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Abstract— A planar surface extraction method is proposed
for the indoor navigation of a micro-air vehicle (MAV). The
algorithm finds planar clusters from the unorganized
pointclouds. This is achieved by implementing a novel
approach that first segments the data points into clusters and
then each cluster is estimated for its planarity. The method is
tested on indoor point cloud data obtained by 3D PrimeSense
based sensor. In order to validate the algorithm, a simulated
model containing a set of planes has been constructed, with
noise injected into the model. The results of the empirical
evaluation suggest that the method performs well even in the
presence of the noise and non-planar objects, suggesting that
the method will be a viable one for use in MAV navigation in
the presence of noisy sensor data.

I.  INTRODUCTION

HE Efficient extraction of surfaces from the

environment is a fundamental requirement for robust
robotic perception, although this is a challenging task and an
active research area. It is important to extract only those
parts of the environment that are most relevant in the
application domain, so the data can be processed effectively
and efficiently. Selective data extraction can also result in
improvement of the overall robustness of the algorithms
used in various crucial areas, including robotic navigation,
manipulation, object recognition, and scene analysis, etc.
The success or failure of the particular solution in these
areas is dependent on the application domain as well as the
robotic architecture due to the different demands posed by
each domain [1] and the challenges posed by the nature of
the maneuverability of the robot. In case of navigation of
MAVs (Micro Aerial Vehicles) the challenges are quite
different from those faced by ground robots, since MAVs
require faster decision making with minimal onboard
resources. From this perspective, it is important to retrieve
only the most important information from the raw data
coming from sensors, and to process only the information
that is most crucial to the application domain.

In general, navigation solutions can be divided into two
categories: (a) Map-based navigation and (b) Model-based
navigation. The former has been applied in ground robotics
for the past decade and is robust when computational power
is not an issue or decision making is not required so
frequently. The approach is to build a map of the
environment and update it continuously. The resulting maps
are good for path planning and for supporting cognitive
abilities of robots, but they require lot of computation and
hence slower decision making since the refresh rate of a
map is dependent on the scan rates of sensors. Recently,
applying such methods for navigation has been a trend in
flying robots. Keeping in view the context, we are only
discussing the three map based techniques which differ from
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each other such that they can sub-divide the area. One
technique describes a distributed approach while second one
describes a conventional SLAM based approach using both
laser and stereo vision sensors. The last one gives a semi-
map based technique using occupancy grids.

In [2] a decentralized approach to map building is
proposed in which one node utilizes a shared map from
other nodes. It was observed that this method works well
unless one node has a higher error rate than the others, in
which case the error rate is reduced for other nodes while it
increases for the node itself. A map based technique for GPS
denied indoor environments was employed in [3] using a
stereo vision camera system and a laser scanner. Obstacle
avoidance in such systems is vulnerable since it is dependent
on the scan rate of the laser sensor. A good utilization of
maps for navigation is achieved by building occupancy grids
for obstacle avoidance. In this context a Multi Volume
Occupancy grid (MVOG) is an efficient method which
divides the 3D space into occupied and vacant space [4].

In contrast to map-based navigation methods, model-
based methods utilize primitive shape models that are
common in the environment, or grab the structure that is
generated from motion. In 2D visual navigation, a lot of
work has been performed using optical flow for navigation
of MAVs because of its simplicity and resemblance to
biological vision systems of insects [5, 6]. In [7] a hybrid
approach has been proposed that combines 2D video
information from a camera and position information from a
laser scanner. The Structure From Motion (SFM) was
obtained from video camera images and the information was
fused with GPS and inertial sensors in order to improve the
accuracy of navigation. The extraction of most primitive
features (e.g. plane, cone, sphere, and torus) is another
efficient method that can be used for robust navigation of
MAVs [8].

In the work reported in this paper, we intend to extract
planar structures from the environment, since these are the
most common ingredient in the man-made structures.
Surfaces are extracted from the point cloud by segmenting it
into clusters using Normalized Cuts [9] with an improved
association function. The NCut is chosen as a segmentation
technique for its broad applicability in the related context
[10-11] because of being based on graph partitioning
approach which is one of the robust methods used in image
segmentation. The complete detail of the algorithm is
described in the next section. The resulted planes will be
used in ongoing work for the estimation of MAV location in
the point cloud of an indoor scene.
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This article is organized as follows: Section II provides
details of the proposed algorithm. In Section III the
architecture of the target MAV platform is described.
Experimental results are presented in section IV and section
V presents our conclusions.

In this section, the methodology used for extracting the
planar surfaces from the environment is described. First
there is a brief description of NCut and then the improved
weighting function is presented that is used in the study. The
algorithm is given in the later part of the section.

METHODOLOGY

A.Normalized Cuts

The segmentation of a point cloud can be modeled as a
graph partitioning problem. Each point in 3D space is
modeled as a node V; and an edge E; is formed by
connecting two nodes in a weighted undirected graph
G(V,E). The weight for each edge is the function of the
distance from one point to the other point in a pair with
small distance resulting in larger weights. This represents a
function of similarity between the nodes/points. We want to
segment the point cloud into disjoint set of points or clusters
Vi, V3, V3,...,Vp such that the similarity of nodes in V; is
maximized and similarity across the nodes of V; is
minimized. According to the NC (Normalized Cut)
algorithm, the optimal bipartition of a graph into two sub-
groups A and B is obtained by minimizing the Ncut value as
follows:

_ cut(AB) cut(A,B)
(1) NC‘LLt(A, B) - assoc(4,V)  assoc(B\V)
where cut(A,B) YueavepyW(w, v) represent the

dissimilarity between A and B and w(i, j) is the similarity
between the node i and j. assoc(A,V) is the total connection
from nodes of A to all the other nodes and assoc(B,V) is the
total connection from nodes of B to all other nodes. Let X be
an N=|V| dimensional vector for a partition that divides
graph V into two sets A and B such that ;=1 if i is in A and
-1 otherwise. Let di = ¥;w(i,j) be the total connections
from node i to all other nodes. According to [9] an
approximate discrete solution to minimize Ncut(A,B) can be
obtained by solving the following equation:

yT(D-w)y
T
y Dy

2)

argmin,Ncut(x) = min,,

Where D= diag(d;, dy, ds,...,dn), di = X; w(i,j), W = [w;],
>0 d;
and y = (1+x) — (1-x) 2o l/z .- Using Yy €R (2)
x;<0 “i

can be solved by the general Eigen value system:

3 GO-W)y= ADy
B. Planar Dissimilarity

The core of NCut is the representation of the association
among the points. This is done using a weighting function
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describing the similarity/dissimilarity of the data. As
mentioned in [9], this function is application specific; hence
it needs to be modified in order to work on the target point
cloud data. The association function in its original form
representing the weights for each edge is given by [9]:

2

@  w= e_<i_k>

where d, is the distance from node i to node j and o is
the scale factor taken as 5-10 percent of the maximum
distance in the original work. After analyzing the histograms
of distances for some points it becomes clear that ‘w’ needs
to give more weight to the closer points than the points that
are far away. This requires a modified association function
with adaptive o0 for each node. Sample histograms showing
the distances from a point to all other points are depicted in
the figure 1.

In order to get better clustering for 3d pointcloud, an
updated weigtening funtion ‘W,’ is used which can
emphasize closer points more than ones that are far away.
This improves the effect of minimization in the Ncut
technique. The new weighting function with median [ taken
as the center of gravity of each node is given in the (5).

(—u(de —u))
e\ b

where 0, = kgwith k=0.25" is used in this study. This
makes O adaptive for each node, which helps in reshaping
the weighting function according to the input data.

W

(6))

Figure 1: Normalized histograms of some sample graph nodes with
respective center of gravities.

The normalized histogram of distances between one
node to the other nodes can be seen as indicator of node’s
association to the other nodes. The center of gravity of the
normalized histogram also indicates the center of point
clouds mass seen from a node position. The desired weight
function would emphasize the importance of the nodes
belonging to a cluster and also would separate the outliers
nodes. On the other hand the range of distances for a given
node to other nodes varies due to the change in the
respective neighborhood. For such a variation in the data
nodes, a fixed function as was being used earlier, can fail to
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distinguish between smooth edges thus resulting in  Normalized Cuts [9] with a new weighting function as
incorrect segmentation of the interconnected or occluded  described in the previous section. Each cluster is processed
objects in the scene. for identification of its planarity nature and candidate
clusters are obtained. This planar data is filtered for possible
The main improvement of the weight function lies in  noise, which then would provide the input to RANSAC
the scale invariant property. It can be observed from the (RANdom Sample Consensus) that would fit a planar model
figure 1, that the range of a distances for a given node  within the selected clusters although application of
varies due to the change in the respective neighborhood.  RANSAC is not being done in this study.

However, the weighting function itself is scalable function
which is adaptively scaled depending on the center of
gravity. For example, ‘wp’ would generate more amplified
response for node 1 than it would generate for node 3 of
the data. This results in an overall segmentation that is
more sensitive to the variation in the small changes by
enhancing the effect of minimization in the NCut which is
dependent on the individual weights.

C.Surface Estimation

In this section we describe the process of estimating the
planarity of each cluster. For ‘K’ clusters obtained by
NCut we identify those clusters that have a planar
tendency. In order to achieve this, Least-Square Plane
(LSP) fit is applied to the point normals which are
calculated for each point by taking ‘K’ nearest neighbors
and finding a surface normal made by the point with its

neighbors. Suppose the normal of the LSP is P =
(Px, Py, ;) and the error associated with plane fitting is

E =,/YX d;/N where ‘N’ is the number of points in the
cluster and d; is the distance of the point p(X;, Vi, z;) and
the plane. The minimization of the error can then be done
by using Singular Value Decomposition (SVD) of the
following matrix ‘S’:

(©6) S =NNT

where N = (X — i,y — Uy, 2—p,) with x=
DT, y=0)",z=(z)"being the x, y and =z
coordinates of the point normal of the data and p=( ,
Hy,, uz,)T is the centroid of the data normals. The
eigenvectors with Eigen values A; A, . Ay, are then

calculated. The normal vector P can be equated with the
Eigenvector with the minimum eigenvalue and the plane

fit error can be equated with /A,,;/N . The value of E
gives a fast estimate of whether a given cluster is planar
or not. If E < T then the cluster is considered to be planar,
where T is taken sufficiently close to zero.

D.Post Processing

The planar clusters can have some part of the noise that
passes through the plane extraction threshold. As it can be
seen in the figure 5(c).These scattered noisy points in the
planar clusters should be removed so that they might not
affect later processing. In order to remove these points, a
local variance based pruning method is implied. Each
point is classified as data or noise based on its spread
from the ‘k’ nearest neighbors. The result of this pruning
method is shown in the figure 5 (e).

E. Planar Surface Extraction Procedure

In this section we describe our novel PLASE(PLAnar
Surface Extractor) method. In order to extract planar
clusters from the point cloud, the cloud is segmented using
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e Setk=2
e While(true)
e Extract ‘k’ clusters C; for i=1,2,.. .k
e For each C; form a set of planar segments
P = {C, C,. . C.,} such that E; < T where
m <k.
* Apply post processing filteration for each
P j=1,2,...,m in order to remove the noisy
data points.
e As= s —sx where s = Y var(C))
e If(As <t) terminate else k = k+1

I1l. SYSTEM SPECIFICATION

The proposed algorithm is designed to be used on a MAV
platform that has been customized as part of the study.
The MAYV system consists of 6-rotor copter with obstacle
avoidance and vision processing capabilities. The
architecture of the system is depicted in figure 2. A
PrimeSense 3D camera has been mounted on the MAV to
provide point cloud data. An on-board CPU with 1.3GHz
processing speed is responsible for the vision processing
tasks. Lower level obstacle avoidance is performed by a
microcontroller that is responsible for generation of he
control signals to the MAV’s flight controller. The
microcontroller uses input from 6 ultrasonic sensors
chained together to generate the appropriate control
(Yaw, Pitch, Roll) commands to change the state of the
MAV.

3D Camera
S

e 7
Reactive Control Layer Perceptual
(ATMega Microcontroller) — Control

Layer
(onboard CPU)

Position
Sensors
(GPS/Magneto
meter)

Figure 2: Architecture of the MAV platform with sensor
integration and decision making layers.

The reactive control layer is a PID controller which is
responsible for the low level decision making for the
absolute obstacle avoidance. It also has a higher priority
over perceptual control layer. The auto pilot commands
are generated as the result of visual algorithm and are sent
to the reactive layer which makes decision of forwarding
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these commands to the flight controller by observing the
signals received from the distance sensors. In case of near
obstacle, reactive control generates its own pilot
commands to keep the vehicle at a safe margin.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed algorithm is applied on a set of point cloud
data obtained from a 3D PrimeSense camera and the results
are visualized. The results of clustering with original and
improved weighing functions are depicted in the figure 3
with each cluster in distinct color. These clusters are then
tested for their planarity nature using the method explained
in the section II and the results can be visualized in the last
row of the figure 3. The clustering result has been improved
by the use of W, which enhances the cuts in the graph of the
nodes. Adaptivity in the 0 calculation helps to better
represent the locality of each node and hence ensures the
relative cluster spread. This also makes the method invariant
to changes in data due to view point change or sensor noise,
although it has been observed that the association function is
not invariant across different scales of the data. In this study,
each point cloud is down sampled to the same degree and
hence every point cloud has the same data size.

In order to validate the algorithm, a simulation model
containing a set of planes and noise has been constructed.
The planar point cloud model data is injected with Gaussian
noise and some random structures to mimic the natural
scene as shown in figure 4. This point cloud model is used
to generate various indoor scenes containing different
numbers of planes and noisy objects, and the performance of
the algorithm is measured. The scenes created from the
model along with their respective results can be visualized
in the figure 5.

For each P; j=1,2,...,m cluster that results from the
application of the algorithm, an error rate €; is measured that
reflects the clustering performance of the proposed method
over multiple scenes. Each cluster of the ground truth is
assigned to a class that is most frequent in the resultant
cluster. Then the error rate of this assignment is measured
by counting the number of correctly assigned points:

(M) €@, =1- [ emaxj|ox n o]

where Q = {w;, W, w3, ... w,} is the set of clusters and
C = {1, ¢3, C3, ... ¢} is the set of classes.

The error for every scene is calculated 10 times with
different spread of the noise each time and the average error
for each scene is taken. The evaluation results of each scene
with different weighting functions are depicted in the table
1. This reflects the average error rate over multiple runs of
the same scene with varying noise (0) density of the scene.
The effect of sigma on error rate for each scene is depicted
in the Appendix Al.
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Figure 3: First Row: High resolution point cloud of original scenes.
Second Row: clustering using ‘W’ Third Row: Clustering using ‘W’
and Fourth Row: The clusters from the third row are then tested for their
planarity nature to obtain planar clusters as mentioned in section IIC.

Figure 4: A simulation model of the environment.
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Figure 5: (a)-(b) clustering using simulated scenes. (c)-(d) Plane
extraction result on different scenes, (¢)-(f) Result of pruning..

The precision and recall are widely used performance
metrics for evaluating the correctness of a detection
algorithm. They can be considered as an extended version of
accuracy that is a simple metric which computes the fraction
of instances for which correct result is obtained. In order to
compute the precision and recall of the proposed system,
labels for a given point is divided into two classes: planes
and, non-planes or noise. Recall is then computed as the
fraction of correctly classified points as planes among all
points that actually belong to the planar class. While
precision is the fraction of correctly classified planar points
among those that the algorithm believes to belong to the
planar class. The relationship of precision and recall can be
observed in the figure 6. A high recall means that we
haven’t missed any plane in the scene but we might have
unwanted points in the planar clusters. High precision means
that everything detected was planar but we might not have
covered all the planar points. Formally, the precision for a
given class is the ratio of number of true positive to the total
number of elements labeled as belonging to the planar class.
Recall in this context can be defined as the ratio of true
positives to the total number of elements that actually
belong to planar class. So, the precision and recall of the
system can be written as following:

+ +

T T

Tttty

Tttt

®)

where 7% is the number of planar points that are correctly
classified as planes and % is the number of non-planar
points that are classified as planes. Whereas the 1~ is the
number of planar points that are classified as non-planes.

52

Figure 6: Plane: blue triangle, Noise: grey triangle, T* : green polygon in
blue triangle, 77:red polygon in grey triangle, ¥* : green points in grey
triangle, 1 ":red points in blue triangle, Precision: vertical arrow, Recall:
horizontal arrow.

A measure that combines the precision and recall is
called harmonic mean or the F-measure. We used F-score as
a combined measure in order to calculate the plane
extraction performance of the algorithm. The general F,
measure can be given as following:

_ (1+02).PR
T @2P+R

9 o

Where o is the weight of precision to recall. F, is the
balanced F-score because precision and recall are equally
weighted.

Table 1: Performance of the algorithm using surfaces from simulated
scenes. Clustering error is calculated as according to equation 7 and
planar cluster estimation column depicts the F-score.

Scene Avg Clustering Error PLASE(PLAnNar
e /n) Surface Extractor)
F.— (1+a?).P.R

* a?.P+R

(D-wy)y | D-W )y | Fos F F,

= ADy = ADy

1 0.25 0.44 093 | 0.87 | 0.82
2 0.12 0.46 0.86 | 0.86 | 0.87
3 0.03 0.38 097 | 095 | 0.94
4 0.10 0.25 0.40 | 0.36 | 0.30
5 0.05 0.37 0.85 | 0.80 | 0.77

Figure 7: Performance of planar surface extraction. Horizontal axis
represents the individual instances of the data for each scene with varying
noise and Vertical axis represents the classification performance.
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The results indicate the tendency of the algorithm for
successfully finding planes in the environment even in the
presence of noise and other non-planar objects. As it can be
observed in the figure 7 which depicts the performance of
the proposed method on the simulated data over multiple
runs of the five scenes, that for most of the data instances,
the performance (F-score) of the method remains above
ninety percent. The proposed plane extraction method is also
able to classify the scenes consisting of planar surfaces with
good precision rate, as can be observed in the figure 7.

V. CONCLUSIONS AND FUTURE WORK

In this study we proposed a novel plane extraction
method (PLASE) that can be used to localize a MAV in an
indoor environment. The results suggest that this method
performs well even in the presence of noise and non-planar
objects, and that it should be effective for indoor navigation
of a MAV. The performance of the algorithm is dependent
on the success of the individual steps, which means that
wrongly segmented data can lead to bad planes. This can be
a potential problem that could be overcome by using
adaptive clustering in NCut. Due to time constraints, a
simple iterative cluster number estimation method was used;
this will be improved in future work.

The method is implemented in MATLAB and is not real
time; the method will be re-implemented in C and for the
MAV platform as part of the future work.
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Al: A comparison of error rates of clustering performance using weight functions (W,W,) for five scenes while each scene has been
repeated ten times with varying noise in the simulation model.
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A2: Simulated scenes depicting the construction of planar models containing Gaussian noise with 0=2.1 and some random non-planar
objects.
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