
UAV Flight Experiments with a RT-Linux

Autocode Environment including a Navigation

Filter and a Spline Controller.

Karl Kufieta1, Christian Wickbold1 and Prof. Vörsmann1

Institute of Aerospace Systems, TU Braunshschweig, Braunschweig, Germany
karl.kufieta@tu-braunschweig.de

Abstract

A common method for navigation in Unmanned Aerial Vehicles is the fusion of the
GPS-position and an Inertial Measuring Unit. For this data fusion a Kalman Filter is
used. To guide and control the Unmanned Aerial Vehicle, spline paths in combination with
linear or nonlinear controllers are suitable. The development of these algorithms is iterated
cyclically beginning with a simulation and then testing the algorithms on the hardware.
To be able to repeat fast development cycles an autocode environment in combination with
a real-time Linux has been developed. This paper describes the performance of the used
autopilot architecture in the scope of algorithm development. Finally the recorded flight
test data is compared to the simulation data.

1 Introduction

Unmanned aerial vehicles (UAV) as depicted in fig. 1 are a testbed for a wide field of applica-
tions. Research at the ILR (institute of aerospace systems) ranges from navigation and control
algorithms, over modeling and parameter identification to flight missions, e.g. meteorological
[11] campaigns.

Figure 1: Left: Arctic mission with Unmanned Aerial Vehicle, Right: experimental Multiplex
Twinstar with mounted autopilot

Today’s microprocessors are powerful and suitable for complex algorithms. As those pro-
cessors are small and energy efficient they can be used in small UAV’s. Usually a processor
is programmed in a high level language like C or C++. Complex algorithms for navigation
and control of UAV’s or robots in general are often programmed in object oriented simulation

1



environments like Matlab Simulink. In these environments signals are represented by lines be-
tween operators (e.g. plus, minus, transfer function), sources (e.g. constant, sensor) and sinks
(display, actuator). To implement an algorithm from the simulation world, the vendors (like
Mathworks) have designed code generators. With a code generator it is possible to translate
the object oriented simulation into C-code. This process can be automated so far that it is
possible to program the processor with only one mouse click directly from the simulation. This
way the implementation cycle times for different types of algorithms are reduced dramatically.
As different algorithms can run in different sample times a real-time Linux with the ability of
multitasking has been considered. Following a closer look at the hardware the main points of
the real-time Linux are briefly explained. The execution times of the Kalman navigation filter
and the spline controller are elaborated and the necessity of multitasking is explained in this
scope. Starting with a simulation of the airplane with navigation and control the complete
simulation can be tested as software in the loop on the autopilot hardware.

A result of the symbiosis of all components is that complex algorithms from a high-level
GUI environment can be elaborated in flight tests, as the programming from the object oriented
high-level GUI interface to the ready to flight UAV takes around 30 seconds. At the end of
this paper, results of the navigation solution and control algorithms are shown in experimental
flight test.

2 The Autopilot System

The autopilot hardware (see fig. 2) is based on a two processor concept. As the main computing
processor an OMAP3530 [8] is used, which offers a good computing performance with 720 Mhz
and a floating point unit. This main computing processor is connected to the data acquisition
processor STM32 [14] with 72 Mhz and the capability of hardware interfaces like the CAN-Bus.

Figure 2: Left: Autopilot Hardware, Right: OMAP3530 mounted on a gumstix board

As the STM32 uses no operating system, its software uses only one thread. Hardware
interrupts can be programmed directly beneath the main processor loops and no high level
driver need to be used as the hardware can be programmed directly through the processor
registers. Thus the STM32 software setup is relative simple to the OMAP3530 which uses Linux
as operating system with multithreading for complex algorithms and high level drivers for the
peripheral interfaces. In the case of an OMAP3530 failure, e.g. an experimental algorithm
crashes the system, the STM32 will always be able to take control over the airplane. As all
actuators and sensors are connected to the STM32 (see fig. 3) and as a high update rate for
algorithms is preferable, also a high data bandwidth between the STM32 and the OMAP3530
is of benefit. For this reason an SPI (serial peripheral interface) Bus has been chosen which



allows bidirectional 20 MBit/s which is sufficient for the transmission of 50 signals for sensors
and actuators in both directions within 300 µs.

-controlOalgorithms
-kalmanOfilter
-imageOprocessing
-neuronalOnetwork

dataOacquisition
processor
STM32

SPI-Bus

GPS

telemetrie

actuators

sensors

remoteOcontrol

mainOO
processor
OMAP3530

Figure 3: Connection scheme between processors

2.1 Operating System

The OMAP 3530 processor is running a real-time Linux [1] [13] which allows the usage of
multithreading and complex drivers like a TCP stack or WiFi drivers. The fastest thread,
i.e. the navigation and control algorithms, are running with an update rate of 100 Hz. This
means that this thread must be executed deterministically within 10 ms, which leads to the
most important variable of the real-time Linux, the execution delay: A standard Linux kernel
behaves non deterministically [2] and schedules the given tasks, respectively the threads in a
fair manner. Although the tasks are executed as fast as possible, it is not predictable when or
how long they are executed. To overcome these problems a real-time layer has been integrated
by the kernel developers which gives the ability to run high priority tasks with a deterministic
execution behavior. Figure 4 shows the bounded the thread execution without real-time priority
that can be very high whereas with real-time the delay is bounded below < 65µ.

The STM32 runs its own independent 100 Hz loop. If the OMAP3530 provides a SPI-
connection, the STM32 will transfer the sensor data to the OMAP3530 and use the computed
control commands for the actuators (compare 4). The OMAP3530 runs several threads for
different frequencies, e.g. the Kalman filter for navigation with 100 Hz. Non real-time threads
can be executed in parallel e.g. to run a terminal via WiFi.

0 1000 2000 3000 4000 5000 6000
10

20

30

40

50

60

70
μ-sec

Iterations

STM32 OMAP3530
loopF100Hz

readFsensors
SPI
writeFactuators

100 Hz

SPI
10 Hz

4 Hz

KalmanFFilter

KalmanFFilter

GPSFsolution

no Realtime
telemetrie
Wifi
terminal
internet

Figure 4: Left: The execution delay is bounded below < 65µ, Right: Different threads running
on the two processors



2.2 From Simulation to Flight Experiment

Coming from the hardware and software description, the concept of the autocode [12] design
is elaborated. The algorithms for navigation and control are designed in the object oriented
simulation environment Matlab/Simulink. Figure 5 depicts a simple simulation where a sinus
signal is added to a constant matrix and the result is plotted in a ”scope”. To run this simulation
on the autopilot system a so called tool-chain is used, where the simulation is translated into
C-Code and compiled into machine executable binaries. To this purpose for example an ”add-
block” (compare fig. 5) is translated by Matlab’s Target Language Compiler (TLC) with its
corresponding tlc file into a C-Code function. In this way the simulation with all its blocks

Figure 5: A simple Simulink model

creates a C-Code program, e.g. airplane.c (compare fig. 6). In a last step the compiler tool-chain
for the specific processor translates the C-Code into a machine readable binary. Hardware like
actuators or sensors can be modeled as a simulink block and after programming the autopilot
this hardware is directly used. With the so called ”external mode” it is possible to link and
monitor the simulation on the real hardware via WiFi in the ”scopes” of the developement
hardware.

ARM
Prozessor

machine
code

SimulinktC-Code

SimulinktModel

GNUtCompiler

Real-Timet
Workshop

TLC
Target.tlc

Makefile
Processortinitialisation
main.c

Airplane.mdl
TLCtFiles

Embedded
Processor
Toolchain

Matlab

Aiplane.c
Airplane.h

Figure 6: Autocode Environment: from model to machine code

2.3 Simulation

Before going into the flight experiment the navigation and control algorithms are tested in the
simulation. The simulation is built out of five main parts (fig: 7): airplane, sensors, navigation,



control and actuators. The main part is the airplane, where actuator signals and wind sim-
ulation influence the airplane’s forces and moments, which are integrated twice into position
and attitude [3]. The airplane variables (position (4 Hz), rotational velocities, accelerations)
are measured by the sensors. This sensor simulation includes sensor noise, temperature drifts
or position errors. With this data the navigation reconstructs an attitude signal and a 100 Hz
position for the controller cascade. The controller compares the actual position with the desired
flight path and generates control signals for the actuators. The actuators are usually servos or
the engine, which includes delays and nonlinearities from the input signal to the outgoing force.
The connection to the airplane closes the loop.

In the development process the simulation is tested on the development environment: Run-
ning the simulation here takes less than a second and the simulation is running faster than
real-time. If the algorithms perform good in the simulation, they are compiled and programmed
onto the autopilot and tested in real-time, which is usually called software in the loop.

actuators airplane sensors

controller
cascade

datafusion

visualisation

control
signals

GPS
IMU

Figure 7: Airplane simulation with navigation and control

2.4 Kalman Filter

To control the airplane a precise position and attitude signal is necessary. As the dimensions
of the small UAV require small and lightweight hardware, Microelectromechanical (MEMS)
sensors are used in the Inertial Measuring Unit (IMU). The used low-cost acceleration and gyro
sensors operate with a frequency of 100 Hz but suffer from drifting signals.
To compensate this drifting, long-term stable 4 Hz position measurements of the the GPS re-
ceiver are used. In this way position, velocity and attitude can be determined at the rate of
the IMU with a better precision than with a stand-alone GPS receiver (fig: 8).

IMU

100 Hz

Predictor

Attitude

Corrector GPS

4 Hz

Figure 8: Kalman Filter

Different concepts for the fusion of sensor data as from GPS and IMU measurements exist



(see [6]). The simplest and therefore most common integration is the so called loosely coupled
system. These systems use the position and velocity information of the GPS to bind the IMU
measurement errors [5].

The Kalman filter, introduced in [10], has become a quasi-standard for accomplishing the
data fusion of inertial and satellite navigation. The navigation system of the new autopi-
lot system is based on a time discrete, loosely coupled extended Kalman filter, see [4]. The
error state architecture allows the estimation of a non-linear process with a linear Kalman filter.

The utilized state vector ~x consists of 15 states for errors in position, velocity, attitude, gyro
bias, and accelerometer bias.

~x =


δrebg ... 3 position errors
δvebg ... 3 velocity errors
δφgb ... 3 attitude angle errors
δωb ... 3 errors in gyro bias
δab ... 3 errors in accelerometer bias


The indices g and b show that the vector is described in the geodetic- and the body-frame

respectively. The superscripts and stand for the body- with respect to earth-centred earth-fixed
(index e) (ECEF)-frame and b -with respect to -frame, respectively.

The Kalman filter works in two phases - propagation and estimation, which justifies the
need of multithreading. The propagation is executed at the IMU’s measurement frequency of
100 Hz. Parallel to the propagation process, the navigation solution is calculated using the
IMU measurements. These are processed via a so-called strapdown algorithm, which allows the
computation of navigation data from body-fixed inertial sensors, see [9].

The estimation process is started when new GPS measurements have arrived. During this
update, the measurements ~zk which are received at time tk are processed. This vector consists
of the differences between predicted and measured values of the position.

A hat ˆ indicates values which are re-estimated, measured values are denoted by a tilde ˜
on top of each variable. The enhancement of the navigation data quality is performed by the
calculation of the so called Kalman Gain matrix and the following update of the state vector
and the covariance matrix of the state estimation uncertainty.

Kk = P−1
k ·HT

k · (Hk · P−1
K ·HT

k +Rk)−1

~̂x+k = ~x−k +Kk · (~̃zk −Hk · ~x−k )

P+
k = (I −Kk ·Hk) · P−

k

The Kalman Gain matrix weights the difference between measurements ~zk and the expected
measurement, which is calculated by the a priori state vector and the measuremnt matrix HR.
For this it includes the autocovariance matrix of the measurement noise Rk. The measurement
matrix maps the state vector onto the measurement vector. Matrix I is a 15 × 15 identity
matrix.



2.4.1 Sensor Calibration

Some attention needs to be given to the sensor calibration. The actual autopilot uses an
IMU3000 Gyro from Invensense and an Analog Devices ADXL345 acceleration sensor. Those
sensors deliver an unsigned binary number proportional to the measured variable. The sensor
output wi,meas of the gyroscopes has been modeled as follows:

wi,meas = wi ∗ aw,i + bw,i + c · T (1)

where wi denotes the angular rate for an axis i , which is multiplied by a scaling factor aw,i.
An static bias bw,i is added to a temperature depended bias c ·T . The used accelerometers have
been modeled without the temperature dependent bias with the static bias ba,i and the scaling
aa,i to the equation:

ai,meas = ai ∗ a+ b. (2)

Simulation shows that this sensor model is sufficient for navigation and control of the UAV
(compare fig. 9). The sensor calibration followed a simple scheme:The autopilot is rotated on

10,4395 10,4401

52,42722

52,42779

lon

lat

10,4375 10,4376 10,4377 10,4378

52,4277

52,4278

52,4279

52,4280

lon

lat

Figure 9: Left: navigation simulation with no sensor errors (blue), navigation with 30% error
in bias value (green); Right: navigation in real flight (line), GPS measurements (dots)

the Desk around every axis with 90◦. In a first step the gyro signal is out-biased, which means,
the end value of a forward and back rotation on the Desk is known as zero. The signal is
scaled to fit 90◦, compare figure 10. As there a barely visible temperature effect in the scaling
parameter, only the gyro bias is considered. This was done by putting the autopilot into a
fridge while the bias drift was recorded.

p
p(t)dt

φ

t t

bias

φ

tStep 1 Step 2

Figure 10: Step 1: Summarize gyro rate signal into angle, Step 2: Calculate bias, Step 3:
Scaling

2.5 Spline Control

To be able to follow a predefined path a spline controller is used. To this purpose two-
dimensional cubic bezier splines are used. Thus the curves follow a polynome of third degree
[7].



The spline can be described with the Point An = [xn, yn] as follows:

x(t) = a3t
3 + a2t

2 + at1 + x0 (3)

y(t) = b3t
3 + b2t

2 + bt1 + y0 (4)

The run parameter t lies in the region between 0 ≤ t ≤ 1. The spline parameters are defined
as follows:

a1 = 3(x1 − x0), a2 = 3(x0 − 2x1 + x2), a3 = (−x0 + 3x1 − 3x2 + x3) (5)

b1 = 3(y1 − y0), b2 = 3(y0 − 2y1 + y2), b3 = (−y0 + 3y1 − 3y2 + y3) (6)

The spline path is preset in the ground-station software (see fig. 11) and transmitted via
WiFi or radio to the UAV.

Figure 11: Ground-station GUI with flight display and waypoint navigation map

2.6 Flight experiments

As experimental setup a Multiplex Twinstar airplane model (see fig.1 right) was used. This
model has a wingspan of 1.4 meters, and a take off weight of 1.5 kg. The airplane speed ranges
from 35km/h to 70km/h. The experiments were made on a moderate gusty day with a wind
speed of 15km/h.

2.6.1 Attitude Controller Flight Result

Usually the airplane model operator controls the angular rates of the model with the remote
control and thus the elevator and aileron position. In the attitude controller mode the remote



control stick positions for the aileron uaile and the elevator uele are used as reference signals
for the roll Φ and pitch Θ angle of the airplane model, such that the aileron and the elevator
position (ϕaile, ϕele) results directly from this difference:

ϕele = Φ − uele (7)

ϕaile = θ − uaile (8)

In the Attitude controller mode taking off and landing the airplane is possible even for novice
pilots. Figure 12 plots the aileron signal uaile and the measured roll angle Φ. As the angle
is used directly as control feedback, no damping terms are considered which leads to visible
overshoots in the angle.

795 800 805 810 815 820 825 830 835

0

10

20

30

40

time [s]

φ [°]

Figure 12: Attitude controller: roll reference signal uaile (green), roll Φ estimated from naviga-
tion (blue)

2.6.2 Spline controller flight result

After taking off the airplane in the attitude controller mode, the spline controller is turned
on. In this mode the UAV is flying automatically the predefined path. The navigation and
control algorithms consume ∼ 25% of the processor time on the OMAP3530. Terminal via
WiFi or UMTS is always accessible and the flight data is recorded in a non real-time thread.
Figure 13 depicts the flight path of the UAV in this experiment. Usually the spline controller
is started after takeoff in some distance to the pre-programmed flight path. If the distance
to this flight-path (respectively spline-path) is high, the spline controller cascade is going into
saturation such that an additional start spline is calcualated automatically in the autopilot
from the actual UAV position to the beginning of the predefined flight path.

2.7 Conclusion and Outlook

The combination of Linux and auto-code systems leads to a very effective experimental platform.
The development cycles from simulation to the flight experiment are reduced to less than a few
minutes. A spline controller in combination with a Kalman filter is running easily on the
modern 720 Mhz cell phone processor OMAP3530 and leaves enough resources for e.g. running
neural networks. It is expected that actual cell phones with multicore processors and a real-time



0.182075 0.182125 0.182175

0,91486

0,91488

0,91490

0,91492

Lon

Lat

Figure 13: Flight experiment: flight path with GPS measurements (blue line and blue marks),
spline (green line), transition spline (red line)

Linux kernel have the capabilities to control UAV’s with enough resources for more complex
and intelligent algorithms.

References

[1] Stefan Agner. Linux Realtime-Faehigkeiten. Hochschule Luzern,
http : //www.agner.ch/linuxrealtime/Linux−Realtime− Faehigkeiten.pdf , 2009.

[2] Cesati M. Bovet P. Understanding the Linux Kernel. Oreilly,
http : //oreilly.com/catalog/linuxkernel/chapter/ch10.html, 2000.

[3] W. Alles Brockhaus, R. Flugregelung. Springer Verlag, Berlin, 2011.

[4] J. Crassidis. Sigma Point Filtering for Integrated GPS and Inertial Navigation. University at
Buffalo, New York, U.S.A, -.

[5] J. Weston D. Titterton. Strapdown Inertial Navigation Technology. The Institution of Engeneering
and Technology, London, 2004.

[6] J. L. Farrell and Barth. The Global Positioning System and Inertial Navigation. McGraw-Hill,
New York, U.S.A, 1999.

[7] Hans-Georg-Buesing. Ein Flugregler fuer die Startphase autonomer Kleinstflugzeuge. TU Braun-
schweig, Braunschweig, 2006.

[8] Texas Instruments. OMAP 3530 Application processor. Texas Instruments, Silicon Valley, 2013.

[9] Fried Kayton, M. Avionics Navigation Systems. John Wiley and Sons, New York, U.S.A., 1997.

[10] R. E. Klmn. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering, Baltimore, U.S.A, 1960.

[11] A. Kroonberg. Airborne Measurement of Small-Scale Turbulence with special regard to the Polar
Boundary Layer. Zentrum fr Luft- und Raumfahrt, Braunschweig, 2009.

[12] Mathworks. Embedded Coder User Guide. Mathworks,
http : //www.weizmann.ac.il/matlab/pdfdoc/ecoder/ecoderug.pdf , 2013.

[13] OSADL. Real-Time Linux Wiki. Open Source,
https : //rt.wiki.kernel.org/index.php/MainP age, 2013.

[14] STMicroelectronics. STM32 Mainstream Performance line, ARM Cortex-M3 MCU. STMicroelec-
tronics, Silicon Valley, 2013.


