

The remainder of the paper is organized as follows. First,
the dynamic model is formulated using Lagrange mechanics.
The model is then applied to a Manduca sexta forewing, re-
vealing a beat phenomenon in the first two modes caused by
the interaction of gyroscopic and centrifugal forces with the
free vibration of the wing. Various factors that may affect the
presence of the beat phenomenon are then investigated, in-
cluding initial conditions, yaw rotation amplitude, and damp-
ing.

2 FORMULATION

The model assumes the wing as a deformable body sub-
ject to three-dimensional rotation about a point fixed on the
insect’s body. The displacement of any point on the wing is
described by two finite rotations (pitch and roll), one small
rotation (yaw), and one infinitesimal out-of-plane deflection.
The rigid body displacement of the wing is a kinematic pro-
cess, and can readily be determined by establishing a rotating
coordinate frame. The out-of-plane deflection is character-
ized as a dynamic process, and must be calculated by solving
the equations of motion derived through potential and kinetic
energy terms.

2.1 Kinematics
The wing is placed into a fixed reference frame, with the

origin representing the fixed point of rotation and I, J,K be-
ing three orthogonal unit vectors associated with the fixed
reference frame. (Fig 1). For the purposes of this formula-
tion, I, J,K will also be referred to as coordinate axes. A
rotating reference frame that pitches and rolls but does not
yaw with the wing is established. The first rotation (roll)
has an amplitude α and occurs about the I-axis, transform-
ing the reference frame to the I

′ − J
′ − K

′
coordinate sys-

tem. The second rotation (pitch) has an amplitude of β and
occurs about the J

′
-axis, transforming the reference frame to

the I
′′ −J ′′ −K ′′

coordinate system. Both of these rotations
are assumed to have large and finite amplitudes. The third
rotation corresponds to the yaw rotation, and is denoted by γ.
The yaw rotation (Figure 2) is assumed small, and therefore
small angle approximations are employed. Consequently, the
yaw rotation is not considered in the rotating reference frame.
Through simple geometric analysis, the angular velocity ~Ω of
the rotating coordinate frame I

′′ − J
′′ −K

′′
is:

~Ω = α̇cosβI
′′

+ β̇J
′′

+ α̇sinβK
′′

(1)

With the rotating coordinate frame established, a position
vector ~Rn (Fig 2) is drawn in the I

′′ − J
′′ − K

′′
reference

frame from the point of rotation to a differential mass dm on
the wing geometry. ~Rn is the sum of three intermediate posi-
tion vectors, ~r1, ~r2, and ~r3 (i.e., ~Rn = ~r1 +~r2 +~r3), where ~r1
represents the position of the differential mass without yaw,

Figure 1: Development of a rotating reference frame

~r2 represents the contribution of the yaw rotation to the posi-
tion, and ~r3 represents the out-of-plane elastic deformation of
the wing. In-plane deformation is assumed to be small, and
is neglected in this formulation. Specifically, ~r1, ~r2, and ~r3
are described in both Cartesian and cylindrical coordinates as
follows:

~r1 = xI
′′

+ yJ
′′

= r~er (2)

~r2 = γ(−yI
′′

+ xJ
′′
) = γr~eθ (3)

~r3 = W (~r1, t)K
′′

= W (~r1, t)~ez (4)

Above, x and y are the coordinates of the differential mass
and W (~r1, t) is the elastic deformation dependent on both
time and position. The position vector ~Rn can then be differ-
entiated with respect to time to determine the velocity of the
differential mass. As dm is in a rotating coordinate frame,
the chain rule must be applied to account for the time deriva-
tive of the coordinate frame. The resulting expression for the

differential mass velocity ~̇Rn is:

~̇Rn = ~Ω × ~Rn + ~̇r2 + ~̇r3 (5)

Figure 2: Position vectors and yaw rotation



2.2 Kinetic and Potential Energies
The kinetic energy T of the wing is

T =
1

2

∫
m

~̇Rn · ~̇Rn dm (6)

where Equation 6 is integrated over the domain of the wing.
The potential energy V is

V =
1

2

∫
v

S(W,W )dv (7)

where S(W,W ) represents a quadratic and symmetric strain
energy density function, i.e., S(a, b) = S(b, a), and the do-
main of integration is the volume of the wing. The use of the
strain energy density function allows this formulation to be
applied for any elastic body with complex geometry.

2.3 Discretization
The unknown deformation of the wing W (~r1, t) can be

expressed via an eigenfunction expansion

W (~r1, t) =

∞∑
k=1

φk(~r1)qk(t) (8)

where φk(~r1) is the kth mode shape and qk(t) is its modal re-
sponse to be determined. Moreover, the mode shapes φk(~r1)
are normalized with respect to the mass satisfying the follow-
ing orthonormal conditions,∫

m

φkφe dm = δke (9)

where δke is the Kronecker delta. Similarly, φk(~r1) experi-
ences orthogonality via the strain energy density function,∫

v

S(φk, φe) dv = ω2
k δke (10)

where ωk is the natural frequency of the kth mode shape. The
advantage to the eigenfunction expansion is that the mode
shape φk(~r1) and the natural frequency ωk may be deter-
mined using finite element modeling. Therefore, this formu-
lation is valid for any arbitrary wing shape. Moreover, the
boundary conditions of the wing are accounted for directly in
the finite element analysis, and need not be evaluated explic-
itly for development of the equations of motion.

Two geometric vectors useful to the derivation of the
equations of motion are defined as follows

~ak =

∫
rφk(~r1)~erdm =

∫
φk(xI

′′
+ yJ

′′
)dm (11)

~bk =

∫
rφk(~r1)~eθdm =

∫
φk(−yI

′′
+ xJ

′′
)dm (12)

where ~ak represents a geometric vector corresponding to the
position of the inertial force center of the kth mode shape rel-
ative to the point of rotation, and~bk (Equation 12) represents
a 90◦ counter-clockwise rotation from ~ak.

2.4 Equation of Motion
To develop the equations of motion, kinetic and poten-

tial energy terms are discretized via Equation 8 and then sub-
jected to Lagrange’s equation. The modal response of the
kth mode, qk(t), is the generalized coordinate. The resulting
equation of motion is determined as

q̈k + [w2
k − (α̇2cos2β + β̇2)]qk =

− ~̇Ω · (γ ~ak − ~bk) − (K
′′
· ~Ω)[~Ω · ( ~ak + γ ~bk)] − 2γ̇~Ω · ~ak

(13)

Equation 13 is a linear, time-varying second order ordi-
nary differential equation. Time-variance is introduced in the
stiffness coefficient, [w2

k − (α̇2cos2β + β̇)], and is a direct
result of centrifugal softening. Forcing terms appear on the
right hand side of Equation 13 as a result of the wing’s rota-
tion. Interestingly, three forces typical in rotating coordinate
frames are identified: the Coriolis force, Euler force, and cen-
trifugal force. Each of these forces has a corresponding vec-
tor projection that is described in terms of ~ak and ~bk. Table
1 shows the vector projection of each forcing term specific to
the wing.

Forcing Term Projected Representation

Euler Force −~̇Ω · (γ ~ak − ~bk)

Centrifugal Force −(K
′′ · ~Ω)[~Ω · ( ~ak + γ ~bk)]

Coriolis Force −2γ̇~Ω · ~ak

Table 1: Summary of Excitation Terms

Due to the linearity of Equation 13, solutions for qk(t)
may be determined independently for each forcing term out-
lined in Table 1. This result is meaningful, as it allows di-
rect comparison between the generalized coordinate response
qk(t) for each type of force.

3 EXAMPLE

To demonstrate the usage of Equation 13, the proposed
model is applied to the forewing of the hawkmoth Manduca
sexta. The Manduca sexta is an ideal subject for insect flight
study due to the small variation between individual specimens
and the abundance of available research [10]. To apply Equa-
tion 13, a finite element model is constructed to determine
the mode shapes and natural frequencies of a Manduca sexta
forewing. Next, assumed rotation profiles are presented for
the insect in forward flight. The excitation terms and gener-
alized coordinate responses for the first two mode shapes are
then analyzed. Finally, the effects of initial conditions, yaw



rotation amplitudes, and damping on generalized coordinate
responses are explored.

3.1 Finite Element Modeling
Finite element modeling is used to find mode shapes and

natural frequencies of the wing. Published research has deter-
mined the natural frequencies and mode shapes of the Mand-
uca sexta forewing via finite element analysis, and the results
agree closely with experimental results [11]. These finite el-
ement models serve as a benchmark for the finite element
model developed for this research.

A to-scale finite element model of the wing is constructed
in ABAQUS by tracing computed tomography (CT) images
of a Manduca sexta forewing. A camber of approximately
13% of the wing chord length is implemented, and has the
notable effect of providing support to the first bending mode.
Due to the aspect ratio of the wing, shell elements are uti-
lized. Venation patterns of a real Manduca sexta forewing
are neglected, and paper material is used in lieu of the actual
membrane material. The properties of the paper used in the
finite element model are given in Table 2.

Symbol Description Value Units
t Thickness 81 µm
E Young’s Modulus 10 MPa
ρ Density 0.86 g/cm3

ν Poisson’s Ratio 0.3 -

Table 2: Assumed material properties for the finite element
paper wing

The natural frequencies determined by the finite element
model are shown in Table 3, and the corresponding mode
shapes are shown in Figure 3. The natural frequencies of the
first two mode shapes agree within 4.5% of the reported val-
ues, indicating that the paper wing can adequately describe
the dynamics of an actual Manduca sexta forewing.

Natural Frequency Determined Value Reported Value
ω1 62.5 Hz 60 Hz
ω2 86.9 Hz 84 Hz

Table 3: Comparison of paper wing natural frequencies and
reported Manduca sexta natural frequencies [11]

Vectors ~ak and~bk are then determined numerically from
the mode shapes pictured in Figure 3 using the following ap-
proximation.

~ak =

j∑
i=1

φi,k(xi, yi)[xiI
′′

+ yiJ
′′
]dmi (14)

~bk =

j∑
i=1

φi,k(xi, yi)[−yiI
′′

+ xiJ
′′
]dmi (15)

Figure 3: First two mode shapes of the paper wing- (Left)
First Spanswise Bending, (Right) First Spanwise Torsion

Above, the i index denotes the ith node of the finite el-
ement model and the j index represents the total number of
nodes. Therefore, xi and yi represent the x − y coordinates
of the ith node, φi,k(xi, yi) represents the kth mode shape of
the ith node, and dmi represents the nodal mass of the ith

node. Table 4 shows the geometric vectors ~ak and~bk for the
first two modes. In general, ~ak and~bk are very small. There-
fore, a second set of vectors ~a′k and ~b′k is defined, where ~a′k
and ~b′k are normalized with respect to the largest component
of vectors ~ak and ~bk . For predictions of physical quantities
(i.e., strain distribution), ~ak and ~bk will be used. For com-
parison of modal responses, ~a′k and~b′k will be used due to the
convenience of their magnitudes.

Vector I
′′

J
′′

~a1 0.7552×10−5 0.0934×10−5

~b1 -0.0934×10−5 0.7552×10−5

~a2 -0.1728×10−5 -0.0033×10−5

~b2 0.0033×10−5 -0.1728×10−5

Table 4: Geometric Vectors for first two mode shapes- Paper
Wing FEA model

3.2 Rotation Profiles

Equation 13 allows for any function to describe pitch,
roll, and yaw rotations independently. In this example,
each rotation is assumed sinusoidal and periodic with a fre-
quency of ωd representing the flap frequency of the Mand-
uca sexta. Mathematically, the roll rotation takes the form
α = α0 sin(ωdt), where α0 denotes the rotation amplitude in
radians. The pitch and yaw rotations take the same form, with
their amplitudes described by β0 and γ0 respectively. Phase
angles are not considered in this example.

The flight of the Manduca sexta is divided into two prin-
cipal regimes— forward flight and hovering flight. In each
of these regimes, rotation amplitudes α0, β0 and γ0 exhibit
vastly different characteristics. Typical rotation amplitudes
for a Manduca sexta traveling forward at a speed of 5 m/s are
shown in Table 5 [10]. For this example, only the forward
flight regime is considered. The flapping frequency used is
ωd = 25 Hz, which falls within the observed 24.8-26.5 Hz
range of flap frequencies [10].



Rotation Parameter Amplitude (rad)
α0 0.8
β0 0.5
γ0 0.2

Table 5: Rotation Amplitudes for Forward Flight (5 m/s) [10]

3.3 Time/Frequency Domain of System Parameters
Each of the system parameters is investigated in time and

frequency domains. The system parameters correspond to the
time-varying stiffness and excitation terms of Equation 13.
Figure 4 shows each of the system parameters as a function
of time for the first mode shape.

Figure 4: Systems Parameters in the time domain- First mode
shape

From Figure 4, it can be seen that the Euler Force has the
largest magnitude, the Coriolis Force has the second largest
magnitude, and the centrifugal force has the smallest mag-
nitude. Both the stiffness and Coriolis force vary nearly si-
nusoidally in sync with a frequency of approximately twice
the flap frequency. The Euler and centrifugal forces appear
to have more complicated forms. To determine the frequency
content of each of these system parameters, a power spectral
density (PSD) algorithm is employed.

The PSD decomposes each of the system parameters into
its frequency components. The Coriolis Force and stiffness
oscillate at a frequency close to 2ωd. The Centrifugal force
oscillates predominately at 3ωd, with sub harmonics occur-
ring at ωd. The Euler force oscillates at ωd, with super har-
monics occurring at 2ωd, 3ωd, etc. In this case, super harmon-
ics 3ωd and above tend to have a negligible effect. Oscillation
frequencies of the Coriolis force occur near the first natural
frequency ω1, and oscillation frequencies of the centrifugal
force occur near the second natural frequency ω2. The prox-

imity to natural frequencies may have a marked effect on the
generalized coordinate responses.

3.4 Generalized Coordinate Responses
Equation 13 is solved assuming zero initial conditions

(e.g. qk(0) = 0, q̇k(0) = 0). The response subject to each
excitation term is solved individually, and due to linearity,
the results are summed to determine the overall system re-
sponse. In this section, all responses are solved numerically
using Matlab. The results for the first mode are shown in Fig-
ure 5.

The generalized coordinate responses for the first mode
provides interesting results. First, despite having the largest
magnitude, the Euler force generates only the second largest
response. The Euler force generates oscillations predomi-
nately at a frequency ωd, roughly half the natural frequency
of the first mode ω1. On the other hand, the Coriolis force os-
cillates at 2ωd, which is close to ω1. As a result, the Coriolis
force generates a larger response due to operating near reso-
nance despite having a lesser magnitude than the Euler force.

Second, a clear beat phenomenon exists in the Coriolis
response. The beat phenomenon occurs between the 2ωd os-
cillation frequency of the Coriolis force and effective natural
frequency ω1 of the first mode shape. Lastly, the centrifu-
gal force appears to have a very minor contribution to the
response of the first mode shape. This is due to the relatively
low magnitude of the centrifugal force coupled with the fact
that dominant oscillations occur away from the first natural
frequency.

Next, the response of the second mode shape is solved.
Similar to the Coriolis force for the first mode shape, the cen-
trifugal force oscillates near the second natural frequency ω2.
The result is a significant contribution to the generalized coor-
dinate response, as well as the presence of a beat phenomenon
occurring between 3ωd and the effective natural frequency of
the second mode shape. Both the Euler force and Coriolis
force oscillate away from resonance, and therefore have com-
paratively low contributions to the response.

4 BEAT PHENOMENON

Numeric simulations indicate the beat phenomenon oc-
curs in the first and second modes as a response to Coriolis
and centrifugal forcing, respectively. Such a response is a
result of the forced vibration interacting with the free vibra-
tion of the wing. The beat phenomenon as revealed can also
be used as a way to detect gyroscopic forces. The beat am-
plitude is proportional to the yaw amplitude γ0. It remains an
open question as to how insects detect gyroscopic forces. The
beat phenomenon, both in frequency and magnitude, may po-
tentially allow insects to detect such gyroscopic forces.

Frye hypothesizes that the frequency content generated
by the stretch receptor in the Manduca sexta forewing plays
a vital role in the neural feedback used by the insect to inter-
pret flight status [12]. It seems plausible then that the beat
phenomenon has biological significance in providing neural



Figure 5: Generalized Coordinate Responses to Excitation
Terms- First Mode

feedback during insect flight. As the total generalized coordi-
nate response exhibits a beat response, the strain components
in the wing will also reflect a beat response. Should the in-
sect be capable of interpreting beat effects in the first two
modes, the rotations α,β and γ may be identified. As these
rotations have a direct correlation to aerodynamic parameters
(e.g. lift, drag), the beat amplitudes may be used to iden-
tify flight status. Consequently, it is possible that MAV de-
sign could implement strain-based control systems rather than
accelerometer-based control systems. This may potentially
reduce both the weight and the power consumption of the
MAV. Motivated by the potential applications of the beat phe-
nomenon, we determine the sensitivity of the beat response in
the first mode subject to Coriolis forcing.

4.1 Sensitivity to Yaw Amplitude

The amplitude of the yaw rotation, γ0, has been found to
have a tremendous influence on the magnitude of the Corio-
lis force. While the typical yaw amplitudes for forward flight
(Table 5) are relatively consistent, individual specimens may
deviate slightly from these values. Therefore, the contribu-
tion of each forcing term to the wing response is determined
as a function of γ0. To remain consistent with the small an-
gle approximation, a range of yaw amplitude 0 ≤ γ0 ≤ 0.3 is
considered. Equation 13 is solved independently for the Cori-
olis, Euler and centrifugal forces over the entire range of γ0
assuming zero initial conditions (e.g. qk(0) = 0, q̇k(0) = 0).
The square sum of each partial response is divided by the
square sum of the total response to determine the contribu-
tion of each forcing term as a percentage. The results of the
simulation are shown in Figure 6.

At the operation point of γ0 described in Table 5, the con-

Figure 6: Relative Contribution of Forcing terms to Response
as a function of γ0

tribution of the Coriolis force to the total response is substan-
tially larger than the contribution from the other two forces.
In the forward flight regime, even large variations of γ0 will
cause only a minor change in the Coriolis contribution. Thus,
an increase of γ0 results in the amplification of the beat phe-
nomenon. This study also shows the beat phenomenon can
serve as an effective way to obtain γ̇ from the wing response.

4.2 Sensitivity to Initial Conditions

The beat phenomenon results from an interaction between
the forced vibration of the Coriolis force and the free vibra-
tion of the wing. From a purely mathematical standpoint,
there exists a set of initial conditions that will cause the free
vibration of the wing to disappear from the response. If there
is no free vibration of the wing to interact with the forced vi-
bration, the beat phenomenon will no longer be present.

Consequently, it is prudent to look at the Coriolis con-
tribution as a function of non-zero initial conditions. To
identify an allowable set of initial conditions, Equation 13
is solved assuming zero initial conditions. For the forward
flight regime, the maximum and minimum values of q(t)
and q̇(t) constitute the upper and lower bounds of allow-
able initial conditions. Mathematically, this takes the form
q(t)min ≤ q(0) ≤ q(t)max and q̇(t)min ≤ q̇(0) ≤ q̇(t)max.
The Coriolis contribution is then determined by solving Equa-
tion 13 over the entire set of initial conditions using the time-
dependent formulation. The results are shown in Figure 7.

Figure 7 shows the contribution of the Coriolis force is
more than 60% for most initial conditions. Even for extreme
initial conditions, the contribution of the Coriolis force still
constitutes about 33% of the total contribution. Thus, some
non-zero initial conditions may cause the beat phenomenon
to become less distinct, but it will never entirely be removed
from the total response.



Figure 7: Relative Contribution of Coriolis Response to Var-
ious Initial Conditions

4.3 Damping
As the beat phenomenon relies partially on the free vi-

bration of the wing, structural damping may have the effect
of diminishing the beat over time. To determine the signifi-
cance of these effects, structural damping of 1% (ζ = 0.01)
is introduced into Equation 13. The response subject to Cori-
olis forcing is then determined numerically for the first mode
shape (Figure 8). As the free vibration of the wing dissipates
as a result of damping, the beat phenomenon gradually be-
comes less pronounced. After several seconds, the Coriolis
force causes only the forced vibration of the wing, which os-
cillates sinusoidally at 2ωd.

Figure 8: Damped generalized coordinate response to Corio-
lis forcing, First mode

For insects, there exist a number of ways in which the
beat phenomenon may be preserved in the response in spite
of structural damping. First, rotation amplitudes may be ran-
domized slightly from their mean values to better represent
flapping of a real insect. Subtle variations, particularly in the
yaw amplitude, allow the beat phenomenon to be maintained.
Second, the insect may perform an aerial maneuver, corre-
sponding to both a considerable change in rotation amplitudes
and an abrupt translation of the insect body. Both of these fac-

tors can cause free vibration to occur, thereby reestablishing
the beat phenomenon. This suggests that it is desirable for an
insect to move frequently to preserve neural feedback gener-
ated by deformation of the forewings.

4.4 Strains
Consider a point of interest on the wing P (x, y). Let εx

be the normal strain in the x-direction, εy be the normal strain
in the y-direction, and τxy be the shear strain in the xy plane
at P (x, y). The strain components can be represented by

εx(x, y, t) =

∞∑
k=1

εx,k(x, y)qk(t) (16)

εy(x, y, t) =

∞∑
k=1

εy,k(x, y)qk(t) (17)

τxy(x, y, t) =

∞∑
k=1

τxy,k(x, y)qk(t) (18)

where εx,k is the normal strain in the x-direction of the kth

mode, εy,k is the strain in the y-direction of the kth mode, and
τxy,k is the shear strain in the xy plane of the kth mode. The
first mode is a spanwise bending mode, resulting in signifi-
cant strain at the center of the wing base. The second mode
is a spanwise torsion mode, and results in large strains at the
leading and trailing edge of the wing base.

A point P (x, y) is selected near the base of the wing. The
strain components are determined by finite element analysis
for the first two mode shapes as shown in Table 6.

Strain component First Mode φ1 Second Mode φ2
εx 256 -161
εy -1577 96.7
τxy 691 1710

Table 6: Strain components normalized with respect to mass
matrix for first two modes at P (x, y)

q1(t) and q2(t) are calculated by numerically solving
Equation 13 assuming zero initial conditions and using the ~ak
and~bk vectors. The total time-dependent strain is determined
using the strain values from Table 6 and applying Equa-
tions 16-18. The results are shown in Figure 9. The shear
strain τxy has the largest magnitude, while the x-component
of strain εx and the y-component of strain εy have compara-
tively negligible magnitudes. For all strain components, the
beat phenomenon is observed.

5 CONCLUSION

A comprehensive dynamic model of an insect wing is de-
veloped treating the wing as a deformable body subject to
three dimensional rotation about a fixed point on the insect’s
body. A coordinate frame that rotates with the finite pitch



Figure 9: Time dependence of strain components at P (x, y)

and roll rotations is established. The yaw rotation is assumed
small, and is allowed to rotate independently of the coordi-
nate frame. The kinetic and potential energies are formulated,
and the set of uncoupled differential equations describing the
time response of each mode shape (determined by finite ele-
ment analysis) is determined by Lagrange’s equation. There
are several advantages to such a formulation. First, the model
is able to estimate the time-dependent strain components on
the wing. Second, the model allows any complex geometry
to be implemented readily. Third, the resulting model has re-
duced order— the order of the model is the number of mode
shapes retained.

The model is then applied to the forewing of the Manduca
sexta. Coriolis, Euler, and centrifugal forces are identified ex-
citation terms responsible for the elastic deformation of the
wing. The Coriolis force tends to dominate the first mode
whereas the centrifugal force tends to dominate the second
mode. Numerical integration indicates a beat phenomenon
occurs in both the first and second modal responses. The sen-
sitivity of the beat phenomenon in the fundamental mode is
explored. The beat phenomenon is relatively insensitive to
various yaw amplitudes and non-zero initial conditions, but
decays gradually in the presence of damping. Resetting of
initial conditions or slight variations of the yaw amplitude
cause the beat phenomenon to persist even in the presence
of damping.

The total time-dependent normal and shear strain compo-
nents are calculated at a point of interest near the base of the
wing. The shear strain component is determined to be signifi-
cantly larger than the normal strain components. In all cases,
the strain components exhibit a beat phenomenon. This result
suggests the Manduca sexta may use strain frequency data
associated with the beat phenomenon to help identify flight

status. In the context of MAVs, similar strain-based control
systems may be developed to replace or supplement tradi-
tional accelerometer-based control systems. This can poten-
tially increase MAV performance by reducing weight, size,
and power consumption.
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