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Abstract

Onboard image processing for unmanned aerial vehicles (UAVs) has become a popular method
in the recent decades and the number of available hardware solutions has increased. Growing pro-
cessing power and reduced weight and size of the embedded systems facilitate more computational
power onboard the UAVs, making real-time image processing feasible. With respect to the soft-
ware framework, the OpenCV library provides a set of useful functions to extract information
from images. In this paper we first present a latency improvement over using OpenCV for camera
input and show that the frame buffer optimization results in a latency reduction of up to one
fifth compared to the OpenCV library. For the second part, we explain how utilizing direct driver
access and hardware capabilities enables a faster color space conversion than OpenCV library
functions. The color space conversion is tested with the L*a*b color space, which proves to be
the right choice for our application, which is the detection of red objects in inhomogeneous light
conditions. For our outdoor MAV application, the detection of six rectangular red objects takes
no longer than about 50ms on average.

1 Introduction

An increasing computational power and decreasing prices have increased the applications for embedded
systems and allow to run complex algorithms onboard. With the growing use of such systems, the
research and development in the UAV (unmanned aerial vehicle) area has risen, so that a higher
degree of automation becomes possible. Nowadays, the development in the UAV sector has advanced
so far, that such vehicles can be bought in the retail store. However, the range of UAV types,
which are sold off the shelf, is limited to either rotor-craft (tri-, quad-, hexa- and octacopter) or
fixed wing vehicles and are controlled either with remote control or a fixed set of pre-programmed
waypoints. More expensive systems include for example a first person view system, nevertheless,
onboard video processing remains a niche in this sector, although in the research and development,
there are more advanced systems available. One part of the video processing, which improves the
degree of automation, is the segmentation, allowing to determine objects in the foreground from the
background. Depending on the objects, which should be detected, the chosen method for the video
segmentation is dependent on the application. For instance, objects can be identified by attributes,
such as geometry, color or contrast. In this paper we present an optimization of a capture device
for the Gumstix embedded on-chip processor1, which is used in several research and development

1See http://www.gumstix.org .
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projects[11][12][13]. Additionally our capture device allows to gather different image formats than
RGB, that is L*a*b, for example. The L*a*b color space has been chosen for our application, which
is to detect an arch, with six flags attached to its borders, which has been used in the IMAV 2012
competition2. Regarding the performance, the adapted implementation is compared against the Open
Computer Vision (OpenCV) framework3. With respect to the target flight vehicle, the Embedded
Systems Laboratory and the Institute for Flight Dynamics at the RWTH Aachen University have
developed since 2011 a tilt-wing UAV, with hovering and fixed-wing capabilities[7][9], in which the
video system is implemented.

The structure of the paper is given in the following. After the introduction into the topic has been
given in this section, the related work on this field is briefly presented. Thereafter, an overview of
the system is given and approaches to decrease the latency are explained. The results of the tests are
evaluated in Section 4. Finally conclusions are drawn in the last section.

2 Related Work

In the 80’s, Waxman et al.[17] developed a prototype for an vision system, capable of detecting roads
from the bird perspective. About ten years later, Solka et al.[15] present similar approaches to detect
landscape marks made by humans and vision-based landing becomes available[14].

With respect to our target computer system, the Gumstix series, which have been developed and
extended in the last decade, the number of onboard processing applications has increased. Salazar
et al.[13] port the GPS open source Toolkit (GPSTk) to the Gumstix series, making further GPS
development easier and faster. Thinking of a solution with a Kalman-filter, AggieNav developed by
Clavin Coopmans, offers an integrated system where the Kalman-filter is executed on the Gumstix
hardware, which is connected to other subsystems, such as the inertial measurement unit[6]. Another
Kalman filter approach to estimate the position via optical flow is explained in the paper from Kendoul
et al.[10]. Eynard et al.[8] demonstrate a solution to approximate the altitude from a camera pointing
downwards, while the complete position is calculated by Wang et al.[16] and Phang et al.[12], for
instance. Finally, Lange et al. demonstrate how vision-based landing can be achieved[11].

3 System Design and Implementation

After the work of other research projects has been acknowledged, the system is described and the
optimization procedure is developed. First the relevant hardware and software components are illus-
trated. Subsequently, the latency reduction is explained. Finally, the color space conversion to L∗a∗b∗

is presented.

3.1 The Hardware

The system on which the computer vision application is implemented consists of a Gumstix Overo
Computer-on-Module with a 620MHz ARM CPU and 512MB of RAM, and a Gumstix Caspa VL
camera. The camera uses an Aptina MT9V032 wide-VGA CMOS sensor. It is connected to the Texas
Instruments OMAP3 system-on-a-chip (TI OMAP3 SoC) on the Gumstix Overo COM via a 28 pin
flex cable which carries the parallel data signal and the I2C configuration channel.

2See http://www.imav2012.org .
3See http://www.opencv.org .
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Figure 1: OMAP3 ISP Preview Engine Block Diagramm (taken from [1])

The TI OMAP3 SoC combines an ARM Cortex A8 CPU with a multitude of peripherals, such
as a dedicated camera interface called image signal processor (OMAP3ISP). This peripheral receives
sensor data from the Caspa VL camera, processes the pixels as they are read from the camera and
uses DMA to write the images to main memory.

A central component of the OMAP3ISP is the preview engine, depicted in Figure 1, which takes
the Bayer pattern sensor data, applies image enhancements and white balance scaling, interpolates the
subpixel data and transforms the RGB pixels into YCbCr pixels. In Section 3.4 the reprogramming
of the OMAP3ISP preview engine to output image data in the L∗a∗b∗ color space instead and the
retrieving the data unmodified and with low latency is shown. First however, the implementation
provided by the Open Computer Vision library is evaluated.
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3.2 OpenCV

The OpenCV library provides many image processing and computer vision algorithms as well as
data structures and I/O functions. Applications can read camera images by using the OpenCV
VideoCapture class, which takes one argument, being either the index of the camera or the name of a
video file in case a recording is to be used instead of a live camera. Image data is converted from the
native pixel format of the camera into the BGR pixel format which is used throughout OpenCV.

During the evaluation of the OpenCV VideoCapture class for the given application, a high latency
between events in front of the camera and their appearance in images which are read through the
VideoCapture class has been measured. The cause of this latency is in the OpenCV source code file
modules/highgui/src/cap libv4l.cpp. According to the comments at the beginning of the file, it
is derived from the example code in the Video4Linux2 API documentation. Like the example code,
cap libv4l.cpp uses a FIFO queue of buffers. Four buffers are reserved for the queue by default, and
when an image is transferred to the application, it is copied into yet another buffer.

3.3 Latency Reduction

A FIFO queue is useful for avoiding dropped frames if the application, on average, processes frame
buffers faster than they are captured. On the other hand, a FIFO queue fills up and overflows if the
processing time per frame is even just slightly longer on average than the time between two frame
captures. In Figure 2, the effect of a full queue on the latency is depicted. The top half shows the
utilization of four buffers in a FIFO configuration where the processing takes three and a half times
as long as the frame time. The bars below visualize the latency between the time when an image
is captured and the time when it is fully processed. The thick part of the bar shows the latency
building up while the frame is in the queue, and the thin part represents the latency due to the actual
processing by the application.

To avoid the high latency and the conversion into the BGR color space inflicted by the OpenCV
VideoCapture class, a capture module which uses the Video4Linux2 API directly has been developed.
This new module is based on the example code from the Video4Linux2 API documentation as well,
but uses a double buffering strategy instead of a queue.

The V4L2 API uses two queues of memory mapped buffers: One is the input queue of empty
buffers which are fed into the driver and the other is the output queue of buffers which the driver has
filled with images from the camera. The capture module appends buffers to the input queue with the
VIDIOC QBUF IOCTL and dequeues buffers from the output queue with the VIDIOC DQBUF IOCTL.
A separate thread is utilized to dequeue buffers as soon as they become available. If the application
hasn’t retrieved a buffer from the capture module by the time the next buffer becomes available, this
thread immediately moves the older buffer to the input queue. In this way the latest completed frame
is always available to be retrieved by the application, while a second framebuffer is being filled by
the camera driver. The lower half of Figure 2 visualizes the concept and shows the improved timing
compared to a four buffer queue. Like the queue, double buffering achieves maximum throughput
by avoiding delays. But unlike the queue, double buffering keeps the latency in the capture module
below one frame time.

For the implementation of this concept, a total of four buffers are used: One filled buffer awaits
retrieval by the application. The driver writes to the second buffer, and the application processes
the image in the third buffer. Finally, the fourth buffer waits in the input queue to avoid underruns
during the time when the next buffer has been filled by the driver and the separate thread has not
yet returned the older completed buffer to the input queue. Buffers swap roles as necessary so that
no image data needs to be copied in the process.
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Figure 2: Latency of image capturing with a FIFO queue compared to double buffering

3.4 L*a*b* Color Space Conversion

With a low latency method for retrieving image data from the camera interface in place, focus is set on
getting the data in the desired color space. The CIE L∗a∗b∗ [4] color space is defined by a conversion
from the CIE XYZ [2] color space. In addition to this conversion, more processing steps are necessary
if the original data is in a color space other than XYZ. In order to convert from linear RGB data to
L∗a∗b∗ data, the data is first converted to XYZ by a linear transformation. If the original data is
non-linear RGB, then an inverse gamma correction is applied before the conversion to XYZ. Starting
with YUV data prepends another matrix multiplication to get RGB. Reading camera images in the
usual YUV format and then performing the necessary transformation steps on the CPU creates a
high overhead. This overhead can be avoided by changing the parameters of the OMAP3ISP preview
engine to produce L∗a∗b∗ image data instead of YCbCr data. This offloads the calculations from the
CPU and frees processing time for later stages of the given computer vision application. Direct use
of the Video4Linux2 API enables the reading of the output data of the OMAP3ISP preview engine
without further conversions.

Figure 1 shows the hardware function blocks on which the conversion is performed: After the
color filter array interpolation and black level adjustment, the linear RGB pixels are processed by
the RGB to RGB blending, Gamma correction and RGB to YCbCr conversion function blocks. The
gamma correction is implemented as a lookup into three tables of 1024 unsigned 8-bit values each. A
3x3 matrix multiplication and the addition of an offset vector are executed for each of the RGB to
RGB blending and RGB to YCbCr conversion steps. These calculations are performed in fixed point
arithmetic, and the matrix and vector components are limited to different ranges and resolutions. The
detailed specification can be found in the literature [1].

The starting point for the conversion is linear RGB, and two matrix multiplications with a gamma
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conversion in between can be used to perform the necessary calculations. With this in mind, we take
a closer look at the mathematical background.

Converting from linear RGB to L∗a∗b∗ is a two step procedure: First linear RGB is transformed
to CIE XYZ and afterwards converted to CIE L∗a∗b∗. For linear RGB data with the primary colors
and the white point of the sRGB [5] color space, the conversion to CIE XYZ is performed by applying
the linear transformation in Equation (1). The conversion to L∗a∗b∗ is defined by Equation (2). The
tristimulus values Xn, Yn and Zn for the white point D65 [3] are given in Equation (3). X

Y
Z

 =

0.412391 0.357584 0.180481
0.212639 0.715169 0.072192
0.019331 0.119195 0.950532

 R
G
B

 (1)

L = 116 f(Y/Yn) − 16

a = 500[f(X/Xn) − f(Y/Yn)]

b = 200[f(Y/Yn) − f(Z/Zn)]

f(x) =

{
x1/3 if x > (6/29)3

(841/108)x + 4/29 if x ≤ (6/29)3

(2)

 Xn

Yn

Zn

 =

 0, 950456
1

1, 089058

 (3)

To map this conversion to the hardware, the conversion is decomposed into two matrix multiplications
and one gamma correction as expressed in Equation (4), where F is the component-wise application
of f from Equation (2). L

a
b

 =

 −16
0
0

+ MLabF

MXY Z

 R
G
B


MLab =

 0 116 0
500 −500 0
0 200 −200


MXY Z =

0.412391/0.950456 0.357584/0.950456 0.180481/0.950456
0.212639 0.715169 0.072192

0.019331/1.089058 0.119195/1.089058 0.950532/1.089058


(4)

The L∗ component ranges from 0 to 100 and the a∗ and b∗ components are in the -127 to 127 interval.
While the L∗a∗b∗ conversion is specified for an RGB input range of 0 to 1, here the input values are
in the range from 0 to 255. Accordingly, a scaling factor of 1

255 is applied to the MLab matrix.
The output consists of 8-bit unsigned integers. In order to use the available resolution, the L∗a∗b∗

values are mapped to the full 0 to 255 interval. For the a∗ and b∗ components in the Cb and Cr
channels, the required addition of 127 is implicitly performed by the OMAP3ISP preview engine,
so no offsets need to be programmed for the color channels. The lightness channel however needs
further attention. The output range is expanded from the 0 to 100 interval, and since the OMAP3ISP
preview engine does not support negative offsets in the final processing step, the L∗ component is
approximated according to Equation (5).

L =
255

100
· 116

255
· f(Y ) − 16 ≈ 255

100
· 100

255
· f(Y ) = f(Y ) (5)
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Consequently, the matrix to be programmed into the RGB to YCbCr conversion step of the
OMAP3ISP preview engine is given in Equation (6).

M ′Lab =

 0 1 0
1.960784 −1.960784 0

0 0.784313 −0.784313

 (6)

The RGB to RGB blending step is programmed with the MXY Z matrix, and the gamma tables are
computed according to the f function from Equation (2), but scaled to an input range of 0 to 1023
and an output range of 0 to 255.

When these configuration parameters are programmed using the VIDIOC OMAP3ISP PRV CFG private
IOCTL, the preview engine outputs 4:2:2 sampled L∗a∗b∗ data with a rescaled and offset L∗ channel.
The kernel V4L2 driver is unaware of the modified configuration and continues to treat the data like
4:2:2 sampled YCbCr data, so that is the format which the application has to request in order to
receive the L∗a∗b∗ data.

4 Evaluation

For evaluation, a comparison to the OpenCV framework is presented regarding two aspects: In the
first part, the throughput performance is shown with respect to the target platform, which has been
introduced in Section 3.1. Thereafter, the latency reduction is measured using another ARM based
system.

In the target application, the autonomous navigation of a MAV is aided by location information
computed from visually recognizing an arch which is marked with six red flags. The algorithm for
which the processing time is measured and plotted in Figure 3 consists of thresholding, correcting lens
distortion, computing the center of gravity and size of each connected component, searching for a set
of connected components which represent the six flags and computing the pose based on four point
correspondences. Peaks within the plot result from a high number of different red objects within the
scene or the entire absence of the arch. Both are situations in which many combinations of connected
components have to be considered and rejected. Nevertheless, in many situations the entire algorithm
completes in 40 milliseconds or less. In comparison, the conversion of a video frame from BGR to
L∗a∗b∗ using the OpenCV cvtColor function takes about 40ms on the same hardware, on top of the
overhead created by the YUV to BGR conversion before the frame is delivered to the application.

For the latency measurements, a Seagate Dockstar with a Logitech C270 USB camera has been
selected as test environment. In the Dockstar, the Marvell Kirkwood 88F6281 SoC contains an
ARMv5TE core at 1.2GHz. The system is equipped with 128MB of RAM. A two-color front panel
LED is attached to two GPIOs. For the latency test, the camera, capturing 30 frames per second, is
pointed at the LED. The test program turns the LED on and off at random times and measures the
time until the state change is detected in a camera image by reading a single pixel from the image and
comparing it to a threshold value. To simulate processing, the test program inserts a defined delay
between the capturing of the image and the reading of the LED state. Figure 4 shows the measured
latencies of test runs with OpenCV on one hand and our capture module on the other hand, each
with 100ms and 500ms processing delays.

The measured latency matches the expected latency from theoretical considerations. Note that
our implementation still achieves almost the same average latency with 500ms processing time in the
application as the OpenCV VideoCapture class when only 100ms of processing time are available to
the application per frame.
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Figure 3: Measured processing time of the entire image recognition algorithm
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Figure 4: Measured latency from an LED state change to the detection in the camera image, with
processing delays of 100ms and 500ms

5 Conclusion

In this paper we present an approach to improve the latency in comparison to the OpenCV imple-
mentation. Using double buffering instead of a FIFO queue allows the developer to implement more
time critical applications. This improvement does not depend on properties of the Gumstix system
and works on other hardware platforms as well.

Furthermore, we have demonstrated that utilizing the V4L2 API directly avoids the forced con-
version to BGR and thereby opens up the possibility of moving the color space conversion to
the OMAP3ISP preview engine. Compared to a software-only implementation with the OpenCV
cvtColor library function, offloading the conversion to the dedicated hardware peripheral reduces the
processing time by more than 40ms per frame. This step allowed us to double the frame rate of our
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application in many environments.
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