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Abstract

Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their
limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry
light weight sensors, for instance a camera, which is our main assumption in this work. We explore
passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To
Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow
(OF) techniques, combined with both depth estimation methods. Our results show PADE is more
accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings
highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.

1 Introduction

The use of Unmanned Aerial Vehicles (UAV) has become an important part of search and rescue
operations in recent years. UAV can be used to assist human teams with multiple operations; from
exploring a disaster area, to dealing with the difficult task of finding human survivors. The Euro-
pean Union project, Integrated Components for Assisted Rescue and Unmanned Search operations
(ICARUS EU-FP7) [5] aims to improve unmanned air vehicles to integrate them into existing emer-
gency service systems. As part of the ICARUS project, Aerospace technology centre of Fundació
ASCAMM (Spain), is developing a small quadrotor platform to aid in Urban Search and Rescue
(USAR) operations. ASCAMM’s quadrotor is considered a Micro Aerial Vehicle (MAV) due to its
size and limited payload capacity. USAR scenarios require MAV to perform safe autonomous naviga-
tion in unknown and unstructured outdoor environments. In order to autonomously navigate MAV
needs to plan paths that avoid collisions with any obstacles.

Path planning can be described in two steps; firstly, to use sensors to generate a description of
the environment and identify any potential obstacles. Then, to find a feasible path between two
points using the environment description that does not result in a collision [27]. A description of the
environment can be achieved through depth estimation using a variety of active and passive sensors.
Active depth sensing uses physical sensors such as laser or structured light patterns [25] to obtain
depth information from natural scenes [11]. For large quadrotors, collision avoidance has been solved
using active sensors such as laser range finders [22] or depth cameras [10]. However, on MAV with
limited payloads, active sensors remain prohibitive because they are power consuming and heavy. In
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contrast to active sensors, passive visual sensors such as cameras present a light weight option for
collision avoidance on MAV.

Passive sensors such as stereo or monocular cameras estimate depth using stereopsis methods that
mimic the human visual system by calculating depth from two slightly different viewpoints of the
same scene [20]. Stereo cameras use distance between each viewpoint to recover depth by measuring
the relative displacement of an object on two image planes [14]. Similarly, depth is recovered from a
monocular camera by estimating motion on the image plane using Optical Flow (OF) methods and
measuring camera translation and rotation [18, 27]. Monocular cameras are best suited for visual
navigation on MAV due to their light weight and low power requirements.

The primary focus of our work is the investigation of monocular depth estimation techniques using
stereopsis methods. For robotic (monocular) depth estimation, the most extensively used technique
is called Time To Collision (TTC) [23, 17, 4]. TTC estimates, for each pixel, the number of frames
until a collision occurs. The TTC algorithm starts by removing the effects of camera rotation from
the flow field by either estimating camera rotation or using measurements obtained from an Inertial
Measurement Unit (IMU). Next, the location of the flow field’s Focus of Expansion (FOE) is estimated
and used to calculate the time to collision for each flow vector. Using the vehicle’s translational
velocity, each TTC value is converted to a depth estimate [23, 28]. TTC relies on an accurate FOE
estimation, which in practice is not a trivial task for arbitrary camera motion and especially difficult
under noisy conditions [2].

In our work, we investigate possible methods for obtaining a description of the environment using
depth estimation in the context of a quadrotor MAV. Many OF based depth estimation techniques
have been presented for MAV [16, 26] operating indoors and outdoors, although few have incorpo-
rated camera position to improve depth estimation. Our state of the art review has shown a lack of
research combining OF techniques with tightly coupled Global Positioning System (GPS) and Inertial
Navigation System (INS) measurements for depth estimation. Fusing GPS/INS measurements with
an Extended Kalman filter (EKF) [6] improves the accuracy of relative position estimates [1]. In our
work we propose a novel Position Aided Depth Estimation (PADE) method and compare its accuracy
and computational performance against TTC. We also evaluate the robustness of both methods under
noise.

2 Methodology

Our general processing pipeline for monocular depth estimation, shown in Figure 1, is constructed of
two processing stages: Data Acquisition and PADE. The Data Acquisition stage uses two consecutive
images to calculate optical flow and also calculates the relative camera translation and rotation from
absolute position and orientation measurements. The PADE stage uses OF and camera rotation and
translation to calculate a Depth Image.

Motion observed on the image plane is known as Image Flow. Image Flow is the result of the
projection of an object’s 3D velocity on the image plane [8] generated by objects in the scene moving
or through camera movement. To approximate image flow, OF methods detect motion between two
consecutive images for each pixel, described by a 2D vector [uv]T . If we assume the scene is static
and the observed motion is generated by camera translation and rotation, the computed OF can be
used to reconstruct 3D structure of a scene through flow divergence techniques [18].
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Figure 1: Monocular depth estimation pipeline

2.1 Optical Flow

The relationship between camera motion (translation and rotation) and OF can be defined as the
velocity of a 3D point in space with its corresponding velocity on the image plane, shown in the
equation:
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Camera translation and rotation are defined by vectors t = [tt, ty, tz]
T and ω = [rx, ry, rz ]

T and are
expressed relative to the first image frame. In our work we use the convention tz as forward, tx as
right, ty as down for camera translation and rotation is represented as using typical avionics notation
rx for roll, ry for pitch, rz for yaw.

Flow divergence generated by pure camera translation indicates the 3D location of stationary
objects in a scene. Flow divergence methods assume that an object increases in size on the image
plane as the distance to the object decreases, thus flow magnitude is inversely proportional to the
depth of a point to the camera. Using the spatial arrangement cues generated by the relative motion
between a scene and a viewer we can reconstruct a model of the observed scene.

2.2 Compute Relative Translation and Rotation

Equation (1) defines OF as the result of objects 3D velocity on the image plane [8]. If we assume
that the scene is static, then we can suppose that motion observed on the image plane is the result
of camera translation and rotation. The camera’s relative translation t = [tt, ty, tz]

T is the position
displacement between the position p at time t and the position at time t+ 1, shown in the following
equation:

t = pt+1 − pt (2)

Similarly, relative camera rotation ω = [rx, ry , rz]
T is the difference between the orientation o at time

t and the orientation at time t+ 1, shown in the following equation:

ω = ot+1 − ot (3)

3



International Micro Air Vehicle Conference and Flight Competition (IMAV2013)

17-20 September 2013, Toulouse, France

2.3 Position Aided Depth Estimation (PADE)

Monocular depth estimation consists of reconstructing a 3D scene using depth cues extracted from
consecutive image frames after camera translation and rotation. The relative depth image of the
environment can be computed from OF and position information. Our PADE method uses relative
camera position to improve OF depth estimation. To estimate depth, it is not necessary to compute
the FOE since we already have the camera’s translation and rotation [t, ω]. Figure 2.3 shows our
PADE pipeline as two steps: Average Optical Flow and Calculate Depth Image.

Figure 2: Position Aided Depth Estimation (PADE) pipeline

2.3.1 Average Optical Flow

Computing a dense depth image from a dense OF field is computationally expensive because a depth
value is computed for each flow vector. We aim to improve depth estimation performance by reducing
the number of calculations. We calculate the average of all flow vectors within a n × n window and
use it to compute a single depth value for the whole window. By reducing the number of depth
calculations we can improve computational performance by (n × n) − 1. Averaging OF also has the
advantage of smoothing noisy vectors.

2.3.2 Calculate Depth

We isolate Z from equation (1) to compute depth using OF [u, v]T , translation and rotation [t, ω]. By
rearranging the terms in equation (1) we obtain the distance to a point Z, as follows:

Z = At · (

[

u

v

]

−Bω)−1 (4)

The camera’s extrinsic parameters t and ω between image frames plus matrices A and B (defined in
Section 2.1) allow us to solve for Z using an estimate of OF. Equation 4 requires translation |t| > 0
for depth estimation.

3 Experiments

3.1 Measures

In this study, we have investigated multiple methodologies for obstacle mapping on small UAVs. Our
primary research focus is the comparison of two monocular depth estimation techniques: TTC and
PADE. To provide a quantitative assessment of both depth estimation techniques we used Robot
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Operating System (ROS) [21] with the robotic simulator Gazebo [12] to obtain ground truth depth
images. We generated ten image sequences captured from a virtual quadrotor flying through a 3D
scene. Our sequences, totalling 1038 frames at a resolution of 640× 480, isolate many combinations
of translation and rotation in order to explore the robustness of each depth estimation technique.

OF based solutions are typically a trade off between accuracy and speed. Our work focuses on
evaluating methods with the potential of real-time speed at the expense of accuracy. We evaluate two
dense global OF methods (CLG [3], Farnebäck [7]) and one local method (Lucas-Kanade [13]).

Absolute Depth Error (ADE)
We evaluate two depth estimation methods TTC and PADE combined with each OF method,

using Absolute Depth Error (ADE). ADE is the difference between the estimated distance and the
ground truth distance.

ADE = |ZC − ZT | (5)

3.2 Results

In order to assess the accuracy at different depth ranges we have calculated ADE at 4 meter intervals
(0-4m, 4-8m, 8-12m, 12-16m). Table 1 is divided into two blocks, TTC and PADE, and for each
depth estimation method we evaluate the contribution of each OF method. For each 4 meter interval
(columns), we report the average error and standard deviation. The minimum error for each depth
range is highlighted in bold. Lucas-Kanade provides the lowest average error in the 0-8 meter range.
TTC and PADE are inseparable for both Farnebäck and Lucas-Kanade, in the 0-4 meter range,
although between 4-12 meters the difference between the two methods grows in favour of PADE.

Absolute Depth Error (ADE)
0-4m 4-8m 8-12m 12-16m

TTC
CLG 0.53 ±0.17 1.99 ±0.46 2.69 ±0.36 2.15 ±0.47
Farnebäck 0.38 ±0.20 1.84 ±0.42 2.76 ±0.46 2.36 ±0.47
Lucas-Kanade 0.37 ±0.18 1.76 ±0.36 2.53 ±0.37 2.41 ±0.42

PADE
CLG 0.45 ±0.20 1.57 ±0.20 2.47±0.33 2.98±0.44
Farnebäck 0.40±0.16 1.53±0.28 2.54±0.32 3.23±0.47
Lucas-Kanade 0.39±0.15 1.39±0.28 2.51±0.35 3.47±0.45

Table 1: Absolute Depth Error for each distance range.

Position Measurement Noise Analysis
To analyse how dependent each depth estimation technique is on the accuracy of relative position

measurements, we add noise to the translation, rotation and linear velocity measurements of up to
20%. If we consider a camera operating at 10 fps and a quadrotor with a translational velocity of 2
meters/second, an image will be captured approximately every 20 centimetres, producing translational
errors of up to 4 cm in each direction. Figure 3 shows ADE for TTC and PADE using Lucas-Kanade
with noise added to position measurements, PADE (green dotted), PADE with noise (green solid),
TTC (red dotted) and TTC with noise (red solid). Lucas-Kanade results are representative of all OF
methods, for simplicity they are the OF method shown in Figure 3. Consistent with our previous
experiments, PADE (green dotted) has the lowest ADE between 0-12 meters and TTC (red dotted)
is slightly better between 12-16 meters. With the addition of noise, PADE (green solid) ADE slightly
increase, although it is stable from 0-16 meters. In contrast, TTC (red solid) ADE measurements
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increase by 10-30 centimetres between 0-12 meters and up to 65 centimetres between 12-16 meters.
Our data suggests that PADE (green solid) is more robust to noise at 0-12 meters than TTC (red
solid) by approximately 30%. TTC (red solid) is sensitive to noise because it is dependant on accurate
linear velocity measurements to scale from frames into meters.

Figure 3: Absolute Depth Error - TTC and PADE with noise added.

Depth Estimation performance

To evaluate the computational speed of each step in our processing pipeline, Table 2 is divided
into three main columns: OF, depth estimation and overall performance. We have evaluated the
performance of each combination of OF and depth estimation. In both the OF and depth estimation
sections we list the methods used and average processing time per frame in milliseconds. The final
column (performance) shows the average processing time for the complete pipeline per frame. We
have also included the approximate frames per second (FPS) measurement to indicate if each pipeline
is appropriate for real time performance. The computational performance of OF methods vary sub-
stantially based on their implementations. Computations have been performed on a 2.5 GHz Intel
Core processor executing C/C++ code.

Although Lucas-Kanade has out performed CLG and Farnebäck (see Table 1), its average pro-
cessing time of 2800 milliseconds makes it inappropriate for real time performance. However, ADE
measurements indicate that Farnebäck’s accuracy is comparable to Lucas-Kanade in the range of
0-12 meters and has an average processing time of 100 milliseconds, 3% of Lucas-Kanade’s. The
fastest computational pipeline is Farnebäck combined with PADE, which achieves an average pipeline
processing time of 136 milliseconds per frame or 7.35 fps.
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Optical Flow Depth Estimation Performance
Method Time(ms) Method Time(ms) Total(ms) FPS

CLG 880
TTC 190 1070 0.93
PADE 39 919 1.09

Farnebäck 100
TTC 178 278 3.60
PADE 36 136 7.35

Lucas-Kanade 2800
TTC 181 2981 0.34
PADE 39 2839 0.35

Table 2: Optical flow / depth estimation density and processing time comparison.

4 Applications

4.1 Relative Positioning System

PADE requires accurate relative camera position and orientation to aid in depth estimation. Global
Positioning System (GPS) currently provides position measurements with meter level accuracy. Op-
erating on the micro scale compared to GPS there is Inertial Navigation System (INS). INS provides
accurate dead reckoning, based on changes in linear and angular acceleration, although position un-
certainty grows over time as errors accumulate. INS are typically implemented using an Inertial
Measurement Unit (IMU) consisting of gyroscopes for angular measurements and accelerometers for
linear acceleration. GPS and INS measurements are inherently noisy, although, by taking advantage of
the strengths of both systems GPS and IMU signals can be fused together using an Extended Kalman
Filter (EKF) to achieve greater precision [19]. GPS/INS can be combined by loose (integration at the
position, velocity and/or attitude level) or tight integration (integration at the pseudorange, Doppler,
or carrier phase level) [1] to correct measurements and even provide position estimates during short
GPS outages.

We propose using tightly coupled GPS/INS to improve the computing the camera’s relative position
and orientation measurements to aid in monocular depth estimation. If the observed scene is generally
static, the displacement of pixels on the image plane is due to camera translation and rotation. Two
consecutive frames can be treated as a stereo pair using the translation and rotation obtained from
the GPS/INS as the camera baseline. The relative position and orientation between images depends
on the frame rate of the camera and the UAVs speed. If we consider a camera operating at 10 fps
and a UAV with a translational velocity of 2 meters/second, an image will be captured approximately
every 20 centimetres. The accuracy of GPS/INS relative measurements for small position changes,
and within short time periods is in the order of centimetres.

4.2 Occupancy Grids

Although it is possible to map obstacles using dense point clouds, it is more practical to create a
coarse and fast representation of the surrounding scene by using an alternative representation, like an
occupancy grid. An occupancy grid is a binary map representation of obstacles in the surrounding
environment. Space is evenly divided into cells and each cell is determined to be occupied or empty.
The simplicity of occupancy grids have made them the dominant spatial representation used in mobile
robotics [24]. 2D occupancy grids are common for ground vehicle and 3D occupancy grids for air
vehicles. Taking advantage of this mapping simplification we can use point clouds projected from
depth images to update a probabilistic 3D occupancy map using a framework called OctoMap [9]. The

7



International Micro Air Vehicle Conference and Flight Competition (IMAV2013)

17-20 September 2013, Toulouse, France

occupancy grid when updated with a new point cloud takes into account the probabilistic uncertainty
of noisy measurements, producing a low noise 3D obstacle map of the local environment. OctoMap
uses a volumetric representation (voxel) with configurable resolutions. For our research we’ve used a
voxel resolution of 10 centimetres. The occupancy grid is updated with reference to a global frame
taking into account changes in the quadrotors position. The map’s volumetric representation enables
the quadrotor’s trajectory planner to avoid collisions and ignore obstacles outside its planned path.

(a) Input (b) OctoMap

Figure 4: Image processing pipeline. Quadrotor flying towards a building.

5 Conclusions

In this work we explore monocular depth estimation techniques using stereopsis methods. We eval-
uate the extensively used Time To Collision (TTC) method against our novel Position Aided Depth
Estimation (PADE) method and we compare both methods ability to measure distances up to 16
meters with camera translation and rotation. Our study includes an evaluation of the influence of OF
methods on depth estimation and we evaluate three popular OF methods Lucas-Kanade, Farnebäck
and Combined Local Global.

By adding noise to translation, rotation and velocity measurements, the difference between the
two methods is more noticeable. Our study shows that TTC is sensitive to noise due to its reliance on
linear velocity to scale its initial collision estimate from frames to meters. Small errors in the linear
velocity estimation result in large depth errors. In contrast, the accuracy of PADE is only slightly
reduced across all evaluated depth ranges, indicating that it is robust to noise.

As part of our evaluation of OF and depth estimation techniques we also evaluate the processing
time for each step of the pipeline. Calculating motion using Lucas-Kanade produces the most accurate
depth estimation. However, Lucas-Kanade’s processing time makes it prohibitive for real time perfor-
mance. Farnebäck on the other hand, provides comparable depth estimation results and requires only
3% of the time. The combination of Farnebäck with our PADE method provides a depth estimation
pipeline with close to real time performance.

Our evaluation of depth estimation techniques in the context of MAV has shown that monocular
depth estimation is improved when combined with relative camera position.
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6 Future work

Our initial results are encouraging, although future work will involve testing, evaluation and opti-
misation using real flight data before deployment on a quadrotor. Currently, the majority of image
pipeline processing time is consumed by OF. However, using Graphic Processing Units (GPU) have
been shown to compute OF at 25 fps [15], which could provide better pipeline throughput.
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