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Abstract

This paper presents a whole swarm system for low-cost visual navigation, developed to par-
ticipate in the 2013 IMAV Indoor Flight Competition. The quadrotor platform employed is the
Parrot ARDrone 2.0. ArUco Codes [2] are used to sense and map the obstacles and to improve
the pose estimation based on the IMU data and optical flow by means of an Extended Kalman
Filter localization and mapping method. A free-collision trajectory for each drone is generated by
using a combination of well-known trajectory planning algorithms: probabilistic road maps, the
potential field map algorithm and the A-Star algorithm. The control loop of each drone of the
swarm is closed by a robust mid-level controller. A very modular design for integration within
the Robot Operating System (ROS) [13] is proposed.

1 Introduction

The motivation of the presented work is to design a low-cost framework for quadrotor swarm prototyp-
ing. The framework is designed to ease the main issues related to working with a multirobot system,
which are obstacle avoidance and partner detection. The focus is to allow the team of designers to try
various swarming behaviours on a real robotic swarm, so that the advantages of the proposed strategy
can be experimentally demonstrated on an early stage of the development process. In order to obtain
a cost-effective testbed the AR Drone 2.0 quadrotor was selected as the aerial swarm agent, as it is a
low-cost but competitive platform. The second motivation is to participate in international robotics
competitions using simple, but swarming, visual aerial robotic agents. More specifically, the presented
work has been implemented to participate on the 2013 edition of the International Micro Air Vehicle
(IMAV) Flight Competition.

There exists a large variety of applications which require a robotic system to densely navigate a
wide area. Such applications can benefit from a swarming approach for the required data gathering
of the problem at task, taking benefit from the robotic population. For instance, such an approach
could be applied to security and surveillance of middle sized areas.

The IMAV Flight Competition is one of the most relevant competitions in Europe in the field of
Autonomous Aerial Robotics and in the field of Small Remotely Piloted Air Systems (sRPASs). The
Computer Vision Group (CVG) participated last year [20], in the 2012 edition, showing the potential
and the research experience of the group. The learning experience obtained from the indoor dynamics
competition encouraged us to keep working in the same line and also to try a swarming approach on the
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Figure 1: The swarm is composed by identical robotic agents, which are composed of an AR Drone 2.0
which is commanded via Wifi from a ground station. The ground stations can communicate with each
other under ROS via LAN, where one of them is running the roscore.
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Figure 2: Robotic agent software architecture. The ROS nodes of each agent are executed on a ground
station which commands one AR Drone via WiFi. Each white box represents a module, and the green
text inside it are configuration files. The localization module is implemented using an EKF which
fuses the odometry based estimation with the ArUco visual feedback. This modules broadcasts the
estimated pose to the mission and trajectory planning modules, to the controller modules and to
the other robotic agents. The brain module receives the estimated position of the other robots and
communicates it to the trajectory planner.

2013 edition. Our motivation for participating in such competitions is to develop autonomous systems
which can be later modified to perform civilian applications. This year’s rules are significantly different
respect to 2012 edition. In the IMAV 2013 edition there is only one indoor competition (see [3]) which
requires a high level of autonomy. The scenario has some fixed and previously known obstacles (a
wall and four fixed poles) and several obstacles located on unknown positions (two windows and four
obstacle poles). The indoor competition includes various challenges, among others: flying through
a window, flying through the obstacle zone, target detection and recognition, path following and
precision landing.
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After a deep analysis of the contest characteristics, a Visual Quadrotor Swarm was selected as the
best option to join the 2013 IMAV indoor flight competition. A swarm composed by a significant
number (more than 5) of relatively simple quadrotors (see section 2) is going to be used to achieve all
missions except for the dropping one (mission 6). Additionally, as we decided to work with a visual
swarm, a external visual aid described in section 3.2 is needed to solve the localization problem. Our
swarm is going to be fully automated, and thus the level of autonomy is going to be ”Autonomous
Mission Control”, requiring only one operator to start up and supervise/monitor the whole system
(just in case something becomes wrong, the operator could stop independent elements of the swarm,
or the whole system).

2 System Description

The system is composed by a swarm of autonomous Unmanned Aerial Vehicles (UAVs). Each drone
is autonomous enough to complete a previously defined mission avoiding obstacles and collisions with
the other drones of the swarm. There is no high-level intelligence that controls or synchronizes the
drones, the system then being a pure swarm. All the drones of the swarm share its pose in order to
avoid the partner detection problem.

Each robotic agent is composed of the quadrotor platform and a ground station, see Fig. 1. The
agent is composed of separate modules which work using the Robotics Operating System (ROS), see
[13]. The Parrot AR Drone 2 [4] was selected as robotic platform, the characteristics of this platform
are thoroughly explained in [5]. The ground computer communicates with the drone via Wi-Fi using
the ardrone autonomy ROS package [1]. On the other side, all the drone’s ground computers are
communicated via ethernet.

3 Drone’s Modules

In this section the main modules, see figure 2, of each robotic agent of the swarm are described. The
Pose Estimator and the Trajectory Controller modules are explained on the following bibliography
[20, 19].

3.1 Drone’s Aruco Eye

The localization of the drone in the map is firstly estimated using the Pose Estimatmor module. Since
this measure has drift, we need to correct it with an absolute measure when available using the module
described in section 3.2. For this purpose, we use a visual external aid: ArUco Codes (figure 3, see
[2]). This library allows to calculate the 3D pose of the camera with respect to each ArUco code.

There are two kind of ArUco codes defined in our system. The ones whose position is previously
known and the ones whose position is unknown. Some of these ArUco codes are attached to all the
obstacles (fixed known obstacles and fixed unknown obstacles).

With this distribution of codes, we are able to locate the drone with respect to the known ArUco
codes, and to sense and locate the unknown obstacles with respect to the drone camera.

This visual aid helps us to solve two problems at the same time quite straight forward: we solved
the problem of sensing all the obstacles, that is a very hard task using only computer vision, and we
also avoid the visual localization problem in a general environment that is not solved precisely yet
(even there are some approaches like [11]).

3



International Micro Air Vehicle Conference and Flight Competition (IMAV2013)

17-20 September 2013, Toulouse, France

Figure 3: Samples of ArUco Codes, which are markers used to simplify the obstacle detection and
localization problems.

3.2 Drone’s Localization and Mapping

Localization in indoor environments is a challenging task for UAVs, especially if a low cost and very
lightweight solution is required [17, 21, 14, 12]. In the absence of GPS and laser sensors, visual
approaches are very popular [21, 14, 12].

In the proposed system, the global localization of each drone is based on the IMU data and optical
flow for the pose estimation, calculated by the Pose Estimator module. However, this measure has
a drift which may be significant, so it should be corrected with more reliable information from the
environment when available. For this purpose, we decided to use visual external aids, the ArUco
codes [2] previously described. This library provides the 3D pose of the camera with respect to each
ArUco code in a simple and convenient manner. The input of the localization node are hence the pose
estimation result (similar to odometry) and the relative observations of the ArUco Codes, received by
means of ROS messages.

Since the environment can be partially known a priori, some fixed landmarks are employed. ArUco
codes with a priori known global poses are attached to the known poles. Other ArUco codes are placed
on the wall and the unknown obstacles, and others are distributed over the floor, with an inclination
angle of 45◦ and mounted on top of a platform 15 cm high. The latter are used so as to improve
the visibility of ArUco codes when navigating among the poles; several tests were performed to
qualitatively select an appropiate inclination working properly for the ArDrone’s camera field of view.
Simple and easy-to-use accessories for a fast arrangement of the ArUco codes in the environment were
designed and built.

Localization with visual external aids for UAVs has been recently proposed in other works [21,
14, 12]. The method presented by Jayatilleke and Zhang [14] requires all the landmark poses to be
known a priori and only works in limited areas, employing quite a simple approach without filtering
of any kind. The work by Faig et al. presents an interesting approach for local relative localization
in swarms of micro UAVs, with the external marks always within the field of view. Our method was
mainly inspired by the work by Rudol [21], but our models and formulation are quite different from
those proposed by Conte [6].

We designed and implemented an Extended Kalman Filter (EKF) that allows the complete 6
DOF pose of the drone to be corrected by integrating the odometry data and the information from
the external visual aids detection. The localization method benefits from the existence of known
landmarks, but it also incorporates unknown detected features, using a Maximum Incremental Prob-
ability approach for building a map of 6 DOF poses corresponding to ArUco codes positioned in the
environment. Similar methods for ground mobile robots were developed in previous work by de la
Puente et al., initially based on the observation of 2D point features with a laser scanner [8] and later
based on the extraction of planar features from 3D point clouds generated by a tilting laser scanner
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[10, 9].
In this work, the data association problem does not have to be addressed, since the ArUco readings

provide unique ids for the observations and the landmarks. This way, loop closure is facilitated
and enhanced robustness can be achieved with a not very cumbersome algorithm which showed nice
empirical results in our initial tests.

Non linear state and observation models are used. At each iteration k, the prediction of the pose
state x (6 DOF) is given by:

x̃k = f(x,u)x̂k−1,uk
= x̂k−1 ⊕ u, (1)

where the ⊕ operator corresponds to the composition of relative transformations in the 6D space.
The noise in the odometry measurements is considered as gaussian white noise (as required to apply
the EKF), and the odometry increment u is represented as u ∼ N(û, Q).

The observation model is defined by the following innovation vector for an association of observation
oi and map landmark lj:

hi,i+5 = x̃⊕ oi − lj (2)

The correction of the pose state is obtained by the update equation:

x̂k = x̃k −Whk (3)

where W is the Kalman gain matrix of the system. The covariance matrices are updated at each
stage of the filter as required [22].

The environment is assumed to be static except for the presence of other drones. The accumulation
of drift error if the drone is not able to detect ArUco codes all the time may require the incorporation
of a forgetting mechanism so that the drone can navigate safely with local maps. In our tests thus far
this has not been necessary due to the addition of extra ArUco codes over the floor, but this should
be further investigated.

The input parameters of the algorithm (initial pose, covariance values, global poses and ids of the
known landmarks) are read from an XML file, by means of the pugixml library [15]. The output is
the corrected absolute pose of the drone and the list of global poses of the landmarks belonging to
the map. Other nodes subscribe to these topics, as shown in Fig. 2.

3.3 Drone’s obstacle generator

Once the position of the unknown ArUco landmarks is obtained, they are processed in order to obtain
higher level geometrical features in 2D to be used as obstacles by the trajectory planner. The map of
obstacles is rebuilt at every iteration.

To do so, some prior information is required. Each of the obstacles is given a unique id and the
ids of the ArUco codes belonging to it are provided. The radius of the poles is known. The poles
are modeled with circles given by the coordinates of their center and the radius c(xc, yc, r), while the
walls are modeled with rectangles given by the coordinates of the center, the width and the length
R(xc, yc, w, l).

Given the observation of a landmark lj belonging to pole i, an initial estimate of the circle i is
very easily obtained:

(xci , yci) = lj + rdir (4)

with dir = (cos(yaw), sin(yaw)). This initial estimate is further refined by the mean value of
incorporating subsequent landmarks belonging to the same pole.
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The distribution of the ArUcos of the windows has to be known more precisely. Currently, two
different options are supported: the first solution is to place the ArUco codes at the corners of each
window (with a predefined order) and the second solution is to place one ArUco code at each side of
each window and two ArUco codes below each window (also with a predefined order). The second
option seems to work best due to the fact that the ArDrone presents a horizontal field of view wider
than the vertical field of view. Basic geometry is applied in order to obtain the rectangle models of
the wall.

3.4 Drone’s Trajectory Planner and Collision Avoidance

The objective of this module is the creation of a free collision 2D trajectory (horizontal coordinates x
and y) to achieve a mission.

The module works as follows: a free-obstacles Probabilistic Road Map (PRM) [7] of the 2D map
is generated off-line. The advantage of use a PRM instead of using a fixed-cell decomposition is that
you can select the number of nodes in the graph and the neighbourhood of them. Also, if the robot
is moving thought a zone with a lot of obstacles, new nodes can be added.

Once the free-obstacle graph is created, then an A-Star algorithm [18] searches the path using a
potential field map function as the cost of the algorithm. This potential field map is built as a sum
of a component that attracts the drone to the end of the obstacle zone and another component that
repels the drone from any obstacle. The usage of a search algorithm (A-Star) instead of the potential
field map alone [16], avoids the problem of the local minima.

There are three kind of obstacles considered. The first type of obstacles are the fixed and previously
known obstacles which are set during the start of the module and are obstacles that never change its
previously known position. The second type are the fixed and unknown obstacles that are received
from the module described in 3.3 whose position could be different in the time, depending on how
precisely are the ArUcos pose determined by the module 3.2. The last type are the unknown and
moving obstacles that are other drones and are only considered in the path planning if they are near
to the drone. The positions of other drones are received through the brain (see section 3.6).

Once the path is calculated using the A-Star algorithm, it is post-processed in order to obtain a
shorter and more direct path, avoiding the noise produced by moving the robot from node to node of
the PRM. The post-processing is done using the value of the potential field map. In figure

When new a new pose of the drone or new positions of the obstacles are received, the planner
checks if the new obstacles are outside the planned trajectory and if the drone is following the path.
Otherwise, the trajectory is re-planned.

With this algorithm we solve the problem of the path planning and the collision avoidance, being
able to navigate safely in the map using the Trajectory Controller module.

3.5 Drone’s Mission Planner

The mission planner allows the operator to define a mission made for sub-missions and those formed
by tasks. The mission definition requires a xml file where the mission is described. It has available
different tasks like take off, land, hover, sleep or move.

This module interacts with the trajectory planner (section 3.4) and with the localizer (section 3.2)
when moving or with the brain (section 3.6) otherwise.
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Figure 4: Planned trajectory. In black, obstacles; in blue, the PRM; in magenta, the solution of the
A-Star; in red, the post-processed trajectory

3.6 Drone’s Brain

This is the very high-level module of each drone. It sends high-level commands to the drone like
take-off, land or hover. It also communicates with other drones, receiving the pose of each other drone
of the swarm.

The drone’s brain communicates with all the modules, being in charge of monitoring each module
state, activating or deactivating them.

4 Conclusions

This paper presented an overview of a whole swarm system designed to autonomously complete the
indoor mission of the IMAV 2013 competition. The system is low-cost -employing Parrot ArDrone 2.0
quadrotors without any extra sensors- and deployment and setup are quite easy and straightforward
due to the fact that only a limited number of known external ArUco codes is required.

The ArUco codes are used for localization and mapping, improving the pose estimation obtained
from IMU data and optical flow by means of an EKF based method. The resulting map of ArUco
codes is converted to higher level 2D geometrical obstacles used by a fast trajectory planner combining
probabilistic roadmaps, the potential field map algorithm and the A-Star algorithm. All the drones
have access to the global position of every other drone in the team. The corresponding obstacles
are incorporated to obtain a safe trajectory. A robust mid-level controller employs the target global
position given by the trajectory planner and the corrected pose of each drone in order to drive them to
their respective goals, defined by a mission planner module. The system design and implementation
is based on ROS, which makes code sharing, reutilization and monitoring easier.

This paper presents two additional contributions. First, a low-cost framework for visual quadrotor
swarm prototyping was described. The framework allows to separate the complexity of some modules
such as the localization and obstacle detection capabilities, from the swarm behaviour development
and experimental testing. Second, the framework is used to prototype an aerial visual robotic swarm
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approach to security and surveillance aplications, which is then used to participate on the IMAV2013
competition.

Some initial tests were carried out in simple environments, showing good performance results. We
are currently building a real environment like the one shown in the competition rules in order to
conduct more complex and realistic experiments and validations. Future work also includes designing
and implementing a good graphical user interface for mission management. If the visibility of ArUco
codes is not good in the whole area, the localization method may be modified so that old unknown
obstacles get removed from the map. The trajectory planning algorithm may be updated with novel
ideas.
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